
Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Resolution Re�nements

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Summary

Re�nement for Resolution

Linear Resolution [Chang-Lee Ch. 7.2]

Ordered Resolution

Ordered Clause [Chang-Lee Ch. 7.4]

Ordered Clause for Linear Resolution [Chang-Lee Ch. 7.4]

Linear Deduction and Tree Searching [Chang-Lee 7.6]

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Resolution so far

Need of re�nement

Resolution is refutationally complete

Level Saturation generates all possible clauses

Deletion strategies can be used to eliminate irrelevant and
redundant clauses

However, generating clauses and deleting them is not
e�cient

waste of time to generate them
waste of time and memory to check that they are
irrelevant/redundant

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Resolution Re�nements

Re�ne resolution

Want to avoid irrelevant and redundant clauses to be
generated

Many important re�nements of resolution

Main ones:

1 Semantic Resolution
2 Lock Resolution
3 Linear Resolution

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Semantic Resolution

Main features

Choose one interpetation for S

Divide clauses in two sets according to one interpretation

Resolve clauses from di�erent sets

Semantic Resolution is complete

Related methods:

1 Hyperresolution: Semantic resolution where the
interpretation is the negation of all atoms.

2 Set-of-Support: individuates a set T such that S − T is
satis�able.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Lock Resolution

Main features

Arbitrarily assign an (integer) index to each literal in every
clause

Allow resolution only on literals of lowest index

Indexes in resolvents are inherited from parent clauses

Lock Resolution is complete

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Resolution

Basic Concepts

Chain application of Resolution steps

Given a set of clauses S

Choose a clause C0 ∈ S

Choose a second clause B0 in S

Apply resolution and obtain R1

Choose another clause B1 from S or from previously
generated resolvents

Apply resolution to R1 and B1 generating R2

Repeat until � appears

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Resolution

Main bene�ts

Extremely simple structure

Refutationally Complete

Can be used with other re�nements (e.g., set-of-support)

Many heuristics to make it very e�cient

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Resolution: De�nition

De�nition (De�nition)

Given a set S of clauses and a clause C0 ∈ S , a linear deduction
of Cn from S with top clause C0 is a sequence of resolvents
R1, · · · ,Rn where Rn = Cn and:

R0 = C0

for i = 0, · · · , n − 1 Ri+1 is a resolvent of Ci (called center
clause) and Bi (called side clause)

each Bi is either a clause in S or is a Cj for j < i

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Resolution: Example

Example (Linear Resolution)

Consider the set S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q}, the
following is a linear reduction of � from S with C0 = P ∨ Q:

P ∨ Q ¬P ∨ Q

Q
P ∨ ¬Q

P ¬P ∨ ¬Q

¬Q
Q

�

Figure: Linear deduction of � from S with C0 = P ∨ Q

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Resolution: Example II

Example (Linear Resolution)

Consider the set S = {P(x) ∨ P(y),¬P(u) ∨ ¬P(v)}, give a
linear reduction of � from S with C0 = P(x) ∨ P(y):

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Resolution: Basic Concepts

Pruning possible resolution steps

Aim: reduce the possible application of resolution
maintaining completeness

Use order to constraint the resolution process

e.g., consider always the literal which is maximal with
respect to the ordering

Allow resolution only when the constraint is met

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Di�erent types of ordered resolution

types of order resolutions

1 Ordered resolution

Given a partial order on atoms
Apply resolution only when the literals resolved upon are
maximal in both premises

2 Selection (also called ordered resolution)

Sort atoms of each clause into a �xed sequence
Apply resolution only when in at least one ofthe two
premises a maximal atom is involved
Maximal in this case means leading (e.g. last of the
sequence)

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered resolution: Example

Example (Ordered Resolution)

Consider the set S = {P ∨ Q,Q ∨ ¬P,¬Q ∨ P,¬P ∨ ¬Q} And
the order P > Q.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Selection: Example

Example (Selection)

Consider the set S = {P ∨ Q,Q ∨ ¬P,¬Q ∨ P,¬P ∨ ¬Q}
Order is given for each clause.

If we perform resolution between maximal literals in both
premises we obtain only P ∨ ¬P and Q ∨ ¬Q
If we allow resolution between a maximal literal of one
premise and any literal of the other we can deduce �

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Resolution: Discussion

Discussion

Both are refutationally complete

Ordered Resolution requires orderings on atom set, many
possibilities from Rewriting literature

Selection can be extremely e�cient when combined with
linear resolution

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Orderings for FOL

Orderings

For FOL formulas ordering of atoms is not obvious:

Ordering on predicate symbol is all we need for
propositional formulas
For FOL we need something more: P(f (f (x))) >?P(f (x)),
P(x) >?P(a)

We need a way to order atoms starting from ordering on
predicate, function and costant symbols.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Orderings

De�nition (strict order)

A strict ordering for a set P is an anti-re�exive transitive binary
relation >

Orderings

Anti-re�exive: ∀x ∈ A x 6> x

Transitive: ∀x , y , z ∈ A if x > y and y > z then x > z

Example (strict order)

Natural number set N with greather than > relation de�ne a
strict order

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Orderings for Atoms

Orderings for Atoms

We are interested in strict orderings over the Atom set
with speci�c properties:

Compatibility: f ∈ F ∪ P and s1 > s2, si ∈ Term then
f (t1, · · · , s1, · · · , tn) > f (t1, · · · , s2, · · · , tn) ∀ti ∈ Terms

Stability: if s1 > s2 and σ is a substitution then s1σ > s2σ

a strict ordering for which 1 and 2 hold is a rewriting
ordering

a sempli�cation ordering is a rewriting ordering for which
the following holds: f (x1, · · · , xn) > xi ∀f ∈ F

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Terminating Orderings

Termination

A strict order > is terminating i� there is no in�nite chain
x0 > x1 > x2 > · · ·
A strict order on a �nite set is always terminating

A rewriting order which is terminating is said a reduction
order

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Main Orderings

Orderings

We assume a strict ordering >p on symbols of F ∪ P. (we
assume constants to be functions with arity = 0)

Two widely used orders for theorem proving are:

Lexicographic Path Ordering (LPO)
Knuth Bendix Order (KBO)

Both LPO and KBO are sempli�cation orderings (and
reduction orderings for �nite languages)

Both of them are total orders for ground atoms

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

LPO de�nition

De�nition (LPO De�nition)

Given a strict ordering >p on symbols of F ∪ P, given two
atoms s, t, s >lpo t if one of the following conditions hold:

(LPO1) s ≡ f (s1, · · · , sn) and for some i = 1, · · · , n we
have that si >lpo t or si ≡ t.

(LPO2) s ≡ f (s1, · · · , sn),t ≡ g(t1, · · · , tm), f >p g and
s >lpo ti for all i = 1, · · · ,m.

(LPO3) s ≡ f (s1, · · · , sn),t ≡ f (t1, · · · , tn) and for some
i = 1, · · · , n we have that:
s1 ≡ t1, · · · , si >lpo ti , s >lpo ti+1, · · · , s >lpo tn.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

LPO: Example

Example (LPO)

Verify that a(s(x), s(y)) >lpo a(x , a(s(x), y)) given the strict
order a >p s >p 0

use (LPO3) and verify that:

1 s(x) >lpo x ; true because we can use LPO1 with x ≡ x
2 a(s(x), s(y)) >lpo a(s(x), y)

1 use LPO3 again, and LPO1 verifying that y ≡ y

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

KBO De�nition

KBO Requirements

We need a strict ordering >p on symbols of F ∪ P.
An admissible weight function w that assigns to each
function, predicate and variable symbol an integer

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Weight function

De�nition (admissible weight function)

Admissible weight function must meet the following
requirements

1 There exists d > 0 such that d = w(x) for all variable x .
Moreover w(c) ≥ d for all constants

2 we can have w(f) = 0 but only for a single unary function
or predicate symbol f . In that case, f >p g must hold for
all other function, constant or predicate symbols.

Weight function is extended to all atoms as follow:

w(t) =
∑
x∈V

w(x)|t|x +
∑

f ∈F∪P
w(f)|t|f

where t is an atom and |t|α is the number of occurrence of α
(variable, function or predicate symbol) in |t|

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

KBO de�nition

De�nition (KBO De�nition)

Given a strict ordering >p on symbols of F ∪ P, a weight
function w and two atoms s and t, s >kbo t i� for all variables
x |s|x ≥ |t|x and one of the following conditions hold:

(KBO1) w(s) > w(t).

(KBO2) w(s) = w(t), s ≡ f 1(x) and t ≡ x , for some
f ∈ F1 and for some x . Note that in KBO2 since
w(s) = w(t) then w(f) = 0.

(KBO3) w(s) = w(t), s ≡ f (s1, · · · , sn), t ≡ g(t1, · · · , tm)
and h >p g

(KBO4) w(s) = w(t), s ≡ f (s1, · · · , sn), t ≡ f (s1, · · · , sn)
and for some i = 1, · · · , n we have that

s1 ≡ t1, · · · , si >kbo ti

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

KBO Example

Example (KBO Example)

Show that i(x ∗ y) >kbo i(x) ∗ i(y) assuming that: i >p ∗,
w(i) = 0,w(∗) = w(v) = 1 ∀v ∈ V

|i(x ∗ y)|x = |i(x) ∗ i(y)|x and |i(x ∗ y)|y = |i(x) ∗ i(y)|y
w(i(x ∗ y)) = w(i(x) ∗ i(y)) = 3

since i >p ∗ we can apply KBO3 and show that
i(x ∗ y) >kbo i(x) ∗ i(y) holds.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example for KBO and LPO

Example (Examples)

Consider the atoms s = P(f (f (x))) and t = P(f (x)), and
assume P > f .

Decide whether s >LPO t

Assuming w(x) = w(f) = w(P) = 1, decide whether
s >KBO t

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered resolution using Orderings

Example

Consider the set S = {¬P(x) ∨ Q(f (x)),P(a),¬Q(y))} Show
an ordered resolution, assuming P >p Q >p f >p a,
w(y) = w(x) = w(f) = w(P) = w(Q) = w(a) = 1 and using
the KBO ordering and level saturation deleting redundant
clauses.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Clauses

Basic Concepts

Consider a clause as a sequence of literals (not a set)

By doing this we specify the order of all literals in a clause

L2 > L1 if L2 follows L1 (going from left to right)

The largest literal in a clause is always the last literal

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered factor

De�nition (Ordered Factor)

If two or more literals (with the same sign) of an ordered clause
have an MGU σ, then the ordered clause obtained from the
sequence Cσ by deleting any literals that is identical to a
smaller literal in the sequence is called an ordered factor of C .

Generating an ordered factor

�nd an MGU

apply σ

merge literals to the left

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Factor: Example

Example (Ordered Factor)

Consider the ordered clause C = P(x) ∨ Q(x) ∨ P(a), and the
MGU σ = {a/x} An ordered factor for this clause is
P(a) ∨ Q(a)
Notice that Q(a) ∨ P(a) is not an oredered factor for C , but
would be a factor if the clause was not ordered

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered binary resolvent

De�nition (Ordered Binary Resolvent)

C1 and C2 ordered clauses

L1 and L2 two literals in C1 and C2

σ MGU for L1 and ¬L2
Obtain the ordered factor Cby:

concatenating C1σ and C2σ

removing L1σ and L2σ

merging left all identical literals

C is the ordered factor of C1 against C2, L1 and L2 are the
literals resolved upon

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Binary Resolvent: Example

Example (Ordered Binary Resolvent)

Consider the ordered clauses C1 = P(x) ∨ Q(x) ∨ R(x), and
C2 = ¬P(a)∨ S(a)∨Q(a). Choose L1 = P(x) and L2 = ¬P(a)
the MGU σ = {a/x}.

C1σ concatenated to C2σ is
P(a) ∨ Q(a) ∨ R(a) ∨ ¬P(a) ∨ S(a) ∨ Q(a)

Removing L1σ and L2σ we have Q(a)∨R(a)∨S(a)∨Q(a)

Merging left Q(a) we have Q(a) ∨ R(a) ∨ S(a)

P(x) and ¬P(a) are the literals resolved upon
Notice that by resolving C2 against C1 we have a di�erent
binary resolvent: S(a) ∨ Q(a) ∨ R(a)

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered resolvent

De�nition (Ordered Resolvent)

Given two clauses C1 and C2 (parent clauses) an ordered
resolvent of C1 against C2 is one of the following binary
resolvents:

an ordered binary resolvent of C1 againts C2

an ordered binary resolvent of C1 against an ordered factor
of C2

an ordered binary resolvent of an ordered factor of C1

against C2

an ordered binary resolvent of an ordered factor of C1

against an ordered factor of C2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Resolvent: Example

Example (Ordered Resolvent)

Consider the ordered clauses C1 = P(x) ∨ Q(x) ∨ R(x) ∨ P(a),
and C2 = ¬P(a) ∨ Q(a).

C ′
1
= P(a) ∨ Q(a) ∨ R(a) is an ordered factor of C1

C = Q(a) ∨ R(a) is an ordered binary resolvent of C ′
1

against C2

Therefore C is an oredered resolvent of of C1 against C2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Resolution with oredered clauses

Discussion

Without furher restriction resolution with ordered clauses is
complete

Ordered clauses can be used to restrict possible resolution
application

For example allow resolution only with the greatest literal
of one of the two premises
Still refutationally complete

Extremely e�cient when combined with linear resolution

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Re�nements for Linear Resolution

basic concepts

We aim to:

1 avoid storing intermediate clauses

by storing information on resolved literals

2 Further restrict possible applications of resolution

by using ordered clauses

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example

Example (plain linear resolution)

Consider the set of clauses
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q}

P ∨ Q P ∨ ¬Q

P ¬P ∨ Q

Q ¬P ∨ ¬Q

¬P
P

�

Figure: A possible linear resolution for S

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Storing information on resolved literals

storing information

We store literals resolved upon

Keep one of the two literals in the clause in the position
induced by the order

Do not use it for further resolution

Convention: we mark the used literals using underline

When an underlined literal is the last one, we delete it

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example

Example (storing literals)

Consider the clauses C1 = P ∨ Q and C2 = ¬Q ∨ R

C = P ∨ R is an ordered resolvent of C1 against C2

We store P ∨ Q ∨ R

Notice that storing Q or ¬Q is irrelevant, we just need one.
We always store the last literal of the center clause.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Linear Resolution

OL resolution

ordered clause

linear resolution

storing of removed literals

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Linear Resolution: Example

Example (OL-Resolution)

Consider the set of clauses
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q}

P ∨ Q P ∨ ¬Q

P ¬P ∨ Q

P ∨ Q ¬P ∨ ¬Q

P ∨ Q ∨ ¬P
P

�

Figure: A possible OL resolution for S

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Comments on the example

Comments

We always resolve the last literal of center clauses

We do not consider underlined literals in the resolution
steps

We delete underlined literals when they appear last

In the last step we have a complementary pair between an
underlined and a normal literal

this happens when we need to use a (previous) center
clause as a side clause

We call this kind of clauses reducible clauses

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Reducible clauses

De�nition

Reducible clauses An ordered clause C is a reducible clause i�
the last literal of C is uni�able with the negation of an
underlined literal in C .

Reduction

When a reducible clause appears:

we do not need to retrieve a center clause from memory

we simply delete the last literal in the clause

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Reduction

De�nition

Reduction

Let C be a reducible clause.

Let L be a uni�able literal with the negation of an
underlined literal L′

Let σ be the MGU

The reduced ordered clause of C is obtained from Cσ by:

deleting Lσ

deleting every subsequent underlined literals not followed
by a normal literal

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example: Reduction

Example (Reduction)

Consider C = P ∨ Q ∨ ¬P
we delete the last literal P

we are left with underlined literals not followed by normal
literals

we delete both underlined literals and obtain �

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Clauses and information storing

underlined literals

Underlined literals are for information storing only:

ordered factor with underlined literals:

Same as ordered factors,
We delete underlined literals not followed by other literals

ordered binary resolvent with underlined literals

Same as ordered binary resolvent
We underline the literal resolved upon in the �rst caluse
We delete underlined literals not followed by other literals

ordered resolvent is exactly the same.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example: Ordered factor

Example (Ordered factor)

Consider the ordered clause C = P(x) ∨ Q(x) ∨ P(a), and the
MGU σ = {a/x}

we generate the ordered factor P(a) ∨ Q(a)

we delete the last underlined literal Q(a)

An ordered factor for this clause is P(a)

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Example: ordered binary resolvent

Example (Ordered Binary Resolvent)

Consider the ordered clauses C1 = ¬Q(x) ∨ R(x) ∨ P(x), and
C2 = ¬Q(a) ∨ S(a) ∨ ¬P(a). Choose L1 = P(x) and
L2 = ¬P(a) the MGU σ = {a/x}.

C1σ concatenated to C2σ is
¬Q(a) ∨ R(a) ∨ P(a) ∨ ¬Q(a) ∨ S(a) ∨ ¬P(a)
Removing L2σ and underlining L1σ we have
¬Q(a) ∨ R(a) ∨ P(a) ∨ ¬Q(a) ∨ S(a)

Removing S(a) which is not followed by any other literals
we have ¬Q(a) ∨ R(a) ∨ P(a) ∨ Q(a)

P(x) and ¬P(a) are the literals resolved upon
Notice that we do not merge left ¬Q(a) with ¬Q(a)

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Ordered Linear Resolution

De�nition (OL Resolution)

Given S set of ordered clauses and C0 ∈ S , an OL-deduction of
Cn from S with top clause C0 is a linear deduction of Cn for
which the following conditions hold:

1 For i = 0, · · · , n − 1 Ci+1 is an ordered resolvent of Ci

(center ordered clause) against Bi (side ordered clause).
The literal resolved upon in Ci (or an ordered factor of Ci)
is always the last literal.

2 Each Bi is either an ordered clause in S or an instance of
some ordered center clause Cj with j < i .

Bi is an instance of some ordered center clause Cj with
j < i i� Ci is a reducible ordered clause, in this case Ci+1

is the reduced ordered clause of Ci .

3 No tautology is in the deduction.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Property of ordered reducible clauses

Lemma

In an OL-deduction, if Ci is a reducible ordered clause, then

there exist a center ordered clause Cj with j < i , such that the

reduced ordered clause Ci+1 of Ci , is an ordered resolvent of Ci

against and instance of Cj

Basic ideas

Ci = C ′i ∨ L1 ∨ B ′i ∨ L2

L1σ = ¬L2σ
Ci+1 = C ′i σ ∨ L1σ ∨ B ′iσ

Since L1 is underlined it means that we resolved upont that
literal before.

Cj = Dj ∨ Lj , L1 is an instance of Lj and C ′i is an instance
of Dj .

Ci+1 is an ordered resolv. of Ci against Cj with σ MGU

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Re-stating OL-deduction conditions

new conditions

1 For i = 0, · · · , n− 1 If Ci is a reducible ordered clause then
Ci+1 is the reduced ordered clause of Ci . Otherwise, Ci+1

is an ordered resolvent of Ci (center ordered clause)
against Bi (side ordered clause). The literal resolved upon
in Ci (or an ordered factor of Ci) is always the last literal.

2 Each Bi is an ordered clause in S .

3 No tautology is in the deduction.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation: Example I

Example (OL-Refutation I)

Consider a set of ordered clauses
S = {P ∨ Q,¬Q ∨ R,¬Q ∨ ¬R,R ∨ ¬P,¬P ∨ ¬R} Give a
OL-refutation from S with top clause P ∨ Q.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation: Example II

Example (OL-Refutation II)

Consider a set of ordered clauses
S = {¬Q(x) ∨ P(x),¬P(a),P(a) ∨Q(x)} Give a OL-refutation
from S with top clause P(a) ∨ Q(x).

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Completeness of OL-refutation

Lemma (OL-refutation ground completeness)

If C is a ground ordered clause in an unsatis�able set S of

ground ordered clauses, and if S − {C} is satis�able, then there

exists an OL-refutation from S with top ordered clause C.

Completeness

OL-refutation ground completeness + lifting lemma

following theorem

Theorem

If C is an ordered clause in an unsatis�able set S of ordered

clauses, and if S − {C} is satis�able, then there exists an

OL-refutation from S with top ordered clause C.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation: Example III

Example (OL-Refutation III)

Consider a set of ordered clauses
S = {¬R(x) ∨ ¬P(x),¬Q(x) ∨ P(x),¬P(a),P(a) ∨ Q(x)}
Give a OL-refutation from S with top clause ¬R(x) ∨ ¬P(x).

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Linear Deduction and Tree Searching

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation as tree searching

algorithm

Given S and C0

Try to resolve C0 with every Bi ∈ S

Obtain R1, · · · ,Rm, every Ri for i = 1, · · · ,m is a possible
center clause

If any Ri is � then we are done

Otherwise for each Ri �nd all possible side clauses that
give a resolvent and continue

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation and tree searching

search tree

OL-resolution can be seen as a search problem on a tree

Bene�t many e�cient search techniques on trees

Top clause C0: root

Side clauses Bi : operators, used to generate successor
nodes

Center clause C : nodes

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Searching the tree

searching

Operators applied to nodes generate immediate successors

When all immediate successors have been generated a
node is expanded

Search ends when:

all possible nodes have been expanded
when � is found

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Tree Expansion Algorithm

search algorithm for tree

1 Initialise LIST with the root

2 If list is empty terminate

3 Otherwise pop �rt element from the list

4 generate all successors expanding the element (if � found
terminate)

5 insert generated successors in the list (using some order)

6 Go to step 2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Expansion techniques

expansion techniques

Breadth �rst

always insert successors at the end
LIST ⇒ Queue

Depth First

always insert successors at the front
LIST ⇒ Stack

Heuristics

use an ordered List
the order speci�es the heuristic

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Breadth-First Method

algorithm

1 CLIST = {C0}
2 If CLIST is empty terminate

3 Otherwise pop the �rst element C

4 Find all the ordered clause in S that can be side clauses for
C . If no such clause exists go to step 2. Otherwise, resolve
C with all these side clauses and let R1, · · · ,Rm denote
the ordered resolvents. Let R∗i be the reduced clause
obtained from Ri . If Ri is not reducible then R∗i = Ri .

5 If some R∗q is � terminate with a proof. Otherwise put
R∗
1
, · · · ,R∗m in an arbitrary order at the end of CLIST

6 Go to step 2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation: Example

Example (OL-refutation as tree searching)

Consider the following set
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q} of ordered clauses.
Give an OL-refutation from S with C0 = P ∨ Q using Breadth
First.

algorithm

Reduce reducible clauses as soon as possible

Leave tautology for now

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Completeness and prof minimality

De�nition (minimal proof)

A minimal proof from S with top clause C0 is an OL-refutation
(from S with top clause C0) that involves the smallest number
of resolutions.

discussion

Breadth First is complete

Breadth First generates many redundant clauses: not
e�cient

Depth First is generally more e�cient than Breadth First
but not complete

Depth First with limited bound

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

OL-refutation: Example

Example (OL-refutation as tree searching)

Consider the following set
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q} of ordered clauses.
Give an OL-refutation from S with C0 = P ∨ Q using Depth
First.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Depth First with limited bound

discussion

Depth bound: threshold on depth of clauses to expand d∗

Depth of a clause:

d(C0) = 0
If Ri is a resolvent of some center clause C then
d(Ri) = d(C) + 1

The length of a proof is the depth of �

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Depth-First Method (with depth bound)

Depth Bound d∗

1 CLIST = {C0}
2 If CLIST is empty terminate

3 Otherwise pop the �rst element C . If d(C) > d∗ go to
step 2. Otherwise continue.

4 Find all the ordered clause in S that can be side clauses for
C . If no such clause exists go to step 2. Otherwise, resolve
C with all these side clauses and let R1, · · · ,Rm denote
the ordered resolvents. Let R∗i be the reduced clause
obtained from Ri . If Ri is not reducible then R∗i = Ri .

5 If some R∗q is � terminate with a proof. Otherwise put
R∗
1
, · · · ,R∗m in an arbitrary order at the beginning of CLIST

6 Go to step 2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Depth First Example

Example (Depth First)

Consider the following set
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q} of ordered clauses.
Give a Depth First OL-refutation from S with C0 = P ∨ Q with
d∗ = 2.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Modi�ed Depth-First

Discussion

Depth �rst generate all possible successors for each node

More e�cient to expand one successor only

Modi�ed Depth First: generates only one successor at time

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Modi�ed Depth-First

modi�ed depth �rst

Find al ordered clause in S that can be side clauses of C0.
If no such clause exists, terminate without a proof.
Otherwise, let B1

0
, · · · ,B r

0
such side clauses. Let

CLIST = (C0,B
1

0
), · · · , (C0,B

r
0
).

If CLIST is empty terminate.

Otherwise pop the �rst element (C ,B). If d(C) > d∗ go
to step 2. Otherwise continue.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Modi�ed Depth-First

modi�ed depth �rst

Resolve C with B . Let R1, · · · ,Rm denote the ordered
resolvents of C against B . Let R∗i be the reduced clause
obtained from Ri . If Ri is not reducible then R∗i = Ri .

If some R∗q is � terminate with a proof. Otherwise, for
each i = 1, 2, · · · ,m �nd al ordered clause in S that can
be side clauses of R∗i . If no such clause exists, delete R∗i .
Otherwise, let B1

i1
, · · · ,B r

isi
be such side clauses. Put

(R∗i ,B
1

i1
), · · · , (R∗i ,B r

isi
) in an arbitrary order at the

beginning of CLIST

Go to step 2

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Modi�ed Depth First Example

Example (Modi�ed depth �rst)

Consider the following set
S = {P ∨ Q,¬P ∨ Q,P ∨ ¬Q,¬P ∨ ¬Q} of ordered clauses.
Give a Modi�ed Depth First OL-refutation from S with
C0 = P ∨ Q with d∗ = 2.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Depth First Characteristics

Discussion

In general the depth �rst method searches a smaller tree

It is not complete

Depth bound d∗: complete only if the proof is shorter than
d∗

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Tautology Deletion

Deleting tautology

Ordered clause C1 subsumes another ordered clause C2 i�
the ordered clause C ′

1
obtained removing the underlined

literals from C1 subsumes the ordered clause C ′
2
obtained

removing the underlined literals from C2.

An ordered clause C1 is a tautology i� the clause C ′
1

obtained removing the underlined literals from C1 is a
tautology (i.e., it contains a complementary pair of
literals).

We can remove tautology from the search by inserting
resolvents in CLIST only if they are not subsumed by other
clause in CLIST or if they are not tautologies.

Resolution
Re�nements

Re�nement
for
Resolution

Linear
Resolution

Ordered
Clause and
Ordered
Resolution

Ordered
Clause

Re�nements
for Linear
Resolution

Linear
Deduction
and Tree
Searching

Exercise: OL Breadth First Resolution

Exercise

Find an OL refutation using the breadth �rst method for the
following set of unsat. clauses:

1 ¬P(x , y) ∨ ¬L(x) ∨ C (y)

2 ¬L(x) ∨ P(f (x), x)

3 ¬L(x) ∨ L(f (x))

4 ¬C (x) ∨ V (x)

5 L(a)

6 ¬V (a)

. Set C0 = ¬V (a)
Would the Depth First method be complete if applied on S ?
If not can we set a d∗ such that the Depth First Method is
complete on S ?

	Refinement for Resolution
	Linear Resolution
	Ordered Clause and Ordered Resolution
	Ordered Clause
	Refinements for Linear Resolution
	Linear Deduction and Tree Searching

