Search
Strategies:
Lookback

Search Strategies: Lookback

Summary

Search
Strategies:
Lookback

Lookback schemes

Gaschnig’s Backjumping
Graph Based Backjumping

No-Good Recording

Lookback

Search
Strategies:
Lookback

Lookback Basic Ideas
schemes
m lookahead schemes

m foresee and avoid dead-ends in the future
m operates during the forward phase

m lookback schemes: avoid repeating the same error in the
search
m avoid repeating same errors when a dea-dend is found
m operates during the backward search

Lookback Schemes

Search
Strategies:
Lookback

Lookback Maln Approaches

schemes . .
m Backjumping

m improves on backtracking one step backwards

m analysing the reason for the dea-dend we can avoid
irrelevant backtrack points

m jump to the source of failure (culprit)

m Constraint Recording (no-good learning)

m record the reason for dead-end as a new constraint
m avoid finding the same inconsistencies again

Example

Search
Strategies:
Lookback

Example (Graph Coloring)

Lookback
schemes

m Variables: x1, x2, x3, x4, X5, X5, X7,

m Domains: Dy, = {B,R,G},Dx, = Dy, = {B, G}, Dy, =
Dx, = Dy, = {R. B}, Dy = {R,G,Y}

m Constraints: x1! = xo, x1! = x3, x1! = x4, x1! = x7, %! =
X5,X3! = X7,X4! = X5,X4! = X7,X5l = X5,X5! = X7

m Backtracking with d = {x1, x2, x3, xa, X5, X6, X7 }

m Consider assignment {R, B, B, B, G, R}

m Dead-end at x7 does not depend on xg

Example

Search
Strategies:
Lookback

Lookback

schemes

Example (Graph Coloring)

m (R,B,B,B,G,R) a conflict set for x

m (R,—, B, B, G,—) another conflict set for x;
m (R,—,B,—,—,—) minimal conflict set for x7
m (R,B,B,B, G,R) leaf dead end

m every conflict set is a no-good

Dead end

Search
Strategies:

Lookback Definition (Dead End State at Level /)

Lookback 1 3. — .. .
Lookbac m assignment 3; = {ay, ,ai}

[| Va,-+1 € DX,.+1
m {a;, -+ ,aj,a;+1} is inconsistent

m x;j;1 dead end variable

Solving Dead Ends

m there might be sub-tuples of 3; that conflict with x;

m therefore backtracking to x; might be useless

m we should jump to x, such that 3,_; contains no conflict
sets for x;1

Conflict Set

Sooely Definition (Conflict Set)

Strategies:
Lookback

m 3= {a, - ,a; } consistent instantiation of arbitrary
R et

® x not instantiated variable

m if Ab € Dy| < 3,x = b > is consistent

m 3 is a conflict set for x
]

if 32 does not contain a subtuple that conflicts with x, 3 is
a minimal conflict set of x

Definition (Leaf Dead-End)

m partial solution 3; that conflicts with x;.1

m x; 1 is the leaf dead-end variable

No-Good

Search
Strategies:
Lookback

Definition (No good)

Lookback

schemes m Given a network R = {X,D, C}

m any partial instantiation 3 that does not appear in any
solution of R is a no-good

m any conflict set for any variable is a no-good

m there are no-good that are not conflict sets for any single
variable

m For previous GC example x3 = R, x = G is a no-good but
is not a conflict set for any variable

Jumping back

Search
Strategies:
Lookback

Lookback
schemes

Main idea of backjumping

m When dead-end, jump back as far as possible

m without loosing possible solutions
m maximal jump: jump as back as possible

m safe jump: do not skip any solutions

Safe Jump

Search
Strategies:
Lookback

Definition (Safe Jump)

Lookback
schemes

m 3; ={a1, - ,a;} leaf dead end state
m x; j < i is safe (relative to 3;) if

m 3; is a no-good

m safety of jump is algorithm independent

m maximality is algorithm dependent

BackJumping Styles

Search
Strategies:
Lookback

Styles
Gaschnig's

Eoesms Backtracking that backs up several layers when a not extensible
assignment is found

m Gaschnig's
m Graph based

m Conflicts-directed

Gaschnig's Backjumping

Search
Strategies:
Lookback

Gaschnig's
Backjumping

When and where to jump

m When: Backtrack when leaf dead ends are found

m Where: Backtrack to the culprit variable

Culprit Variable

Search
Strategies:
Lookback

Gaschnig's Definition (culprit variable)

Backjumping
W3 =ap, - ,a; leaf dead end

m culprit index — culp(a) = mim<j<i{a1,--- ,aj} conflicts
with xj11

Gaschnig's Backjumping: Example

Search
Strategies:
Lookback

Example (GC Example)

Gaschnig's
Backjumping m Consider previous GC example with same order

m Consider the following trace for backtrack: R, B,B,B, G, R

m This is a leaf dead end and Gaschnig Backjump will
backtrack to x3

m It saves searching the branch where x5 = Y

Gaschnig's Backjumping: Properties

Search
Strategies:
Lookback

Saschmig’s m Historically first back jump algorithm
m Performs only safe jump
m It performs maximal jumps
m jumping further back we could loose solutions
m Can be implemented efficiently

m Culprit variables could be marked in the forward phase

Gaschnig's Backjumping: Limitations

Search
Strategies:
Lookback

Gaschnig's m Not very powerful
Backjumping

m Do not cut significant parts of the search space
m Expands strictly more space than forward checking

m It backtrack only at leaf dead ends
m too late, most of the work already done.

m Graph-Based Backjumping improves on this

Graph-Based Backjumping

Search
Strategies:
Lookback

m jumps back at leaf dead ends and at internal dead ends

m uses only information derived from the graph structure to
jum

Graph Based J p i i i , i

Backjumping m do not use information on variables’ domain or on nature

of constraints

Definition (internal dead ends)

A no-good that is defined on the first i variables and is not a
leaf dead end.

Jumps and internal dead ends

Search
Strategies:
Lookback

Example (Internal dead ends)

m Consider the GC example

il Bt m x3 is an internal dead ends

Backjumping
internal dead ends

In general, x; is an internal dead end if a backjumping algorithm
jumps there from a leaf dead end, and there are no more candi-
date values to instantiate.

Graph-Based Backjumping: Where to Jump

Search
Strategies:
Lookback

Using Graph-based info

m use preceding adjacent variables as an approximation of a
minimal conflict set

Graph Based
Backjumping m adjacent: connected on the primal graph

m assume all possible conflicts do appear
m this really depends on the particular assignment

m Latest preceding adjacent variable is the culprit variable

Useful definitions

Search
Strategies:
Lookback

Definition (Ancestor, parent)

m Given constraint graph, node ordering and a variable x
Graph Based i
Backjumping m The ancestor set of x anc(x) set of variable that precede

and are connected to x

m The parent of x p(x) is the maximal (or latest) variable in
anc(x)

Safe Jump for GB-Backjumping

Search

Strategies: Theorem (safe jump)
Lookback

m Given 3; leaf dead end and x;y1 the leaf dead end variable

m Then p(xjt1) is a safe jump

J

Graph Based PrOO'F

Backjumping
3; consistent but any extension to xj;1 inconsistent
then 3; is a conflict set for x4 1

then also 3,(,,,,) is a conflict set for x; 1

because there are no variables x; with p(xj11) <j <i+1
that are adjacent to xji;

m since any conflict set is a no-good then the jump is safe

Ol

Comparing to Gaschnig

Search
Strategies:
Lookback

comparison

m Jumping back to the parent can not be better than
jumping back to culprit variable, in general it can be worse

Graph Based

Backjumping m But we can jump from internal leaf dead end as well
m simple idea: jump back to the parent of the internal dead
end variable

m this is wrong: we could loose solutions

Unsafe Jumps

Search
Strategies:
Lookback

Example (Unsafe Jump)

m Consider the GC example

[m Suppose xs is leaf dead end, if x4 = p(x3) is an internal

Graph Based dead end it is safe to jump back to x; = p(xs)
ST m Suppose x; is leaf dead end, we jump to x5 = p(x7), if x5

is an internal dead end it is safe to jump to xa = p(xs),
however it is not safe to jump to x; = p(xa)
® x; < x3 and x3 € anc(x7)

m Lesson: to decide where to jump from an internal dead-end
it does matter which variables initiated the backtrack

The concept of session

Search
Strategies:
Lookback

Definition (Invisit)

The backtrack algorithm invisits x; when it attempts to extend
the assignment 3;_1 to x;

Graph Based
Backjumping

Definition (Session)

A session for x; starts when x; is invisited by the backtrack
algorithm and ends when the algorithm backtracks from x; (i.e.
all possible values of x; have been tried). It contains x; and all
the later variables visited during the session.

Relevant dead ends

Search
Strategies:
Lookback

Definition (Relevant dead ends)

o m r(x;) = {xi} when x; is invisited
m r(x;) = r(x;) U r(x;) with j > i when the algorithm

backtrack to x; from x; (dead-end)

GB-Backjump Algorithm

Search
Strategies:
Lookback

Algorithm

m When at a (leaf or internal) dead end 3;

Graph Based m Jump back to the latest ancestor of any variable in r(x;)
Backjumping that is before x; (culprit for GB backjumping)

Theorem (soundness)

Graph based backjump only performs safe, maximal jumps

Conflict Directed Backjumping

Search
Strategies:
Lookback

Combining the approaches

m Gaschnig: exploits information about minimal prefix
conflicts to jump further from leaf dead ends

Graph Based . 5 o 5 o 0
Backjumping m Graph-Based: exploits connectivity information to jump

also at internal dead ends
m |deas can be combined: Conflict Directed Backjumping

m Better: avoids more state than either of the two previous
approaches

No-Good Learning

Search
Strategies:
Lookback

Avoiding thrashing

m Backjumping can avoid many irrelevant choices thus
reducing the search space

Moo m Thrashing can still happen: same no-good rediscovered

B over and over again

m No-good learning or constraint recording can avoid this

Adding No-Goods

Search
Strategies:
Lookback

m Very simple concept
m When backtrack (or jump back)

No-Good m Determine a conflict set

Learning

m Add a constraint to the network that avoids that conflict
set

Many possibilities

Search
Strategies:
Lookback

No-Good learning variations

m Shallow Learning: determine a no-good that is easy to
generate but not minimal

m Deep Learning: Determine a no-good which is minimal and

jumping even derive all minimal ones from this no-good
No-Good o o 0
Learning m Bounded Learning: Store only constraint with a bounded

arity (smaller than a predetermined parameter)

m Relevance bounded learning: do not record the no-good if
the current state differs from the no-good in more than ¢
variables

No-Good Learning: trade-offs

Search
Strategies:
Lookback

Finding a balance

m Pruning power: more no-good — less visited states

m Computation: more no-good — more effort in checking

consistency
No-Good . . .
Learning m Computation Overhead: processing no-goods to find

minimal conflicts sets has a cost

m Space Overhead: storing no-good

Graph based learning

Search
Strategies:
Lookback

GB Learning

m In some cases finding relevant no-good is easy

m When jumping back from a leaf dead end 3; with dead end
variable x;, Rel(x;) = anc(x;)

m When jumping back from an internal dead end x;, Rel(x;)
the set of ancestors of all variables in r(x;) that precede x;

m Add the no-good {< x,v > |x € Rel(x;) A v = 3;(x)}

No-Good
Learning

