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Basic Concepts

Propositional logic is the simplest logic�illustrates basic ideas
using propositions

P1 , Snow is whyte

P2 , Today it is raining

P3 , This automated reasoning course is boring

Pi is an atom or atomic formula
Each Pi can be either true or false but never both
The values true or false assigned to each proposition is called
truth value of the proposition
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Syntax

Recursive de�nition of well-formed formulas

1 An atom is a formula

2 If S is a formula, ¬S is a formula
(negation)

3 If S1 and S2 are formulas, S1 ∧ S2 is a formula
(conjunction)

4 If S1 and S2 are formulas, S1 ∨ S2 is a formula
(disjunction)

5 All well-formed formulas are generated by applying above
rules

Shortcuts:

S1 → S2 can be written as ¬S1 ∨ S2
S1 ↔ S2 can be written as (S1 → S2) ∧ (S2 → S1)
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Semantics

Relationships between truth values of atoms and truth values of
formulas

¬S is true i� S is false
S1 ∧ S2 is true i� S1 is true and S2 is true
S1 ∨ S2 is true i� S1 is true or S2 is true
S1 → S2 is true i� S1 is false or S2 is true

i.e., is false i� S1 is true and S2 is false
S1 ↔ S2 is true i� S1 → S2 is true and S2 → S1 is true
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Semantics: Example

Example (Truth Tables for main logical connectives)

P1 P2 ¬P1 P1 ∧ P2 P1 ∨ P2 P1 → P2 P1 ↔ P2

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T
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Propositional logic: Evaluation of Formula

Recursive Evaluation

Consider the formula G , ¬P1 ∧ (P2 ∨ P3)
Suppose we know that P1 = F , P2 = F , P3 = T

Then we have

¬P1 ∧ (P2 ∨ P3)= true ∧ (false ∨ true)= true ∧ true= true

Note

We evaluate ¬P1 before P1 ∧ P2, this is because the following
decreasing rank for connectives operator holds:
↔ → ∨ ∧ ¬



Propositional
and First

Order Logic

Propositional
Logic

First Order
Logic

Exercise: Truth Tables

Example (XOR)

Write the truth table for the formula:

G , (P ∨ Q) ∧ ¬(P ∧ Q)

Sol.

P Q P ∨ Q P ∧ Q ¬(P ∧ Q) G

T T T T F F

T F T F T T

F T T F T T

F F F F T F
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Exercise: Truth Tables

Example (XOR)

Write the truth table for the formula:

G , (P ∨ Q) ∧ ¬(P ∧ Q)

Sol.

P Q P ∨ Q P ∧ Q ¬(P ∧ Q) G

T T T T F F

T F T F T T

F T T F T T

F F F F T F
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Interpretation

De�nition

Interpretation: Given a propositional formula G , let
{A1, · · · ,An} be the set of atoms which occur in the formula,
an Interpretation I of G is an assignment of truth values to
{A1, · · · ,An}.

Example

Consider the formula: G , (P ∨ Q) ∧ ¬(P ∧ Q)
Set of atoms: {P,Q}
Interpretation for G : I = {P = T,Q = F}
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Interpretation contd.

Each atom Ai can be assigned either True or False but
never both.

Given an interpretation I a formula G is said to be true in
I i� G is evaluated to True in the interpretation

Given a formula G with n distinct atoms there will be 2n

distinct interpretations for the atoms in G .

Convention: {P,¬Q,¬R, S} represents an interpretation
I : {P = T ,Q = F ,R = F , S = T}.
Given a formula G and an interpretation I , if G is true
under I we say that I is a model for G .and we can write
I |= G
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Validity

De�nition

Valid Formula: A formula F is valid i� it is true in all its
interpretation

A valid formula can be also called a Tautology

A formula which is not valid is invalid

If F is valid we can write |= F

Example (de Morgan's Law)

(¬(P ∧ Q)↔ (¬P ∨ ¬Q)) is a valid formula
P Q ¬(P ∧ Q) ¬P ∨ ¬Q (¬(P ∧ Q)↔ (¬P ∨ ¬Q))
T T F F T

T F T T T

F T T T T

F F T T T



Propositional
and First

Order Logic

Propositional
Logic

First Order
Logic

Inconsistency

De�nition

Inconsistent Formula: A formula F is inconsistent i� it is false
in all its interpretation

An inconsistent formula is said to be unsatis�able

A formula which is not inconsistent is consistent or
satis�able

Invalid is di�erent from Inconsistent

Example

¬((¬(P ∧ Q)↔ (¬P ∨ ¬Q))) is inconsistent
P Q (¬(P ∧ Q) ↔ (¬P ∨ ¬Q)) ¬(¬(P ∧ Q) ↔ (¬P ∨ ¬Q))
T T T F

T F T F

F T T F

F F T F
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Inconsistency and Validity

A formula is valid i� its negation is inconsistent (and vice
versa)

A formula is invalid (consistent) i� there is at least an
interpretation in which the formula is false (true)

An inconsistent formula is invalid but the opposite does
not hold

A valid formula is consistent but the opposite does not hold

Example

The formula G , P ∨ Q is invalid (e.g., it is false when P and
Q are false) but is not inconsistent because it is true in all other
cases. Moreover, G is consistent (e.g., it is true whenever P or
Q are false) but is not valid because it is false when both P and
Q are false.
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Decidability

Property

Propositional Logic is decidable: there is a terminating method

to decide whether a formula is valid.

To decide whether a formula is valid:

1 we can enumerate all possible interpretations
2 for each interpretation evaluate the formula

Number of interpretations for a formula are �nite (2n)

Decidability is a very strong and desirable property for a
Logical System

Trade o� between representational power and decidability
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Logical Equivalence

De�nition

Logical Equivalence: Two formulas F and G are logically
equivalent F ≡ G i� the truth values of F and G are the same
under every interpretation of F and G .

Useful equivalence rules

(P ∧ Q) ≡ (Q ∧ P) commutativity of ∧
(P ∨ Q) ≡ (Q ∨ P) commutativity of ∨

((P ∧ Q) ∧ R) ≡ (P ∧ (Q ∧ R)) associativity of ∧
((P ∨ Q) ∨ R) ≡ (P ∨ (Q ∨ R)) associativity of ∨

¬(¬P) ≡ P double-negation elimination

(P → Q) ≡ (¬Q → ¬P) contraposition

(P → Q) ≡ (¬P ∨ Q) implication elimination

(P ↔ Q) ≡ ((P → Q) ∧ (Q → P)) biconditional elimination

¬(P ∧ Q) ≡ (¬P ∨ ¬Q) de Morgan

¬(P ∨ Q) ≡ (¬P ∧ ¬Q) de Morgan

(P ∧ (Q ∨ R)) ≡ ((P ∧ Q) ∨ (P ∧ R)) distributivity of ∧ over ∨
(P ∨ (Q ∧ R)) ≡ ((P ∨ Q) ∧ (P ∨ R)) distributivity of ∨ over ∧
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Normal Forms

Standard ways of writing formulas
Two main normal forms:

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

De�nition

Literal: a literal is an atom or the negation of an atom

De�nition

Negation Normal Form: A formula is in Negation Normal Form
(NNF) i� negations appears only in front of atoms



Propositional
and First

Order Logic

Propositional
Logic

First Order
Logic

CNF

De�nition

Conjunctive Normal Form: A formula F is in Conjunctive
Normal Form (CNF) i� it is in Negation Normal Form and it
has the form F , F1 ∧ F2 ∧ · · · ∧ Fn, where each Fi is a
disjunction of literals.

If F is in CNF Each Fi is called a clause

CNF is also refered to as Clausal Form

Example

The formula G , (¬P ∨ Q) ∧ (¬P ∨ R) is in CNF. We can
write G as a set of clauses {C1,C2} where C1 = ¬P ∨ Q and
C2 = ¬P ∨ R .
The formula G , ¬(P ∨ Q) ∧ (¬P ∨ R) is not in CNF because
negation appears in front of a formula and not only in front of
atoms.
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DNF

De�nition

Disjunctive Normal Form: A formula F is in Disjunctive Normal
Form (DNF) i� it is in Negation Normal Form and it has the
form F , F1 ∨ F2 ∨ · · · ∨ Fn, where each Fi is a conjunction of
literals.

Example

The formula G , (¬P ∧ R) ∨ (Q ∧ ¬P) ∨ (Q ∧ P) is in DNF.

Any formula can be transformed into a normal form by using
the equivalence rules given above.
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Transforming Formulas

Example (Formula transformations)

Prove that the following logical equivalences hold by
transforming formulas:
P∨Q∧¬(P∧Q)↔ (P∨Q)∧(¬P∨¬Q)↔ (¬P∧Q)∨(P∧¬Q)

Sol.

Given P ∨ Q ∧ ¬(P ∧ Q) apply de Morgan's law on the second
part and directly obtain (P ∨ Q) ∧ (¬P ∨ ¬Q)
For more examples see Examples 2.8, 2.9 [Chang and Lee Ch. 2]
Try to prove the other equivalence
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Transforming Formulas

Example (Formula transformations)

Prove that the following logical equivalences hold by
transforming formulas:
P∨Q∧¬(P∧Q)↔ (P∨Q)∧(¬P∨¬Q)↔ (¬P∧Q)∨(P∧¬Q)

Sol.

Given P ∨ Q ∧ ¬(P ∧ Q) apply de Morgan's law on the second
part and directly obtain (P ∨ Q) ∧ (¬P ∨ ¬Q)
For more examples see Examples 2.8, 2.9 [Chang and Lee Ch. 2]
Try to prove the other equivalence
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Logical Consequence

De�nition

Given a set of formulas {F1, · · · ,Fn} and a formula G , G is
said to be a logical consequence of F1, · · · ,Fn i� for any
interpretation I in which F1 ∧ · · · ∧ Fn is true G is also true.

If G is a logical consequence of {F1, · · · ,Fn} we write
F1 ∧ · · · ∧ Fn |= G .

F1, · · · ,Fn are called axioms or premises for G .

F ≡ Q i� F |= Q and Q |= F

Example

S → C ,C → F ,S are premises for F
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Deduction Theorem

Theorem

Given a set of formulas {F1, · · · ,Fn} and a formula G,

(F1 ∧ · · · ∧ Fn) |= G if and only if |= (F1 ∧ · · · ∧ Fn)→ G.

Sketch of proof.

⇒ For each interpretation I in which F1 ∧ · · · ∧ Fn is true
G is true, I |= (F1 ∧ · · · ∧ Fn)→ G , however for every
interpretation I ′ in which F1 ∧ · · · ∧ Fn is false then
(F1 ∧ · · · ∧ Fn → G ) is true, thus I ′ |= (F1 ∧ · · · ∧ Fn)→ G .
Therefore, |= (F1 ∧ · · · ∧ Fn)→ G .

⇐ for every interpretation we have that when F1 ∧ · · · ∧ Fn
is true G is true therefore (F1 ∧ · · · ∧ Fn) |= G .
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Proof by Refutation

Theorem

Given a set of formulas {F1, · · · ,Fn} and a formula G,

(F1 ∧ · · · ∧ Fn) |= G if and only if F1 ∧ · · · ∧ Fn ∧ ¬G is

inconsistent.

Sketch of proof.

(F1 ∧ · · · ∧ Fn) |= G holds i� for every interpretation under
which F1 ∧ · · · ∧ Fn is true also G is true. This holds i� there is
no interpretation for which F1 ∧ · · · ∧ Fn is true and G is false,
but this happens precisely when F1 ∧ · · · ∧ Fn ∧ ¬G is false for
every interpretation, i.e. when F1 ∧ · · · ∧ Fn ∧ ¬G is
inconsistent.
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Discussion

Previous theorems show that:

We can prove logical consequence by proving validity of a
formula
We can prove logical consequence by refuting a given
formula, i.e. by proving a given formula is inconsistent
Notice that we did not use any speci�c properties of
propositional logic

Logical consequences are usually referred to as theorems, and G

is the conclusion of the theorem.
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Logical Consequence: Example

Example

We want to show that (P → Q) ∧ P |= Q

Using de�nition

We show that for each interpretation in which (P → Q) ∧ P is
true, also Q is true. We can do that by writing the truth table
of the formulas.
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Logical Consequence: Example contd.

Using deduction theorem

We know from the deduction theorem that (P → Q) ∧ P |= Q

i� |= ((P → Q) ∧ P) → Q. Therefore we need to show that
((P → Q)∧P)→ Q is valid, we can do that by writing the truth
table of the formula and verifying that the formula is evaluated
true for all its possible interpretation.

Using Refutation

We know that (P → Q) ∧ P |= Q i� (P → Q) ∧ P ∧ ¬Q is
inconsistent. Therefore we need to show that (P → Q)∧P∧¬Q
is inconsistent, we can do that by writing the truth table of the
formula and verifying that the formula is evaluated false for all
its possible interpretation.
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Exercises

Exercise

Consider the following formulas: F1 , (P → Q), F2 , ¬Q,
G , ¬P . Show that F1 ∧ F2 |= G using all three
approaches [Chang-Lee example 2.11]

Given that if the congress refuses to enact new laws, then
the strike will not be over unless it lasts for more than a
year or the president of the �rm resigns, will the strike be
over if the congress refuses to act and the strike just
started ? [Chang-Lee example 2.12]
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Characteristics of Propositional Logic

Propositional logic is declarative: pieces of syntax
correspond to facts

Propositional logic is decidable: We can always decide
through a terminating process whether a formula is valid.

Propositional logics does not represent structure of atoms
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Lack of structure in Prop. Logic

Example

P , Every man is mortal
S , Socrate is a man
Q , Socrate is mortal
In propositional logic Q is not a logic consequence of P and S,
but we would like to express this relationship.
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Examples of expressions in FOL

Example

Every man is mortal ∀x(man(x)→ mortal(x))
Socrate is a man man(Socrate)
Socrate is mortal mortal(Socrate)
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Components of First Order Logic

Objects, Relations, Functions

Whereas propositional logic assumes world contains facts,
�rst-order logic (like natural language) assumes the world
contains: Objects, Relations, Functions.

Objects: people, houses, numbers, theories, colors, football
games, wars, centuries · · ·
Relations: red, round, multistoried · · · ,
brother of, bigger than, inside, part of, has color, occurred
after, owns, comes between, · · ·
Functions: father of, best friend, second half of, one more
than, beginning of · · ·
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The Language: Logical Symbols

Logical Symbols

A �rst order language L is built upon the following sets of
symbols:

propositional connectives: ¬,∧,∨
(plus the shortcuts → and ↔);

propositional constants > and ⊥
(represent True and False respectively);

equality =
(not always included);

a denumerable set of individual variable symbols:
x1, x2, · · · ;
universal quanti�cation ∀;
existentional quanti�cation ∃;
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The Language: Parameters

Parameters

A denumerable set of predicate symbols, each associated
with a positive integer n, arity. A predicate with arity n is
called n-ary;

A denumerable set of function symbols, each associated
with a positive integer n, arity. A function with arity n is
called n-ary;

A denumerable set of constant symbols.

Note

The parameters characterise di�erent �rst order languages,
while logical symbols are always the same.
Therefore parameters are often called the Signature of a First
Order Language.
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Example I

The language of pure predicates

n-ary predicate symbols: Pn
1 ,P

n
2 , · · · ;

constant symbols: c1, c2, · · · ;
no function symbols, no equality.

Example

The Book is on the table:

OnTable(Book)

On(Table,Book)
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Example II

The language of set theory

Equality;

predicate symbols: only the binary predicate ∈;
constant symbols: { };
no function symbols.

Example

There exists no set such that all other sets are its element

¬∃x∀y(y ∈ x)
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Example III

The language of elementary number theory

Equality;

predicate symbols: only the binary predicate <;

constant symbols: 0;

function symbols: a unary function symbol s, successor
function, and the binary function symbols + and ×,
addition and multiplication

Example

There exists no number greater than all others

¬∃x∀y(y < x)
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De�nition of FOL Formulas

FOL formulas

Inductive de�nition of basic components

1 Terms

2 Atomic Formulas
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Terms

FOL terms

The set Term of the terms of L is inductively de�ned as follows:

1 Every constant is a term;

2 Every variable symbol is a term

3 If t1 . . . tn are terms and f is a n-ary function symbol,
f (t1, . . . , tn) is a term (functional term).

4 All terms are generated by applying the above rules

Example (Terms for FOL)

c , x , f (x , y), f (g(c), y), plus(plus(x , 1), 3), . . .
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Atomic Formulas

Atoms

The set Atom of the atomic formulae is inductively de�ned as
follows:

1 ⊥ and > are atoms;

2 If t1 and t2 are terms then t1 = t2 is an atom;

3 If t1, · · · , tn are terms and P is a n-ary predicate symbol
P(t1, · · · , tn) is an atom;

4 All atomic formulas are de�ned by applying the above rules

Example (Atoms in FOL)

P(x), Q(x , c), R(x , f (x , y + c)), · · ·
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Scope of Quanti�ers

De�nition (Scope of quanti�ers)

The scope of a quanti�er occurring in a formula is the formula
to which the quanti�er applies

Example (Scope of quanti�ers)

∀x(Q(x)→ R(x)) the scope of ∀ is (Q(x)→ R(x))
∀x(Q(x)→ ∃y R(y)) the scope of ∀ is (Q(x)→ ∃y R(y)) and
the scope of ∃ is R(y)
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Free and bounded variables

De�nition (Free occurence of a variable)

An occurrence of a variable in a formula is free if the variable is
not in the scope of any quanti�er. An occurence of a variable
which is not free is bound

De�nition (Free variable)

A variable in a formula is free if at least one occurrence of the
variable is free. A variable is bound if at least one occurrence is
bound.
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Examples of free and bound variables

Example (Free occurences and free variables)

∀x(Q(x , y)→ R(x , y)) the occurence of y is free while the
occurence of x is bound, therefore y is free while x is bound
∀x(Q(x , y)→ ∃y R(x , y)) the occurrence of y in Q is free
while the occurence of y in R is bound, the occurrences of x in
both formulas are bound. Therefore, the variable x is bound
while the variable y is both free and bound
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First Order Formulas

Well-Formed Formulas

The set of formulae of L is inductively de�ned as follows:

Every atom is a formula;

If A is a formula ¬A is a formula;

If ◦ is a binary operator, A and B are formulas, then A ◦ B
is a formula;

If A is a formula, x is a free variable in A then ∀xA and
∃xA are formulas

All formulas are generated by a �nite number of
applications of the above rules.

Example (FOL Formulas)

P(x), ∃xQ(x , c), ∀xR(x , f (x , y + c)), · · ·
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Operator Precedence

Operator Precedence

Precedence among logical operators is de�ned as follows:

∀,∃,¬,∧,∨,→,↔

convention: all operators are right associative (as in propositional
logic).

Example

∀xP(x)→ ∃y∃zQ(y , z) ∧ ¬∃xR(x)

(∀xP(x))→ ∃y(∃z(Q(y , z) ∧ ¬(∃x(R(x))).

Note

The inner occurrence of x is bound to the innermost existential
quanti�er
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Ground and Closed Formulas

De�nition (Ground Formula)

A formula F is ground if it does not contain variables

De�nition (Closed Formula)

A formula F is closed if it does not contain free variables

Example (Ground and Closed Formulas)

Boring(GrandeFratello) (ground)
∀x(Reality(x)→ Boring(x)) (closed, not ground)
∀x(Reality(x)→ BetterProgram(y , x)) (not closed, not ground)
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Example of FOL formalisation

Example (Basic axioms of natural language)

A1: for every number there is one and only one immediate
successor

A2: there is no number for which 0 is the immediate
successor

A3: for every number other than 0 there is one and only
one immediate predecessor

Assume:

s(x) is function for immediate successor

p(x) is function for immediate predecessor

E (x , y) is true i� x is equal to y
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Example contd.

A1 , ∀x∃y(E (s(x), y) ∧ (∀z)(E (s(x), z)→ E (z , y)))

A2 , ¬((∃x)E (s(x), 0))
A3 , ∀x(¬E (x , 0)→ ∃y(E (p(x), y) ∧ (∀z)(E (p(x), z)→
E (z , y)))
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Interpretations in FOL

In Prop. Logic an Interpretation for a formula G is an
assignment of truth values to each atoms occuring in the
formula

In FOL we have to do more than that:

1 Specify a domain of interest (e.g., real numbers)
2 An assignment to constants, function symbols and

predicate symbols

Example (Interpretation)

Consider the set of formulas: {∀xP(x), ∃xQ(x)};
An interpretation will need to specify a domain, e.g. D = {1, 2}
and an assignment for all predicate symbol from D to the set
{T ,F}, for example {P(1) = T ,P(2) = F} and
{Q(1) = F ,Q(2) = T}.
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Interpretation: Formal De�nition

De�nition of Interpretation

An Interpretation for the language L is a pair I = 〈D,A〉 where:

D is a non empty set called domain of I ;
A is a function that maps:

every constant symbol c into an element cA ∈ D;
every n-ary function symbol f into a function
f A : Dn → D;
every n-ary predicate symbol P into a n-ary relation
PA : Dn → {>,⊥}.
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Interpretation: Example

Example (Interpretation)

∀x∃yP(x , y)

D, the set of human beings
PA(a, b) = true i� b is father of a
All human beings have a father

D, the set of human beings
PA′

(a, b) = true i� b is mother of a
All human beings have a mother

D the set of natural numbers
PA′′

(a, b) = true i� a < b

For every nat number there is a greater one
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Evaluation of FOL formulas

Given an interpretation I = 〈D,A〉, FOL formulas are evaluated
to true or false according to the following rules:

If S is an atomic formula and S , P(t1, · · · , tn), S is true
i� PA(tA1 , · · · , tAn ) = >
If S is an atomic formula and S , t1 = t2, S is true i�
tA1 = tA2 .

If S is a formula evaluated to true then ¬S is false.

If S and T are two formulas then S ∧ T is true i� A and
T are true.

If S and T are two formulas then S ∨ T is true i� A or T
are true

If S , ∀xG is true i� G is true for every element d ∈ D.

If S , ∃xG is true i� G is true for at least one element
d ∈ D.
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Evaluation of FOL formulas contd.

Note

According to this evaluation procedure formulas containing
free variables can not be evaluated.

The logical operators → and ↔ are evaluated using the
usual shortcuts:

A→ B ≡ ¬A ∨ B

A↔ B ≡ A→ B ∧ B → A
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Examples of FOL formula evaluation

Example (Example of evaluation)

G , ∀x∃yP(x , y)

Interpretation I for G

D = 1, 2 and PA(x , y) = true i� x < y

To evaluate G we have to evaluate for each element d ∈ D the
formula H , ∃yP(d , y).

x = 1 we have to check whether there is at least one
element d ′ ∈ D such that PA(1, d ′) hols, i.e. such that
1 < d ′. We observe that 1 < 2 holds, thus for x = 1 the
formula H is true.

x = 2 however H is false.

Thus G is false under I
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Models, validity, satis�ability

Given the notion of interpretion, the concepts of model, validity
and satis�ability can be de�ned as for propositional logic.

De�nition (Model)

An interpretation I is a model for G i� G is evaluated to true
under I . We write I |= G .

De�nition (Validity)

A formula G is valid i� it is evaluated to true under all its
interpretations. We write |= G

De�nition (Inconsistency)

A formula G is inconsistent i� it is evaluated to false under all
its interpretations
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Logical consequence

De�nition (Logical consequence)

A formula G is a logical consequence of formulas {F1, · · · ,Fn}
i� for every interpretation I if I |= F1 ∧ · · · ∧ Fn we have that
I |= G .

The following theorems hold also for First Order Logic

Theorem (Deduction Theorem)

Given a set of formulas {F1, · · · ,Fn} and a formula G,

F1 ∧ · · · ∧ Fn |= G i� |= F1 ∧ · · · ∧ Fn → G

Theorem (Proof by Refutation)

Given a set of formulas {F1, · · · ,Fn} and a formula G,

|= F1 ∧ · · · ∧ Fn → G i� F1 ∧ · · · ∧ Fn ∧ ¬G is inconsistent.
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Example of logical consequence

Example (Logical consequence)

∀xP(x)→ Q(x) ∧ P(a) |= Q(a)

Using deduction theorem

Deduction theorem: ∀xP(x)→ Q(x) ∧ P(a) |= Q(a) i�
|= (∀xP(x)→ Q(x) ∧ P(a))→ Q(a)

Suppose I falsi�es the formula then

1 Q(a) is false under I
2 I |= ∀xP(x)→ Q(x) ∧ P(a)

If 2 then I |= ∀xP(x)→ Q(x) and I |= P(a)

Then I |= Q(a) which gives us a contradiction with 1
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First Order Logic and decidability

FOL is not decidable

To prove that a formula is valid in FOL we can not simply
enumerate all its possible interpretations

possible interpretations of a formula can be in�nitely
many: we can have an in�nite number of domains.

We need an automated mechanism to verify inconsistent
formulas
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Prenex Normal Forms

De�nition (Prenex normal form)

A formula F is in prenex normal form i� it is in the form of

Q1x1 · · ·QnxnM

Where Qixi are quanti�ers (i.e. either ∀ or ∃) and M is a
quanti�er free formula.

Q1x1 · · ·Qnxn is called the pre�x of the formula;

M is called the matrix of the formula.



Propositional
and First

Order Logic

Propositional
Logic

First Order
Logic

Prenex Normal Forms: Examples

Example (Prenex Normal Form)

∀x∃yP(x)→ Q(y)

∀x∃y∀zQ(x)→ R(z , y)

Example (Not Prenex Normal Form)

∀xP(x)→ ∃yQ(y)

∀x∃yQ(x)→ ∀zR(z , y)
∀xQ(x , y)→ ∀yR(y)
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Logical Equivalence

De�nition (Logical Equivalence)

Two formulas F and G are logically equivalent i� F |= G and
G |= F and we write F ≡ G .

F and G are equivalent i� the truth values of F and G are
the same under every possible interpretations.

Same as in in prop. Logic

all logical equivalences de�ned for prop. logic still hold in
FOL

additional rules for formulas containing quanti�ers
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Equivalences for Quanti�ers

Formulas are logically equivalent if they di�er in

the name of variables in the scope of quanti�ers
∀xP(x) ≡ ∀yP(y)
the order of quanti�ers of the same kind
∀x∀yP(x , y) ≡ ∀y∀xP(x , y) ≡ ∀x , yP(x , y)
addition or elimination of quanti�ers whose variable does
not occurr in their scope
∀xP(y) ≡ P(y)
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Additional Equivalence Rules

Negation

¬(∀xF [x ]) ≡ ∃x¬F [x ] (1)

¬(∃xF [x ]) ≡ ∀x¬F [x ] (2)

And, Or

QxF [x ] ∨ G ≡ Qx(F [x ] ∨ G ) (3)

QxF [x ] ∧ G ≡ Qx(F [x ] ∧ G ) (4)

Q1xF [x ] ∨ Q2xH[x ] ≡ Q1xQ2y(F [x ] ∨ H[y ]) (5)

Q2xF [x ] ∧ Q2xH[x ] ≡ Q1xQ2y(F [x ] ∧ H[y ]) (6)

Note

We assume that y does not appear in F
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Additional Equivalence Rules contd.

More speci�c rules for and, or

∀xF [x ] ∧ ∀xG [x ] ≡ ∀x(F [x ] ∧ G [x ]) (7)

∃xF [x ] ∨ ∃G [x ] ≡ ∃x(F [x ] ∨ G [x ]) (8)

Note

For rules 5 and 6 we renamed the variable in H because
otherwise the rule could not be applied. e.g.
∀xA[x ] ∨ ∀xB[x ] 6≡ ∀x(A[x ] ∨ B[x ])
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Example of Prenex normal Form Transformation I

Example

∀xP(x)→ ∃xQ(x)

1 ¬(∀xP(x)) ∨ ∃xQ(x) (elimination of implication)

2 ∃x¬P(x) ∨ ∃xQ(x) (rule 1)

3 ∃x(¬P(x) ∨ Q(x)) (rule 8)
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Example of Prenex normal Form Transformation II

Example

∀x(P(x)→ ∃yQ(x , y))

1 ∀x(¬P(x) ∨ ∃yQ(x , y)) (elimination of implication)

2 ∀x∃y(¬P(x) ∨ Q(x , y)) (rule 3)
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Example of FOL application

Example (Doctors and Quacks)

Assume the following sentences are true: Some patients like all
doctors, No patient likes any quack. Show that we can conclude
that no doctor is a quack.

Formalisation

F1 , Some patients like all doctors:
(∃x)(Patient(x) ∧ (∀y)(Doctor(y)→ Likes(x , y)))
F2 , No patient likes any quack:
(∀x)(Patient(x)→ (∀y)(Quack(y)→ ¬Likes(x , y)))
F3 , No doctor is a quack:
(∀x)(Doctor(x)→ ¬Quack(x))
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Doctors and Quacks contd.

Logical Equivalence

We want to show that (F1 ∧ F2) |= F3. Suppose I |= F1 ∧ F2 we
want to show that I |= F3

If I models F1 then for e ∈ D we have
Patient(e) ∧ (∀y)(Doctor(y)→ Likes(e, y)) is true.

Since I models F2 we also have that
Patient(e)→ (∀y)(Quack(y)→ ¬Likes(e, y)) is true.
From F1 being true we have that
(∀y)(Doctor(y)→ Likes(e, y)) must be true.
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Doctors and Quacks contd.

Logical Equivalence contd.

From F1 being true we have that

Patient(e) is true in I

and thus from F2 we have that
(∀y)(Quack(y)→ ¬Likes(e, y)) must be true in I

Therefore we have that
(∀y)((Doctor(y)→ Likes(e, y)) ∧ (Quack(y)→ ¬Likes(e, y)))
must be true in I

From this we can conclude that
(∀y)(Doctor(y)→ ¬Quack(y)) must be true in I

What if we modify F1 as follows ?

F1 , (∃x)(Patient(x)→ (∀y)(Doctor(y)→ Likes(x , y))

i.e. We do not assume a patient that likes all doctors exists.
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Exercises

Exercise

A , (∃x)P(x)→ (∀x)P(x) [Ex. 6 page 42 Chang-Lee]

1 Prove that A is valid for any domain D which contains
only one element

2 Let D = {a, b} �nd one interpretation I such that I¬ |= A

Transorm the following formulas into prenex normal form
[Ex. 9 page 43 Chang-Lee]

1 (∀x)(P(x)→ (∃y)Q(x , y))
2 (∃x)(¬((∃y)P(x , y))→ ((∃z)Q(z)→ R(z)))
3 (∀x)(∀y)((∃z)P(x , y , z) ∧ ((∃u)Q(x , u)→ (∃v)Q(y , v)))
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