The Resolution Principle for First Order Logic

Resolution for FOL

Completeness

Examples of

Deletion Strategy

The Resolution Principle for First Order Logic

Summary

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

- Resolution for FOL [Chang-Lee Ch. 5.5]
- Completeness of the resolution principle [Chang-Lee Ch. 5.6]
- Examples of resolution [Chang-Lee Ch. 5.7]
- Deletion Strategy [Chang-Lee Ch. 5.8]

Resolution Principle for FOL

The Resolution Principle for First Order Logic

Resolution for FOI

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Brief Recap.

- We introduced resolution as a refutation procedure for prop. logic
- We know how to match literals containing variables using unification and substitutions
- We will see how to use these concepts to obtain a refutation procedure for FOL

Factor

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness

Examples of Resolution

Deletion Strategy

Definition (Factor)

If two ore more literals (with the same sign) in a clause C have a most general unifier σ , then $C\sigma$ is called a factor for C. If $C\sigma$ is a unit clause then it is called a unit factor.

Example

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (unit factor)

Consider $C = P(x) \vee P(a)$.

- $\sigma = \{a/x\}$ is a MGU for P(x) and P(a).
- $C\sigma = P(a)$ is a unit factor of C

Example II

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (factor)

Consider $C = P(x) \vee P(f(y)) \vee \neg Q(x)$.

- $\sigma = \{f(y)/x\}$ is a MGU for P(x) and P(f(y)).
- $C\sigma = P(f(y)) \vee \neg Q(f(y))$ is a factor of C

Binary Resolvent

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Definition (Binary Resolvent)

Given two clauses C_1 and C_2 (called parent clauses) with no variables in common. Let L_1 and L_2 be two literals in C_1 and C_2 respectively. If L_1 and $\neg L_2$ have a MGU σ then the clause

$$(C_1\sigma-L_1\sigma)\cup(C_2\sigma-L_2\sigma)$$

is a binary resolvent of C_1 and C_2 . L_1 and L_2 are the literals solved upon.

Example: Binary Resolvent

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Binary Resolvent)

Consider the two clauses $C_1 = P(x) \vee Q(x)$ and $C_2 = \neg P(a) \vee R(x)$.

- Since x appears in both we will rename x with y in $C_2 = P(a) \vee R(y)$
- Choose $L_1 = P(x)$ and $L_2 = \neg P(a)$.
- L_1 and $\neg L_2 = P(a)$ have the MGU $\sigma = a/x$

$$(C_{1}\sigma - L_{1}\sigma) \cup (C_{2}\sigma - L_{2}\sigma) = (\{P(a), Q(a)\} - \{P(a)\}) \cup ((\neg P(a), R(y)) - \{\neg P(a)\}) = (\{Q(a)\} \cup \{R(y)\} = \{Q(a), R(y)\} = Q(a) \vee R(y)$$

■ $Q(a) \lor R(y)$ is the binary resolvent and P(x), $\neg P(a)$ are the literals resolved upon

Resolvent

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Definition (Resolvent)

Given two clauses C_1 and C_2 (parent clauses) a resolvent is one of the following binary resolvents:

- \blacksquare a binary resolvent of C_1 and C_2
- \blacksquare a binary resolvent of C_1 and a factor of C_2
- lacksquare a binary resolvent of a factor of C_1 and C_2
- lacksquare a binary resolvent of a factor of \mathcal{C}_1 and a factor of \mathcal{C}_2

Example: Resolvent

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Resolvent)

Consider the two clauses $C_1 = P(x) \vee P(f(y)) \vee R(g(y))$ and $C_2 = \neg P(f(g(a))) \vee Q(b)$.

- lacksquare $C_1' = P(f(y)) \lor R(g(y))$ is a factor of C_1
- $lacksquare C_r = R(g(g(a))) ee Q(b)$ is a binary resolvent of C_1' and C_2
- Therefore C_r is a resolvent of C_1 and C_2

Completeness of Resolution

The Resolution Principle for First Order Logic

Resolution for FOI

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Completeness of resolution

- Resolution is an inference rule that produce resolvents from sets of clauses
- It is more efficient than previous proof procedure (e.g. Gilmore + DPLL)
- Resolution is complete: if the set S of clauses is unsatisfiable using resolution we will always manage to obtain □

Example

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Trapezoid)

Show that alternate interior angles formed by a diagonal of a trapezoid are equal.

- T(x, y, z, w) is true iff xyzw are the vertices of a trapezoid.
- P(x, y, u, v) is true iff line segment xy is parallel to line segment uv.
- E(x, y, z, u, v, w) is true iff the angle xyz is equal to uvw.

Axioms:

- $A_1 \triangleq (\forall x)(\forall y)(\forall u)(\forall v)(T(x,y,u,v) \rightarrow P(x,y,u,v))$
- $\blacksquare A_2 \triangleq (\forall x)(\forall y)(\forall u)(\forall v)(P(x,y,u,v) \rightarrow E(x,y,v,u,v,y)).$
- $\blacksquare A_3 \triangleq T(a, b, c, d).$

We want to proove that $G \triangleq E(a, b, d, c, d, b)$ holds, given A_1, A_2, A_3 . Show that, by using resolution we can refute $A_1 \wedge A_2 \wedge A_3 \wedge \neg G$

Resolution and Semantic trees

The Resolution Principle for First Order Logic

Resolutio for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Resolution and Semantic trees

- Resolution is deeply related to semantic trees
- Resolution generates clauses that can be used to prune branches of semantic trees
- Semantic trees can be used to prove completeness of resolution

Deletion Strategy

Example (resolution and semantic trees)

Consider the set of clauses $S = \{P, \neg P \lor Q, \neg P \lor \neg Q\}$. We can find a closed semantic tree with 5 nodes. Using resolution we can obtain:

$$\frac{\neg P \lor Q \qquad \neg P \lor \neg Q}{\neg P}$$

Consider the set $S' = S \cup C$, we can find a closed semantic tree with 3 nodes. Using resolution we can obtain:

$$\frac{\neg P \qquad P}{\Box}$$

Consider the set $S'' = S' \cup \square$ we can find a closed semantic tree with one node.

Semantic tree and completeness of Resolution

The Resolution Principle for First Order Logic

Resolutio for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Semantic trees and Resolution

- A similar reasoning can be used to prove the completeness of Resoluton
- Given a set of unsatisfiable clauses:
 - 1 Construct a closed semantic tree
 - Porce the tree to collapse while building a resolution proof.

Lifting lemma

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples o Resolution

Deletion Strategy

Theorem

Lifting Lemma If C'_1 and C'_2 are instances of C_1 and C_2 respectively, and if C' is a resolvent of C'_1 and C'_2 , then C' is an instance of C (resolvent of C_1 and C_2).

Example

Consider $C_1 = P(x) \lor Q(x)$ and $C_2 = \neg P(f(y)) \lor \neg P(z) \lor R(y)$.

- lacksquare $C_1' = P(f(a)) \lor Q(f(a))$ is an instance of C_1
- $C_2' = \neg P(f(a)) \lor R(a)$ is an instance of C_2
- $C_3' = Q(f(a)) \vee R(a)$ is a resolvent for C_1' and C_2'
- Lifting Lemma $\Rightarrow \exists C_3$ such that C'_3 is an instance of C_3 .
- For example, $C_3 = Q(f(y)) \vee R(y)$ is a resolvent for C_1 and C_2 and C_3' is an instance of C_3

Lifting lemma: proof

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Lifting Lemma

- If necessary we rename variables in C_1 or C_2 so that variables in C_1 are all different from variables in C_2 .
- Let L'_1 and L'_2 be the literals resolved upon
- $C' = (C'_1 \gamma L'_1 \gamma) \cup (C'_2 \gamma L'_2 \gamma)$, γ MGU for L'_1, L'_2 .
- Since C_1' and C_2' are instances of C_1' and C_2' we can write $C_1' = C_1\theta$ and $C_2' = C_2\theta$ where θ is one substitution.
- Let $L_i^1, \dots, L_i^{R_i}$ denote the literals in C_i corresponding to L_i' (i.e. $L_i^1\theta, \dots, L_i^{R_i}\theta = L_i'$)

Lifting lemma: proof II

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Lifting Lemma

- assume i > 1 obtain a MGU λ_i for $L_i^1, \dots, L_i^{R_i}$. and let $L_i = L_i^1 \lambda_i$ for i = 1, 2.
- then L_i is a literal in factor $C_i\lambda_i$ of C_i .
- **a** assume i=1 then $\lambda_i=\epsilon$ and $L_i=L^1_i\lambda_i$.
- Let $\lambda = \lambda_1 \cup \lambda_2$
- Then L'_i is an instance of L_i
- Since L'_1 and L'_2 are unifiable then L_1 and L_2 are unifiable.
- Let σ be a MGU of L_1 and L_2

Lifting lemma: proof III

The Resolution Principle for First Order Logic

Proof.

(Lifting Lemma)

- Let $C = (C_1(\lambda \circ \sigma) (\{L_1^1, \cdots, L_1^{R_1}\})(\lambda \circ \sigma)) \cup ((C_2(\lambda \circ \sigma) (\{L_2^1, \cdots, L_2^{R_2}\})(\lambda \circ \sigma)))$
- Then $C' = (C_1(\theta \circ \gamma) (\{L_1^1, \dots, L_1^{R_1}\})(\theta \circ \gamma)) \cup ((C_2(\theta \circ \gamma) (\{L_2^1, \dots, L_2^{R_2}\})(\theta \circ \gamma)))$ is an instance of C as $\lambda \circ \sigma$ is a more general unifier than $\theta \circ \gamma$

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Completeness of Resolution

The Resolution Principle for First Order Logic

Resolutio for FOL

Completeness of Resolution

Examples of

Deletion Strategy Theorem (Completeness of Resolution)

A set S of clauses is unsatisfiable iff there is a resolution deduction of the empty clause \square from S

Completeness of Resolution: proof ←

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

⇐.

If there is a resolution deduction of the empty clause \square from S then S is unsatisfiable

- Suppose there is a deduction of \square from S. Let R_1, R_2, \dots, R_k be the resolvents in the deduction.
- Assume S is satisfiable then there is $I \models S$.
- Assume R_i is resolvent of C_u and C_v , notice that $I \models S$ therefore $I \models C_u \land C_v$
- Since resolution is an inference rule then if $I \models C_u \land C_v$ then $I \models R_i$ for all resolvents
- However, one of the resolvents is \square therefore S must be unsatisfiable.

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

If S is unsatisfiable then there is a resolution deduction of the empty clause \square from S.

- Suppose S is unsatisfiable, and let $A = \{A_1, A_2, A_3, \dots\}$ be the atome set for S.
- Let T be a complete semantic tree for S.
- By Herbrand's theorem (version I) T has a finite closed sematic tree T'
- If T' consists only of one root node then

 must be in S, because no other clauses can be falsified at the root of a semantic tree, Thus the theorem is true.

The Resolution Principle for First Order Logic

D---|--

Completeness

Examples of Resolution

- Assume T' has more than one node.
- T' must have at least one inference node
- This is because, otherwise, every node would have at least one non failure descendent and thus T' would have an infinite branch (and thus not be a closed tree).
- Let N be an inference node in T', and let N_1 and N_2 be the failure nodes immediately below N.
- Let $I(N) = \{m_1, m_2, \cdots, m_n\},\ I(N_1) = \{m_1, m_2, \cdots, m_n, m_n + 1\}, I(N_2) = \{m_1, m_2, \cdots, m_n, \neg m_n + 1\}$

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

- Since N not a failure node, there exist C'_1 and C'_2 , ground instances of C_1 and C_2 such that:
 - C_1' and C_2' are both not falsified by I(N)
 - C_1' and C_2' are falsified by $I(N_1)$ and $I(N_2)$ respectively.
- Therefore C_1' contains $\neg m_{n+1}$ and C_2' contains m_{n+1}
- Let $L'_1 = \neg m_{n+1}$ and $L'_2 = m_{n+1}$ and $C' = (C'_1 L'_1) \cup (C'_2 L'_2)$
- C' must be false in I(N) because both $(C'_1 L'_1)$ and $(C'_2 L'_2)$ are.
- By the lifting lemma we can then find a resolvent C of C_1 and C_2 such that C' is a (ground) instance of C

The Resolution Principle for First Order Logic

Completeness

Examples of Resolution

- Let T'' be the closed semantic tree associated to $S \cup C$.
- T'' is obtained by T' removing all noded which are below the first node where C' is falsified
- \blacksquare T" has fewer nodes than T'
- We can apply this process until the closed semantic tree consists only of the root node.
- This is possible only when \square is derived, therefore there is deduction of \square from S.

Example 1

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example

- \blacksquare $A_1 \triangleq P \rightarrow S$
- $\blacksquare A_2 \triangleq S \rightarrow U$
- $A_2 \triangleq P$
- G ≜ U

Show that $(A_1 \wedge A_2 \wedge A_3) \models G$.

Example II

The Resolution Principle for First Order Logic

Resolutior for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example

- $F \triangleq (\forall x)(\forall y)(P(x,f(y)) \vee P(y,f(x)))$
- $\bullet G \triangleq (\exists u)(\exists v)(P(u,f(v)) \land P(v,f(u)))$

Show that $F \models G$.

Example III

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (quack and doctors)

Show that $F_1 \wedge F_2 \models G$, where

- Some patients like all doctors
- $F_1 \triangleq \exists x (P(x) \land \forall y (D(y) \rightarrow L(x,y))$
- No patient likes any quack
- $F_2 \triangleq \forall x (P(x) \to \forall y (Q(y) \to \neg L(x,y)))$
- No doctor is a quack
- $F_3 \triangleq \forall x D(x) \rightarrow \neg Q(x)$

Exercise I

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Exercise

Show that $F_1 \wedge F_2 \models G$, where

•
$$F_1 \triangleq (\forall x)(C(x) \rightarrow (W(x) \land R(x)))$$

•
$$F_2 \triangleq (\exists x)(C(x) \land O(x))$$

$$G \triangleq (\exists x)(O(x) \land R(x))$$

Exercise II

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Exercise

Students and votes

Premise: Students are citizens.

Conclusion: Students' votes are citizens votes.

- Students are citizens
- $F_1 \triangleq (\forall y)(S(y) \rightarrow C(y))$
- Students' votes are citizens votes
- $F_2 \triangleq (\forall x)((\exists y)(S(y) \land V(x,y)) \rightarrow (\exists z)(C(z) \land V(x,z)))$

Deleting Clauses

The Resolution Principle for First Order Logic

Resolutio for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Need for deleting clauses

- Resolution is complete (Binary resolution + factorisation)
- Resolution is more efficient than earlier methods (e.g., Gilmore + DPLL)
- computational issue: Repeated application of resolution generates irrelevant and redundant clauses

Applying Resolution

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Computing resolvents

- Need a deterministic method to apply resolution
 - Deterministic strategy to compute resolvents
- Straightforward strategy:
 - compute resolvents for all possible pairs
 - add resolvents to S
 - repeat until □ appears
- Called Level Saturation

Level Saturation

The Resolution Principle for First Order Logic

Resolutio for FOL

Completeness of Resolution

Examples of

Deletion Strategy

Level Saturation Definition

- Generate the sequence S^0, S^1, S^2, \cdots
- $S^0 = S$
- $S^i=\{ ext{Resolvents of } C_1 ext{ and } C_2|C_1\in (S^0\cup\cdots\cup S^{i-1}) ext{ and } C_2\in S^{i-1}\}, i=1,2,3,\cdots$

Level Saturation: Procedure

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Level Saturation Procedure

At every step i > 0

- List all clauses in $\{S^0 \cup \cdots \cup S^{i-1}\}$ in order
- compute all resolvents by comparing every clause $C_1 \in \{S^0 \cup \cdots \cup S^{i-1}\}$ with a clause $C_2 \in S^{i-1}$ that is listed after C_1 .
- append computed resolvents to the end of the list

Example: Level Saturation

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness

Examples of

Deletion Strategy

Example (Level Saturation)

Consider the set of clauses

$$S = \{P \lor Q, \neg P \lor Q, P \lor \neg Q, \neg P \lor \neg Q\}$$

Level Saturation: Problems

The Resolution Principle for First Order Logic

Resolutior for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Problems with Level Saturation

- Generation of many irrelevant and redundant clauses
 - Tautologies
 - Clauses repeatadly generated
- Tautologies have no impact on satisfiability
 - Tautologies are true in every interpretations
 - If S is unsatisfiable, S' obtained from S removing tautologies is unsatisfiable
 - Tautologies can create other irrelevant clauses
- We need a deletion strategy that maintains completeness

Subsumption

The Resolution Principle for First Order Logic

Resolution

Completenes of Resolution

Examples of Resolution

Deletion Strategy

Definition (Subsumption)

A clause C subsumes a clause D iff there is a substitution σ such that $C\sigma \subseteq D$. D is called a subsumed clause.

Example (Subsumption)

Consider the two clauses C = P(x) and $D = P(a) \vee Q(a)$.

- Consider the substitution $\sigma = \{a/x\}$.
- $C\sigma = P(a)$ therefore $C\sigma \subseteq D$
- C subsumes D.

Note

If C is identical to D or if C is an instance of D then C subsumes D.

Deletion Strategy

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

A deletion strategy

Delete any tautology and any subsumed clause whenever possible

A Complete deletion strategy

The above deletion strategy is complete if it is used with the level saturation method

For each step i > 0:

- **1** List clauses in $S^0 \cdots S^{i-1}$ in order
- 2 Compute resolvents by comparing any clause in $C_1 \in S^0 \cdots S^{i-1}$ with a clause $C_2 \in S^{i-1}$ which il listed after C_1
- When a resolvent C is computed, append C to the list only if C is not a tautology and C is not subsumed by any claus in the list. Otherwise delete C.

Example: Level Saturation deleting clauses

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness

Examples of

Deletion Strategy

Example (Level Saturation Deleting clauses)

Consider the set of clauses

$$S = \{P \lor Q, \neg P \lor Q, P \lor \neg Q, \neg P \lor \neg Q\}$$

Checking redundant clauses

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Redundant clauses

Need to check:

- 1 whether a clause is a tautology Easy
- whether a clause is subsumed by another clause need an algorithm

Checking tautology

- Directly check whether there is a complementary pair in the clause.
- No substitutions involved.

Checking Subsumption

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Preliminaries

- Consider two clauses C and D.
- Let $\theta = \{a_1/x_1, \cdots a_n/x_n\}$ where: $\{x_1, \cdots, x_n\}$ are all variables occurring in D and $\{a_1, \cdots, a_n\}$ are new distinct constants not occurring in C or D.
- Suppose $D = L_1 \lor L_2 \lor \cdots L_m$ then $D\theta = L_1\theta \lor L_2\theta \lor \cdots \lor L_m\theta$
- Note that $D\theta$ is a ground clause.
- $\blacksquare \neg D\theta = \neg L_1\theta \wedge \cdots \wedge \neg L_m\theta$ (using de morgan's law)

Subsumption Algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Algorithm

- **2** Set k = 0 and $U^0 = \{C\}$
- 3 If U^k contains \square
 - Yes: terminate; C subsumes D
 - Otw: let $U^{k+1} = \{ \text{ Resolvents of } C_1 \text{ and } C_2 | C_1 \in U^k \text{ and } C_2 \in W \}$
- If U^{k+1} is empty
 - Yes: terminate; C does not subsume D
 - Otw: k = k + 1 go to step 3.

Example: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples o

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = \neg P(x) \lor Q(f(x), a)$$

$$D = \neg P(h(y)) \lor Q(f(h(y)), a) \lor \neg P(c)$$

Subsumption Algorithm: termination

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Termination

Subsumption algorithm always terminates.

- Each clause CU^{k+1} is always one litteral smaller than clauses in U^k for $k=0,1,\cdots$
- This is because U^{k+1} is obtained by computing the resolvents of clauses in U^k and W, therefore, if a resolvent exists it will always be one literal smaller than the parent clauses. Otw U^{k+1} is empty.
- Therefore for some k we will have $\square \in U^k$ or U^k is empty.

Example II: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = P(x,x)$$

$$D = P(f(x), y) \vee P(y, f(x))$$

Subsumption Algorithm: correctness

The Resolution Principle for First Order Logic

Resolutio for FOL

Completenes

Examples of

Deletion Strategy Theorem (Correctness)

C subsumes D iff subsumption algorithm terminates in step 3.

Completeness of Resolution

Examples of Resolution

Deletion Strategy

If C subsumes D then subsumption algorithm terminates in step 3

- lacksquare If C subsumes D then there is σ such that $C\sigma\subseteq D$
- Hence $C(\sigma \circ \theta) \subseteq D\theta$
- Therefore literals in $C(\sigma \circ \theta)$ can be resolved by using unit gound clauses in W
- But $C(\sigma \circ \theta)$ is an instance of C
- Therefore literals in *C* can be resolved away by using unit clauses in *W*
- Therefore we will eventually find a U^k such that $\square \in U^k$ and the algorithm will terminate at step 3.

$\mathsf{Proof} \Leftarrow$

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

If the subsumption algorithm terminates in step 3 then C subsumes D

- If algorithm terminates at step 3 then we have a refutation of \square .
- Indicates with R_i , B_i the parent clauses, where $B_i \in W$, and with $R_0 = C$; Indicates with R_{i+1} the resolvent obtained at each step for $i = 0, 1, \dots, r$
- lacksquare Let σ_i be the most general unifier for each resolution step.
- Then $C(\sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_r) = {\neg B_0, \neg B_1, \cdots \neg B_r} \subseteq D\theta$
- Let $\lambda = \sigma_0 \circ \cdots \circ \sigma_r$ then $C\lambda \subseteq D\theta$.
- Let σ be the substitution obtained by replacing a_i with x_i in each component of λ for $i = 1, \dots, n$
- Then $C\sigma \subseteq D$ therefore C subsumes D.

Example III: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = P(x,y) \vee Q(z)$$

$$\blacksquare D = Q(a) \lor P(b,b) \lor R(u)$$

Check whether C subsumes D

Example III: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = P(x,y) \vee Q(z)$$

$$\blacksquare D = Q(a) \lor P(b,b) \lor R(u)$$

Check whether C subsumes D

Sol

C Subsumes D

Example IV: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = P(x,y) \vee R(y,x)$$

$$D = P(a, y) \vee R(z, b)$$

Check whether C subsumes D

Example IV: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution for FOL

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = P(x,y) \vee R(y,x)$$

$$D = P(a, y) \vee R(z, b)$$

Check whether C subsumes D

Sol

C Does not subsumes D

Example V: Subsumption algorithm

The Resolution Principle for First Order Logic

Example (Subsumption algorithm)

Consider the two clauses:

$$C = \neg P(x) \lor P(f(x))$$

$$D = \neg P(x) \lor P(f(f(x)))$$

Check whether C subsumes D and whether $C \models D$

Deletion Strategy

Example V: Subsumption algorithm

The Resolution Principle for First Order Logic

Resolution

Completeness of Resolution

Examples of Resolution

Deletion Strategy

Example (Subsumption algorithm)

Consider the two clauses:

$$C = \neg P(x) \lor P(f(x))$$

$$D = \neg P(x) \lor P(f(f(x)))$$

Check whether C subsumes D and whether $C \models D$

Sol

C Does not subsumes D but $C \models D$