Propositional and First Order Logic

Logic

First Order Logic

Propositional and First Order Logic Background Knowledge

Summary

Propositional and First Order Logic

Propositional Logic First Order

- Propositional Logic [Chang-Lee Ch. 2]
- First Order Logic [Chang-Lee Ch. 3]

Propositional Logic

Propositional and First Order Logic

Propositional Logic

First Order Logic

Summary

- Syntax
- Semantics
- Normal Forms
- Deduction and Refutation

Basic Concepts

Propositional and First Order Logic

Propositional Logic

First Order Logic Propositional logic is the simplest logic—illustrates basic ideas using propositions

- $P_1 \triangleq \mathsf{Snow}$ is whyte
- $ightharpoonup P_2 riangleq ext{Today it is raining}$
- $Arr P_3 riangleq ext{This automated reasoning course is boring}$

 P_i is an atom or atomic formula Each P_i can be either **true** or **false** but **never both** The values **true** or **false** assigned to each proposition is called **truth value** of the proposition

Syntax

Propositional and First Order Logic

Propositional Logic

First Order Logic

Recursive definition of well-formed formulas

- An atom is a formula
- 2 If S is a formula, $\neg S$ is a formula (negation)
- If S_1 and S_2 are formulas, $S_1 \wedge S_2$ is a formula (conjunction)
- 4 If S_1 and S_2 are formulas, $S_1 \vee S_2$ is a formula (disjunction)
- 5 All well-formed formulas are generated by applying above rules

Shortcuts:

- $lacksquare S_1
 ightarrow S_2$ can be written as eg S1 ee S2
- $lacksquare S_1 \leftrightarrow S_2$ can be written as $(S_1 o S_2) \wedge (S_2 o S_1)$

Semantics

Propositional and First Order Logic

Propositional Logic

First Order Logic

Relationships between truth values of atoms and truth values of formulas

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true
$S_1 o S_2$	is true iff		is false or	S_2	is true
i.e.,	is false iff	S_1	is true and	S_2	is false
$S_1 \leftrightarrow S_2$	is true iff	$S_1 o S_2$	is true and	$S_2 o S_1$	is true

Semantics: Example

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example (Truth Tables for main logical connectives)

P_1	P_2	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \vee P_2$	$P_1 o P_2$	$P_1 \leftrightarrow P_2$
Τ	T	F	T	T	T	Τ
Τ	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Propositional logic: Evaluation of Formula

Propositional and First Order Logic

Propositional Logic

First Order Logic

Recursive Evaluation

Consider the formula $G \triangleq \neg P_1 \land (P_2 \lor P_3)$ Suppose we know that $P_1 = F$, $P_2 = F$, $P_3 = T$ Then we have

$$\neg P_1 \land (P_2 \lor P_3) = \mathit{true} \land (\mathit{false} \lor \mathit{true}) = \mathit{true} \land \mathit{true} = \mathit{true}$$

Note

We evaluate $\neg P_1$ before $P_1 \wedge P_2$, this is because the following decreasing rank for connectives operator holds:

$$\leftrightarrow$$
 \rightarrow \vee \wedge \neg

Exercise: Truth Tables

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example (XOR)

Write the truth table for the formula:

$$G \triangleq (P \lor Q) \land \neg (P \land Q)$$

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example (XOR)

Write the truth table for the formula:

$$G \triangleq (P \vee Q) \wedge \neg (P \wedge Q)$$

Sol.

Interpretation

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition

Interpretation: Given a propositional formula G, let $\{A_1, \dots, A_n\}$ be the set of atoms which occur in the formula, an Interpretation I of G is an assignment of truth values to $\{A_1, \dots, A_n\}$.

Example

Consider the formula: $G \triangleq (P \lor Q) \land \neg (P \land Q)$

Set of atoms: $\{P, Q\}$

Interpretation for $G: I = \{P = T, Q = F\}$

Interpretation contd.

Propositional and First Order Logic

Propositional Logic

First Order Logic

- Each atom A_i can be assigned either **True** or **False** but never both
- Given an interpretation *I* a formula *G* is said to be true in *I* iff *G* is evaluated to **True** in the interpretation
- Given a formula G with n distinct atoms there will be 2^n distinct interpretations for the atoms in G.
- Convention: $\{P, \neg Q, \neg R, S\}$ represents an interpretation $I: \{P = T, Q = F, R = F, S = T\}.$
- Given a formula G and an interpretation I, if G is true under I we say that I is a model for G.and we can write $I \models G$

Validity

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition,

Valid Formula: A formula F is valid iff it is true in all its interpretation

- A valid formula can be also called a **Tautology**
- A formula which is not valid is invalid
- If F is valid we can write $\models F$

Example (de Morgan's Law)

Inconsistency

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition

Inconsistent Formula: A formula F is inconsistent iff it is false in all its interpretation

- An inconsistent formula is said to be unsatisfiable
- A formula which is not inconsistent is consistent or satisfiable
- <u>Invalid</u> is different from <u>Inconsistent</u>

Example

$$\neg((\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q))) \text{ is inconsistent}$$

$$P \quad Q \quad (\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q)) \quad \neg(\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q))$$

$$T \quad T \quad T \quad F$$

$$T \quad F \quad T \quad F$$

$$F \quad T \quad T \quad F$$

$$F \quad F \quad T \quad F$$

Inconsistency and Validity

Propositional and First Order Logic

Propositional Logic

First Order Logic

- A formula is valid iff its negation is inconsistent (and vice versa)
- A formula is invalid (consistent) iff there is at least an interpretation in which the formula is false (true)
- An inconsistent formula is invalid but the opposite does not hold
- A valid formula is consistent but the opposite does not hold

Example

The formula $G \triangleq P \lor Q$ is invalid (e.g., it is false when P and Q are false) but is not inconsistent because it is true in all other cases. Moreover, G is consistent (e.g., it is true whenever P or Q are false) but is not valid because it is false when both P and Q are false.

Decidability

Propositional and First Order Logic

Propositional Logic

First Order Logic

Property

Propositional Logic is decidable: there is a terminating method to decide whether a formula is valid.

- To decide whether a formula is valid:
 - 1 we can enumerate all possible interpretations
 - 2 for each interpretation evaluate the formula
- Number of interpretations for a formula are finite (2^n)
- Decidability is a very strong and desirable property for a Logical System
- Trade off between representational power and decidability

Logical Equivalence

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition

Logical Equivalence: Two formulas F and G are logically equivalent $F \equiv G$ iff the truth values of F and G are the same under every interpretation of F and G.

Useful equivalence rules

Normal Forms

Propositional and First Order Logic

Propositional Logic

First Order Logic Standard ways of writing formulas

Two main normal forms:

- Conjunctive Normal Form (CNF)
- Disjunctive Normal Form (DNF)

Definition

Literal: a literal is an atom or the negation of an atom

Definition

Negation Normal Form: A formula is in Negation Normal Form (NNF) iff negations appears only in front of atoms

CNF

Propositional and First Order Logic

Propositional Logic

First Ordei Logic

Definition

Conjunctive Normal Form: A formula F is in Conjunctive Normal Form (CNF) iff it is in Negation Normal Form and it has the form $F \triangleq F_1 \wedge F_2 \wedge \cdots \wedge F_n$, where each F_i is a disjunction of literals.

- If F is in CNF Each F_i is called a **clause**
- CNF is also refered to as Clausal Form

Example

The formula $G \triangleq (\neg P \lor Q) \land (\neg P \lor R)$ is in CNF. We can write G as a set of clauses $\{C_1, C_2\}$ where $C_1 = \neg P \lor Q$ and $C_2 = \neg P \lor R$.

The formula $G \triangleq \neg(P \lor Q) \land (\neg P \lor R)$ is not in CNF because negation appears in front of a formula and not only in front of atoms.

DNF

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition

Disjunctive Normal Form: A formula F is in Disjunctive Normal Form (DNF) iff it is in Negation Normal Form and it has the form $F \triangleq F_1 \vee F_2 \vee \cdots \vee F_n$, where each F_i is a conjunction of literals.

Example

The formula $G \triangleq (\neg P \land R) \lor (Q \land \neg P) \lor (Q \land P)$ is in DNF.

Any formula can be transformed into a normal form by using the equivalence rules given above.

Transforming Formulas

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example (Formula transformations)

Prove that the following logical equivalences hold by transforming formulas:

$$P \lor Q \land \neg (P \land Q) \leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q) \leftrightarrow (\neg P \land Q) \lor (P \land \neg Q)$$

Transforming Formulas

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example (Formula transformations)

Prove that the following logical equivalences hold by transforming formulas:

$$P \lor Q \land \neg (P \land Q) \leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q) \leftrightarrow (\neg P \land Q) \lor (P \land \neg Q)$$

Sol.

Given $P \lor Q \land \neg (P \land Q)$ apply de Morgan's law on the second part and directly obtain $(P \lor Q) \land (\neg P \lor \neg Q)$

For more examples see Examples 2.8, 2.9 [Chang and Lee Ch. 2] Try to prove the other equivalence

Logical Consequence

Propositional and First Order Logic

Propositional Logic

First Order Logic

Definition

Given a set of formulas $\{F_1, \dots, F_n\}$ and a formula G, G is said to be a logical consequence of F_1, \dots, F_n iff for any interpretation I in which $F_1 \wedge \dots \wedge F_n$ is true G is also true.

- If G is a logical consequence of $\{F_1, \dots, F_n\}$ we write $F_1 \wedge \dots \wedge F_n \models G$.
- F_1, \dots, F_n are called axioms or premises for G.
- lacksquare $F \equiv Q$ iff $F \models Q$ and $Q \models F$

Example

 $S \rightarrow C, C \rightarrow F, S$ are premises for F

Deduction Theorem

Propositional and First Order Logic

Propositional Logic

First Order _ogic

Theorem

Given a set of formulas $\{F_1, \dots, F_n\}$ and a formula G, $(F_1 \wedge \dots \wedge F_n) \models G$ if and only if $\models (F_1 \wedge \dots \wedge F_n) \rightarrow G$.

Sketch of proof.

- ⇒ For each interpretation I in which $F_1 \wedge \cdots \wedge F_n$ is true G is true, $I \models (F_1 \wedge \cdots \wedge F_n) \rightarrow G$, however for every interpretation I' in which $F_1 \wedge \cdots \wedge F_n$ is false then $(F_1 \wedge \cdots \wedge F_n \rightarrow G)$ is true, thus $I' \models (F_1 \wedge \cdots \wedge F_n) \rightarrow G$. Therefore, $\models (F_1 \wedge \cdots \wedge F_n) \rightarrow G$.
- \Leftarrow for every interpretation we have that when $F_1 \wedge \cdots \wedge F_n$ is true G is true therefore $(F_1 \wedge \cdots \wedge F_n) \models G$.

Proof by Refutation

Propositional and First Order Logic

Propositional Logic

First Order Logic

Theorem

Given a set of formulas $\{F_1, \dots, F_n\}$ and a formula G, $(F_1 \wedge \dots \wedge F_n) \models G$ if and only if $F_1 \wedge \dots \wedge F_n \wedge \neg G$ is inconsistent.

Sketch of proof.

 $(F_1 \wedge \cdots \wedge F_n) \models G$ holds iff for every interpretation under which $F_1 \wedge \cdots \wedge F_n$ is true also G is true. This holds iff there is no interpretation for which $F_1 \wedge \cdots \wedge F_n$ is true and G is false, but this happens precisely when $F_1 \wedge \cdots \wedge F_n \wedge \neg G$ is false for every interpretation, i.e. when $F_1 \wedge \cdots \wedge F_n \wedge \neg G$ is inconsistent.

Discussion

Propositional and First Order Logic

Propositional Logic

First Order Logic

- Previous theorems show that:
 - We can prove logical consequence by proving validity of a formula
 - We can prove logical consequence by refuting a given formula, i.e. by proving a given formula is inconsistent
 - Notice that we did not use any specific properties of propositional logic

Logical consequences are usually referred to as theorems, and G is the **conclusion** of the theorem.

Logical Consequence: Example

Propositional and First Order Logic

Propositional Logic

First Order Logic

Example

We want to show that $(P o Q) \wedge P \models Q$

Using definition

We show that for each interpretation in which $(P \to Q) \land P$ is true, also Q is true. We can do that by writing the truth table of the formulas.

Logical Consequence: Example contd.

Propositional and First Order Logic

Propositional Logic

First Order Logic

Using deduction theorem

We know from the deduction theorem that $(P \to Q) \land P \models Q$ iff $\models ((P \to Q) \land P) \to Q$. Therefore we need to show that $((P \to Q) \land P) \to Q$ is valid, we can do that by writing the truth table of the formula and verifying that the formula is evaluated true for all its possible interpretation.

Using Refutation

We know that $(P \to Q) \land P \models Q$ iff $(P \to Q) \land P \land \neg Q$ is inconsistent. Therefore we need to show that $(P \to Q) \land P \land \neg Q$ is inconsistent, we can do that by writing the truth table of the formula and verifying that the formula is evaluated false for all its possible interpretation.

Exercises

Propositional and First Order Logic

Propositional Logic

First Order Logic

Exercise

- Consider the following formulas: $F_1 \triangleq (P \rightarrow Q)$, $F_2 \triangleq \neg Q$, $G \triangleq \neg P$. Show that $F_1 \land F_2 \models G$ using all three approaches [Chang-Lee example 2.11]
- Given that if the congress refuses to enact new laws, then the strike will not be over unless it lasts for more than a year or the president of the firm resigns, will the strike be over if the congress refuses to act and the strike just started? [Chang-Lee example 2.12]

First Order Logic

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Summary

- Motivation
- Syntax
- Semantics
- Prenex Normal Form

Characteristics of Propositional Logic

Propositional and First Order Logic

Logic

First Order Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic is decidable: We can always decide through a terminating process whether a formula is valid.
- Propositional logics does not represent structure of atoms

Lack of structure in Prop. Logic

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Example

 $P \triangleq \text{Every man is mortal}$

 $S \triangleq Socrate is a man$

 $Q \triangleq \mathsf{Socrate}$ is mortal

In propositional logic Q is not a logic consequence of P and S, but we would like to express this relationship.

Examples of expressions in FOL

Propositional and First Order Logic

First Order Logic

Example

 $\forall x (man(x) \rightarrow mortal(x))$ Every man is mortal

man(Socrate) Socrate is a man

Socrate is mortal mortal(Socrate)

Components of First Order Logic

Propositional and First Order Logic

Logic

First Order Logic

Objects, Relations, Functions

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains: **Objects**, **Relations**, **Functions**.

- Objects: people, houses, numbers, theories, colors, football games, wars, centuries · · ·
- Relations: red, round, multistoried ···, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ···
- Functions: father of, best friend, second half of, one more than, beginning of · · ·

The Language: Logical Symbols

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Logical Symbols

A first order language \mathcal{L} is built upon the following sets of symbols:

- propositional connectives: ¬, ∧, ∨ (plus the shortcuts → and ↔);
- propositional constants ⊤ and ⊥
 (represent True and False respectively);
- equality =
 (not always included);
- a denumerable set of individual variable symbols:

```
x_1, x_2, \cdots;
```

- universal quantification ∀;
- existentional quantification ∃;

The Language: Parameters

Propositional and First Order Logic

Proposition Logic

First Order Logic

Parameters

- A denumerable set of predicate symbols, each associated with a positive integer n, arity. A predicate with arity n is called n-ary;
- A denumerable set of function symbols, each associated with a positive integer n, arity. A function with arity n is called n-ary;
- A denumerable set of constant symbols.

Note

The parameters characterise different first order languages, while logical symbols are always the same.

Therefore parameters are often called the Signature of a First Order Language.

Example 1

Propositional and First Order Logic

Proposition a Logic

First Order Logic

The language of pure predicates

```
n-ary predicate symbols: P_1^n, P_2^n, \cdots; constant symbols: c_1, c_2, \cdots; no function symbols, no equality.
```

Example

The Book is on the table:

- OnTable(Book)
- On(Table, Book)

Example II

Propositional and First Order Logic

Proposition: Logic

First Order Logic

The language of set theory

Equality;

predicate symbols: only the binary predicate ∈;

constant symbols: $\{\ \};$

no function symbols.

Example

There exists no set such that all other sets are its element

$$\neg \exists x \forall y (y \in x)$$

Example III

Propositional and First Order Logic

Proposition Logic

First Order Logic

The language of elementary number theory

Equality;

predicate symbols: only the binary predicate <;</pre>

constant symbols: 0;

function symbols: a unary function symbol s, successor function, and the binary function symbols + and \times , addition and multiplication

Example

There exists no number greater than all others

$$\neg \exists x \forall y (y < x)$$

Definition of FOL Formulas

Propositional and First Order Logic

Proposition : Logic

First Order Logic

FOL formulas

Inductive definition of basic components

- 1 Terms
- 2 Atomic Formulas

FOL terms

The set Term of the terms of ${\cal L}$ is inductively defined as follows:

- Every constant is a term;
- 2 Every variable symbol is a term
- If $t_1 ldots t_n$ are terms and f is a n-ary function symbol, $f(t_1, ldots, t_n)$ is a term (functional term).
- 4 All terms are generated by applying the above rules

Example (Terms for FOL)

$$c$$
, x , $f(x,y)$, $f(g(c),y)$, $plus(plus(x,1),3)$, ...

Atoms

The set Atom of the atomic formulae is inductively defined as follows:

- \blacksquare \bot and \top are atoms;
- 2 If t_1 and t_2 are terms then $t_1 = t_2$ is an atom;
- If t_1, \dots, t_n are terms and P is a n-ary predicate symbol $P(t_1, \dots, t_n)$ is an atom;
- 4 All atomic formulas are defined by applying the above rules

Example (Atoms in FOL)

$$P(x)$$
, $Q(x,c)$, $R(x,f(x,y+c))$, ...

Scope of Quantifiers

Propositional and First Order Logic

Proposition Logic

First Order Logic

Definition (Scope of quantifiers)

The scope of a quantifier occurring in a formula is the formula to which the quantifier applies

Example (Scope of quantifiers)

 $\forall x(Q(x) \to R(x))$ the scope of \forall is $(Q(x) \to R(x))$ $\forall x(Q(x) \to \exists y \ R(y))$ the scope of \forall is $(Q(x) \to \exists y \ R(y))$ and the scope of \exists is R(y)

Free and bounded variables

Propositional and First Order Logic

Proposition Logic

First Order Logic

Definition (Free occurence of a variable)

An occurrence of a variable in a formula is free if the variable is not in the scope of any quantifier. An occurrence of a variable which is not free is bound

Definition (Free variable)

A variable in a formula is free if at least one occurrence of the variable is free. A variable is bound if at least one occurrence is bound.

Examples of free and bound variables

Propositional and First Order Logic

Proposition Logic

First Order Logic

Example (Free occurences and free variables)

 $\forall x (Q(x,y) \rightarrow R(x,y))$ the occurrence of y is free while the occurrence of x is bound, therefore y is free while x is bound $\forall x (Q(x,y) \rightarrow \exists y \ R(x,y))$ the occurrence of y in Q is free while the occurrence of y in Q is both formulas are bound. Therefore, the variable x is bound while the variable y is both free and bound

First Order Formulas

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Well-Formed Formulas

The set of formulae of \mathcal{L} is inductively defined as follows:

- Every atom is a formula;
- If A is a formula $\neg A$ is a formula;
- If \circ is a binary operator, A and B are formulas, then $A \circ B$ is a formula;
- If A is a formula, x is a free variable in A then $\forall xA$ and $\exists xA$ are formulas
- All formulas are generated by a finite number of applications of the above rules.

Example (FOL Formulas)

$$P(x)$$
, $\exists x Q(x,c)$, $\forall x R(x,f(x,y+c))$, ...

Operator Precedence

Order Logic

Propositional and First

First Order Logic

Operator Precedence

Precedence among logical operators is defined as follows:

$$\forall,\exists,\neg,\wedge,\vee,\rightarrow,\leftrightarrow$$

convention: all operators are right associative (as in propositional

logic). Example

$$\forall x P(x) \to \exists y \exists z Q(y,z) \land \neg \exists x R(x)$$

quantifier

Note The inner occurrence of x is bound to the innermost existential

 $(\forall x P(x)) \rightarrow \exists y (\exists z (Q(y,z) \land \neg (\exists x (R(x)))).$

Ground and Closed Formulas

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Definition (Ground Formula)

A formula F is ground if it does not contain variables

Definition (Closed Formula)

A formula F is closed if it does not contain free variables

Example (Ground and Closed Formulas)

```
Boring(GrandeFratello) (ground)

\forall x (Reality(x) \rightarrow Boring(x)) (closed, not ground)

\forall x (Reality(x) \rightarrow BetterProgram(y, x)) (not closed, not ground)
```

Example of FOL formalisation

Propositional and First Order Logic

Logic

First Order Logic

Example (Basic axioms of natural language)

- A_1 : for every number there is one and only one immediate successor
- A_2 : there is no number for which 0 is the immediate successor
- A_3 : for every number other than 0 there is one and only one immediate predecessor

Assume:

- \bullet s(x) is function for immediate successor
- p(x) is function for immediate predecessor
- \blacksquare E(x, y) is true iff x is equal to y

Example contd.

Propositional and First Order Logic

Proposition: Logic

First Order Logic

- $A_1 \triangleq \forall x \exists y (E(s(x), y) \land (\forall z)(E(s(x), z) \rightarrow E(z, y)))$
- $A_2 \triangleq \neg((\exists x) E(s(x), 0))$
- $A_3 \triangleq \forall x (\neg E(x,0) \rightarrow \exists y (E(p(x),y) \land (\forall z)(E(p(x),z) \rightarrow E(z,y)))$

Interpretations in FOL

Propositional and First Order Logic

Logic First Order

Logic

- In Prop. Logic an Interpretation for a formula *G* is an assignment of truth values to each atoms occurring in the formula
- In FOL we have to do more than that:
 - Specify a domain of interest (e.g., real numbers)
 - 2 An assignment to constants, function symbols and predicate symbols

Example (Interpretation)

Consider the set of formulas: $\{\forall x P(x), \exists x Q(x)\}$; An interpretation will need to specify a domain, e.g. $D=\{1,2\}$ and an assignment for all predicate symbol from D to the set $\{T,F\}$, for example $\{P(1)=T,P(2)=F\}$ and $\{Q(1)=F,Q(2)=T\}$.

Interpretation: Formal Definition

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Definition of Interpretation

An Interpretation for the language $\mathcal L$ is a pair $I=\langle D,A\rangle$ where:

- D is a non empty set called domain of I;
- A is a function that maps:
 - every constant symbol c into an element $c^A \in D$;
 - every n-ary function symbol f into a function $f^A: D^n \to D$:
 - every n-ary predicate symbol P into a n-ary relation $P^A: D^n \to \{\top, \bot\}$.

First Order Logic

Example (Interpretation)

$$\forall x \exists y P(x, y)$$

- D, the set of human beings $P^A(a,b) = true$ iff b is father of a All human beings have a father
- D, the set of human beings $P^{A'}(a,b) = true$ iff b is mother of a All human beings have a mother
- D the set of natural numbers $P^{A''}(a,b) = true$ iff a < b For every nat number there is a greater one

Evaluation of FOL formulas

Propositional and First Order Logic

Proposition a Logic

First Order Logic Given an interpretation $I = \langle D, A \rangle$, FOL formulas are evaluated to **true** or **false** according to the following rules:

- If S is an atomic formula and $S \triangleq P(t_1, \dots, t_n)$, S is true iff $P^A(t_1^A, \dots, t_n^A) = \top$
- If S is an atomic formula and $S \triangleq t_1 = t_2$, S is **true** iff $t_1^A = t_2^A$.
- If S is a formula evaluated to true then $\neg S$ is false.
- If S and T are two formulas then $S \wedge T$ is **true** iff A and T are **true**.
- If S and T are two formulas then S ∨ T is true iff A or T are true
- If $S \triangleq \forall xG$ is **true** iff G is true for every element $d \in D$.
- If $S \triangleq \exists xG$ is **true** iff G is true for at least one element $d \in D$.

Evaluation of FOL formulas contd.

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Note

- According to this evaluation procedure formulas containing free variables can not be evaluated.
- The logical operators \rightarrow and \leftrightarrow are evaluated using the usual shortcuts:

$$A \rightarrow B \equiv \neg A \lor B$$

$$A \leftrightarrow B \equiv A \rightarrow B \land B \rightarrow A$$

Examples of FOL formula evaluation

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Example (Example of evaluation)

$$G \triangleq \forall x \exists y P(x, y)$$

Interpretation I for G

$$D = 1, 2$$
 and $P^A(x, y) = true$ iff $x < y$

To evaluate G we have to evaluate for each element $d \in D$ the formula $H \triangleq \exists y P(d, y)$.

- **a** x=1 we have to check whether there is at least one element $d' \in D$ such that $P^A(1, d')$ hols, i.e. such that 1 < d'. We observe that 1 < 2 holds, thus for x=1 the formula H is **true**.
- $\mathbf{x} = 2$ however H is false.

Thus G is false under I

Models, validity, satisfiability

Propositional and First Order Logic

Logic

First Order Logic Given the notion of interpretion, the concepts of model, validity and satisfiability can be defined as for propositional logic.

Definition (Model)

An interpretation I is a model for G iff G is evaluated to true under I. We write $I \models G$.

Definition (Validity)

A formula G is valid iff it is evaluated to **true** under all its interpretations. We write $\models G$

Definition (Inconsistency)

A formula G is inconsistent iff it is evaluated to false under all its interpretations

Logical consequence

Propositional and First Order Logic

Logic

First Order Logic

Definition (Logical consequence)

A formula G is a logical consequence of formulas $\{F_1, \dots, F_n\}$ iff for every interpretation I if $I \models F_1 \land \dots \land F_n$ we have that $I \models G$.

The following theorems hold also for First Order Logic

Theorem (Deduction Theorem)

Given a set of formulas $\{F_1, \dots, F_n\}$ and a formula G, $F_1 \wedge \dots \wedge F_n \models G$ iff $\models F_1 \wedge \dots \wedge F_n \rightarrow G$

Theorem (Proof by Refutation)

Given a set of formulas $\{F_1, \dots, F_n\}$ and a formula G, $\models F_1 \wedge \dots \wedge F_n \rightarrow G$ iff $F_1 \wedge \dots \wedge F_n \wedge \neg G$ is inconsistent.

Example of logical consequence

Propositional and First Order Logic

Proposition Logic

First Order Logic

Example (Logical consequence)

$$\forall x P(x) \rightarrow Q(x) \land P(a) \models Q(a)$$

Using deduction theorem

Deduction theorem: $\forall x P(x) \rightarrow Q(x) \land P(a) \models Q(a)$ iff

$$\models (\forall x P(x) \rightarrow Q(x) \land P(a)) \rightarrow Q(a)$$

Suppose I falsifies the formula then

- \mathbb{I} Q(a) is false under I
- $1 \models \forall x P(x) \rightarrow Q(x) \land P(a)$

If 2 then
$$I \models \forall x P(x) \rightarrow Q(x)$$
 and $I \models P(a)$

Then $I \models Q(a)$ which gives us a contradiction with 1

First Order Logic and decidability

Propositional and First Order Logic

Logic

First Order Logic

- FOL is not decidable
- To prove that a formula is valid in FOL we can not simply enumerate all its possible interpretations
 - possible interpretations of a formula can be infinitely many: we can have an infinite number of domains.
- We need an automated mechanism to verify inconsistent formulas

Prenex Normal Forms

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Definition (Prenex normal form)

A formula F is in prenex normal form iff it is in the form of

$$Q_1x_1\cdots Q_nx_nM$$

Where $Q_i x_i$ are quantifiers (i.e. either \forall or \exists) and M is a quantifier free formula.

- $Q_1x_1\cdots Q_nx_n$ is called the prefix of the formula;
- M is called the matrix of the formula.

Prenex Normal Forms: Examples

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Example (Prenex Normal Form)

Example (Not Prenex Normal Form)

- $\blacksquare \forall x P(x) \rightarrow \exists y Q(y)$
- $\blacksquare \forall x Q(x, y) \rightarrow \forall y R(y)$

Logical Equivalence

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Definition (Logical Equivalence)

Two formulas F and G are logically equivalent iff $F \models G$ and $G \models F$ and we write $F \equiv G$.

- F and G are equivalent iff the truth values of F and G are the same under every possible interpretations.
- Same as in in prop. Logic
- all logical equivalences defined for prop. logic still hold in FOL
- additional rules for formulas containing quantifiers

Equivalences for Quantifiers

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Formulas are logically equivalent if they differ in

- the name of variables in the scope of quantifiers $\forall x P(x) \equiv \forall y P(y)$
- the order of quantifiers of the same kind $\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y) \equiv \forall x, y P(x, y)$
- addition or elimination of quantifiers whose variable does not occurr in their scope $\forall x P(y) \equiv P(y)$

Additional Equivalence Rules

Propositional and First Order Logic

Proposition Logic

First Order Logic

Negation

$$\neg(\forall x F[x]) \equiv \exists x \neg F[x] \tag{1}$$

$$\neg(\exists x F[x]) \equiv \forall x \neg F[x] \tag{2}$$

And, Or

$$QxF[x] \lor G \equiv Qx(F[x] \lor G) \tag{3}$$

$$QxF[x] \wedge G \equiv Qx(F[x] \wedge G) \tag{4}$$

$$Q_1 x F[x] \vee Q_2 x H[x] \equiv Q_1 x Q_2 y (F[x] \vee H[y])$$
 (5)

$$Q_2xF[x] \wedge Q_2xH[x] \equiv Q_1xQ_2y(F[x] \wedge H[y]) \tag{6}$$

Note

We assume that y does not appear in F

Additional Equivalence Rules contd.

Propositional and First Order Logic

Proposition a Logic

First Order Logic

More specific rules for and, or

$$\forall x F[x] \land \forall x G[x] \equiv \forall x (F[x] \land G[x]) \tag{7}$$

$$\exists x F[x] \lor \exists G[x] \equiv \exists x (F[x] \lor G[x]) \tag{8}$$

Note

For rules 5 and 6 we renamed the variable in *H* because otherwise the rule could not be applied. e.g.

$$\forall x A[x] \lor \forall x B[x] \not\equiv \forall x (A[x] \lor B[x])$$

Example of Prenex normal Form Transformation I

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Example

$$\forall x P(x) \rightarrow \exists x Q(x)$$

- $\exists x \neg P(x) \lor \exists x Q(x) \text{ (rule 1)}$
- $\exists x(\neg P(x) \lor Q(x)) \text{ (rule 8)}$

Example of Prenex normal Form Transformation II

Propositional and First Order Logic

Proposition: Logic

First Order Logic

Example

$$\forall x (P(x) \rightarrow \exists y Q(x,y))$$

- $\forall x(\neg P(x) \lor \exists y Q(x,y))$ (elimination of implication)
- $\forall x \exists y (\neg P(x) \lor Q(x,y)) \text{ (rule 3)}$

Example of FOL application

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Example (Doctors and Quacks)

Assume the following sentences are true: Some patients like all doctors, No patient likes any quack. Show that we can conclude that no doctor is a quack.

Formalisation

 $F_1 \triangleq \text{Some patients like all doctors:}$ $(\exists x)(Patient(x) \land (\forall y)(Doctor(y) \rightarrow Likes(x,y)))$ $F_2 \triangleq \text{No patient likes any quack:}$ $(\forall x)(Patient(x) \rightarrow (\forall y)(Quack(y) \rightarrow \neg Likes(x,y)))$ $F_3 \triangleq \text{No doctor is a quack:}$ $(\forall x)(Doctor(x) \rightarrow \neg Quack(x))$

Doctors and Quacks contd.

Propositional and First Order Logic

Proposition : Logic

First Order Logic

Logical Equivalence

We want to show that $(F_1 \wedge F_2) \models F_3$. Suppose $I \models F_1 \wedge F_2$ we want to show that $I \models F_3$

- If I models F_1 then for $e \in D$ we have $Patient(e) \wedge (\forall y)(Doctor(y) \rightarrow Likes(e, y))$ is true.
- Since I models F_2 we also have that $Patient(e) \rightarrow (\forall y)(Quack(y) \rightarrow \neg Likes(e, y))$ is true.
- From F_1 being true we have that $(\forall y)(Doctor(y) \rightarrow Likes(e, y))$ must be true.

Doctors and Quacks contd.

Propositional and First Order Logic

Proposition a Logic

First Order Logic

Logical Equivalence contd.

- \blacksquare From F_1 being true we have that
 - Patient(e) is true in I
 - and thus from F_2 we have that $(\forall y)(Quack(y) \rightarrow \neg Likes(e,y))$ must be true in I
- Therefore we have that $(\forall y)((Doctor(y) \rightarrow Likes(e, y)) \land (Quack(y) \rightarrow \neg Likes(e, y)))$ must be true in I
- From this we can conclude that $(\forall y)(Doctor(y) \rightarrow \neg Quack(y))$ must be true in I

What if we modify F_1 as follows?

$$F_1 \triangleq (\exists x)(Patient(x) \rightarrow (\forall y)(Doctor(y) \rightarrow Likes(x, y))$$

First Order Logic

Exercise

- $A \triangleq (\exists x)P(x) \rightarrow (\forall x)P(x)$ [Ex. 6 page 42 Chang-Lee]
 - 1 Prove that A is valid for any domain D which contains only one element
 - **2** Let $D = \{a, b\}$ find one interpretation I such that $I \neg \models A$
- Transorm the following formulas into prenex normal form [Ex. 9 page 43 Chang-Lee]

 - $(\exists x)(\neg((\exists y)P(x,y)) \rightarrow ((\exists z)Q(z) \rightarrow R(z)))$
 - $(\forall x)(\forall y)((\exists z)P(x,y,z) \wedge ((\exists u)Q(x,u) \rightarrow (\exists v)Q(y,v)))$