Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i-consistency Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Path Consistency

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

■ i-consistency

Path consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Basic Concepts

- $\bullet x, y, z, R_{x,y}, R_{y,z}, R_{x,z}$
- Arc consistency: every consistent value of x can be extended to y
- Path consistency every consistent couple of values for x, y can be extended to z

Path consistency: Example

Example (Path Consistency)

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

•
$$x, y, z, D = \{1, 2\}$$

• $R_{x,y} = \{(1,1)(2,2)\}, R_{x,z} = \{(1,1)(1,2)(2,1)\}, R_{y,z} = \{(1,1)(2,2)\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Path consistency: Definition

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Definition (Path Consistency for x, y relative to z)

- Couple of variables x, y and a third variable z
- Constraints *R_{x,y}*, *R_{x,z}*, *R_{y,z}* (if a constraint does not exists all values are possible)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- *x*, *y* is path consistent w.r.t. *z* iff:
 - $\forall < a, b > \in R_{x,y} \land a \in D_x \land y \in D_y$
 - $\blacksquare \exists c \in D_z | < a, c > \in R_{x,z} \land < b, c > \in R_{y,z}$
- Graphically: a triangle in the matching diagram

Why Path consistency is important

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

importance of path consistency

If path consistency does not hold for x = a, y = b relative to z then < a, b > can not be part of any solution

- If we fix *a*, *b* we can not find any value for *z*
- But we need to assign z and the solution must satisfy all constraints

Path consistency for problems

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

Path Consistency for ${\cal R}$

 ${\mathcal R}$ path consistent iff

for every couple of variables x, y and every other variable z

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

x, y path consistent relative to z

Path Consistency for $R_{x,y}$ relative to z

Constraint $R_{x,y}$ is path consistent relative to z

• every couple in $R_{x,y}$ is path consistent relative to z

Enforcing path consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Enforcing Path Consistency for \mathcal{R}

If \mathcal{R} is not path consistent

- exists a couple of variables x = a, y = b that can not be extended to z
 - x = a, y = b can not be part of any solution
 - but we can not remove *a*, *b* from their respective domains!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Enforcing path consistency: Example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Example (Enforcing Path Consistency)

- Variables: x, y, z Domains: $D = \{1, 2\}$
- Constraints $R_{x,y} = \{(1,1)(1,2)(2,1)\}, R_{x,z} = \{(1,1)(2,1)(2,2)\}, R_{y,z} = \{(1,2)(2,1)(2,2)\}$
- x = 1, y = 1 can not be extended to any value of z but we have solutions with x = 1 and y = 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Removing x = 1 (or y = 1) could make other solutions disappear

Enforcing path consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

Enforcing Path Consistency for \mathcal{R}

Given x = a, y = b not path consistent relative to z

- we eliminate $\langle a, b \rangle$ from $R_{x,y}$
- **R**_{x,y} now is path consistent with repsect to z
- we did not remove solutions:
 - *a*, *b* could not be in any solution
 - $a \in D_x$ and $b \in D_y$ can still be used for other solutions
- Simpler problem: do not need to check z to realise a, b not a solution

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Enforcing path consistency: Revise-3

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

Revise-3 proc.						
Algorithm 1 Revise- $3((x, y), z)$						
Require: A	three	variable	subnetwork	over	x, y, z,	
$R_{x,y}, R_{y,z}, R_{y,z}$	$R_{x,z}$					
Ensure: Revised $R_{x,y}$ path consistent relative to z						
for all $\langle a, b \rangle \in R_{x,y}$ do						
if $\neg \exists c \in D_z (a, c) \in R_{x,z} \land (b, c) \in R_{y,z}$ then						
delete a, b from $R_{x,y}$						
end if						
end for						

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Equivalent to $R_{xy} \leftarrow R_{xy} \cap \pi_{xy}(R_{xz} \bowtie D_z \bowtie R_{zy})$

Revise-3: Example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

Example (Revise-3)

• Variables: x, y, z Domains: $D = \{1, 2\}$

- Constraints x! = y, y! = z, z! = x
- Run Revise-3((x, y), z)

Inconsistent problem

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Inconsistent Problem

If a revise makes a relation $(R_{x,y})$ empty the problem is inconsistent

We have to assign x and y

• Every possible assignment will not satisfy $R_{x,y}$

node/arc consistency	remove values	empty domain	
	from domains	ightarrow inconsistency	
path consistency	remove values	empty relation	
	from relations	ightarrow inconsistency	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Loosing Path Consistency

Path Consistency Algorithm

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

PC-1

Path Consistency i- consistency

```
Require: \mathcal{R} = \langle X, D, C \rangle

Ensure: A path consistent network equivalent to \mathcal{R}

repeat

for all k \leftarrow 1 to n do

for all i, j \leftarrow 1 to n \mid j \neq k \land i \neq k \land i < j do

Revise((x_i, x_j), x_k);

end for

end for

until no constraint is changed
```

PC-1: Example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Example (Enforcing Path Consistency)

• Variables:
$$x_1, x_2, x_3$$
 Domains: $D = \{1, 2\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Constraints
$$x_1! = x_3, x_2! = x_3$$

Creating new constraints

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

New constraints

- We can create a new constraint between x and y when they share a constraint with another variable z
- We can not have a constraint when two nodes are not connected
- We could have constraint creation even if variables are connected but not directly connected: multiple constraint creation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PC-1 Computational Complexity

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i- consistency

Comp. Complexity

- $\bullet O(n^5k^5)$
- Revise for each triplets is $O(k^3)$
- Each cycle we revise at most $O(n^3)$ triplets
- Number of cycles is at most $O(n^2k^2)$
 - Because at each cycle we remove at least one element from one constraint, number of elements in all constraints is O(n²k²)

ション ふゆ アメリア メリア しょうくの

Improvements for PC-1

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Improve PC-1: PC-2

- Can do better than PC-1 (similarly to AC-1)
- We can focus on triplets that might have changed (simlilarly to AC-3)
- If $R_{x,y}$ is changed we re-process all triplets involving x, y

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

■ *x*, *y*, *z* with *z* any other variable

Path Consistency Algorithm

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

PC-2

Path Consistency **Require:** $\mathcal{R} = \langle X, D, C \rangle$ **Ensure:** A path consistent network equivalent to \mathcal{R} $Q \leftarrow \{ \langle i, k, j \rangle | 1 \le i < j \le n \land 1 \le k \le n \land k \ne i \land k \ne j \}$ while $Q \neq \{\}$ do pop < i, k, j > from Q $\operatorname{Revise}((x_i, x_i), x_k);$ if R_{x_i,x_i} changed then $Q \leftarrow Q \cup \{ < l, i, j > , < l, j, i > | 1 \le l \le n \land l \ne i \land l \ne j \}$ end if end while

PC-2 Computational Complexity

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

Comp. Complexity

- $O(n^3 k^5)$
- Revise for each triplets is $O(k^3)$
- Number of times we process the queue is at most $O(n^3k^2)$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Because we can put back an element at most $O(k^2)$

PC-2: Example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Example (Enforcing Path Consistency)

- Variables: x_1, x_2, x_3, x_4 Domains: $D = \{1, 2\}$
- Constraints $x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_4, x_4 \neq x_1$

Path consistency: alternative definition

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

Path consistency

- R_{x_i,x_j} is path consistent relative to a path of length m if we can find a sequence of other m-2 values such that all constraints along the path $i, i_1, \dots, i_{m-1}, j$ are satisied.
- if we consider complete graphs the two definitions are the same

ション ふゆ アメリア メリア しょうくの

if we consider only real path definitions are different

Inconsistency

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i- consistency

Inconsistencies when forcing consistency

- When forcing arc or path consistency we can make a domain or a constraint empty, then the problem is inconsistent.
- The opposite is not always true... but it is true in some cases
- For this class of problems arc/path consistency ensures consistency of the problem: tractable cases

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Tractable because they are polynomial

Not tractable problem: example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

arc/path consistent problem that is inconsistent

- Variables: x_1, x_2, x_3, x_4 Domain: $D = \{0, 1, 2\}$
- Constraints

 $x_1 \neq x_2, x_1 \neq x_3, x_1 \neq x_4, x_2 \neq x_3, x_2 \neq x_4, x_3 \neq x_4$

- For every value of every variable (e.g., 0) there is always a different value for another variable (e.g., 2) (arc consistent)
- For every couple of values of two variables (e.g., 0,1) there is always another value of another variable (e.g., 2)

ション ふゆ アメリア メリア しょうくの

But we can not find 4 values that are all different in the domain {0, 1, 2}

Arc Consistency and Consistency

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i- consistency

Why we have local consistency but global inconsistency

- Consider a tree.
- If each node is arc consistent with its children then the problem is arc consistent
- The problem is also globally consistent
- This is because siblings will never introduce inconsistency

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Cycles are the problem

Complete case for Arc Consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i- consistency

completeness for arc consistency

An arc (and node) consistent problem is globally consistent iff

- no empty domain
- only binary constraints
- primal graph contains no cycle

Solution algorithm for this type of problems

- Enforce arc consistency
- Recall: no constraint addition \rightarrow still acyclic
- If no domain is empty
 - Choose a node
 - Choose a value for the node and extend it to all its children
 - Propagate the choise value propagation
- Otherwise the problem is inconsistent

Complete case for Path Consistency

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i- consistency

completeness for path consistency

 A path (and arc and node) consistent problem is consistent iff

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- no empty relation or empty domain
- only binary constraints
- only two values in the domain
- Even if primal graph has cycles

i-consistency: general concept

Path Consistency i-consistency

Basic ideas

- arc consistency consider sub-network of size 2
- path consistency consider sub-network of size 3
- i-consistency generalisation of this concept for sub-network of size *i* − 1

i-consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

i-consistency

Given relation R_S and a variable y

$$S \subseteq X, |S| = i - 1, y \notin S$$

- R_S is *i*-consistent relative to y iff
 - for every tuple $t \in R_S$ there is a value $a_y \in D_y$ such that

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

■ (*t*, *a*) is consistent

i-consistency for network

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

i-consistent ${\cal R}$

- *R* is i-consistent iff:
- for any consistent instantiation of i-1 distinct variables
- there is a value of the ith values
 - such that the i values satisfy all constraints among them

i-consistency example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

Example

4-Queens problem

- The 4-Queen problem is 2-consistent
- The 4-Queen problem is not 3-consistent
- The 4-Queen problem is not 4-consistent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

strong i-consistency for network

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i-consistency

strong i-consistent ${\cal R}$

- *R* is strong i-consistent iff:
- \mathcal{R} is j-consistent for any $j \leq i$
- \blacksquare If $\mathcal R$ is strongly n-consistent then it is globally consistent
- For a globally consistent network we can extend any consistent partial instantiation to a complete instantiation without dead end

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

strong i-consistency example

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency i-consistency

Example

all 5 equals

- Variables X con $|X| \ge 5$; Domain: $D = \{0, 1\}$
- Constraints: allEquals on all subset of exactly 5 variables

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

This problem is 6-consistent but not 5-consistent

global consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

strong i-consistent ${\cal R}$

- *R* is strong i-consistent iff:
- \mathcal{R} is j-consistent for any $j \leq i$
- If \mathcal{R} is strongly n-consistent then it is globally consistent

enforcing i-consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

adding constraints to enforce i-consistency

■ To enforce i-consistency we might need to add constraints of *i* − 1 variables

- These constraints record forbidden combinations or no-good
- Therefore binary network might become non-binary
- Example: 4-Queens

Enforcing i-consistency: Revise-i

Revise-i proc.

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

Algorithm 2 Revise-i $((x_1, x_2, \cdots, x_{i-1}), x_i)$ **Require:** A network \mathcal{R}_{1} , a constraint R_{5} , which might be universal **Ensure:** A constraint $R_S(S = x_1, x_2, \dots, x_{i-1})$ which is iconsistent relative to x_i for all instantiations $\bar{a}_{i-1} \in R_S$ do if $\neg \exists a_i \in D_i | (\bar{a}_{i-1}, a_i)$ is consistent then delete \bar{a}_{i-1} from R_s end if end for

ション ふゆ アメリア メリア しょうくの

Complexity of Revise-i

Consistency Enforcing and Constraint Propagation Path consistency and i-consistency

Path Consistency i-consistency

Revise-i complexity

Complexity of Revise-i for only binary constraints is O(kⁱ)

- With general constraint we have $O(2k^i)$
- We might need to check 2ⁱ constraints
- If e bounds the constraints then O(ekⁱ)

i-Consistency Algorithm

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

i-consistency for networks

Require: $\mathcal{R} = \langle X, D, C \rangle$ Ensure: An i-consistent network equivalent to \mathcal{R} repeat for all $S \subseteq X$ of size i - 1 do for all x_i do Revise-i($(S), x_i$); end for end for until no constraint is changed

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

3-Consistency and Path-Consistency

Consistency Enforcing and Constraint Propagation: Path consistency and i-consistency

Path Consistency

i- con sist en cy

3-Consistency vs. Path Consistency

- On a binary network 3-Consistency = Path-Consistency
- If we have ternary constraints then not the same
- Example:

•
$$x, y, z \ R_{x,y,z} = (0, 0, 0)$$

Path consistency will do nothing: no binary constraint

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

3-Consistency: at least add the constraint

$$R_{x,y} = \langle x, 0 \rangle \langle y, 0 \rangle$$