
Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Search Strategies: Lookback



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Summary

Lookback schemes

Gaschnig's Backjumping

Graph Based Backjumping

No-Good Recording



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Lookback

Basic Ideas

lookahead schemes

foresee and avoid dead-ends in the future
operates during the forward phase

lookback schemes: avoid repeating the same error in the
search

avoid repeating same errors when a dea-dend is found
operates during the backward search



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Lookback Schemes

Main Approaches

Backjumping

improves on backtracking one step backwards
analysing the reason for the dea-dend we can avoid
irrelevant backtrack points
jump to the source of failure (culprit)

Constraint Recording (no-good learning)

record the reason for dead-end as a new constraint
avoid �nding the same inconsistencies again



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Example

Example (Graph Coloring)

Variables: x1, x2, x3, x4, x5, x6, x7,

Domains: Dx1 = {B,R,G},Dx2 = Dx5 = {B,G},Dx3 =
Dx4 = Dx7 = {R,B},Dx6 = {R,G ,Y }
Constraints: x1! = x2, x1! = x3, x1! = x4, x1! = x7, x2! =
x6, x3! = x7, x4! = x5, x4! = x7, x5! = x6, x5! = x7

Backtracking with d = {x1, x2, x3, x4, x5, x6, x7}
Consider assignment {R,B,B,B,G ,R}
Dead-end at x7 does not depend on x6



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Example

Example (Graph Coloring)

(R,B,B,B,G ,R) a con�ict set for x7

(R,−,B,B,G ,−) another con�ict set for x7

(R,−,B,−,−,−) minimal con�ict set for x7

(R,B,B,B,G ,R) leaf dead end

every con�ict set is a no-good



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Dead end

De�nition (Dead End State at Level i)

assignment āi = {a1, · · · , ai}
∀ai+1 ∈ Dxi+1

{a1, · · · , ai , ai+1} is inconsistent
xi+1 dead end variable

Solving Dead Ends

there might be sub-tuples of āi that con�ict with xi

therefore backtracking to xi might be useless

we should jump to xb such that āb−1 contains no con�ict

sets for xi+1



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Con�ict Set

De�nition (Con�ict Set)

ā = {ai1 , · · · , aik} consistent instantiation of arbitrary

subset

x not instantiated variable

if 6 ∃b ∈ Dx | < ā, x = b > is consistent

ā is a con�ict set for x

if ā does not contain a subtuple that con�icts with x , ā is

a minimal con�ict set of x

De�nition (Leaf Dead-End)

partial solution āi that con�icts with xi+1

xi+1 is the leaf dead-end variable



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

No-Good

De�nition (No good)

Given a network R = {X ,D,C}
any partial instantiation ā that does not appear in any

solution of R is a no-good

No good

any con�ict set for any variable is a no-good

there are no-good that are not con�ict sets for any single

variable

For previous GC example x1 = R, x2 = G is a no-good but

is not a con�ict set for any variable



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Jumping back

Main idea of backjumping

When dead-end, jump back as far as possible

without loosing possible solutions

maximal jump: jump as back as possible

safe jump: do not skip any solutions



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Safe Jump

De�nition (Safe Jump)

āi = {a1, · · · , ai} leaf dead end state

xj j ≤ i is safe (relative to āi ) if

āj is a no-good

Note

safety of jump is algorithm independent

maximality is algorithm dependent



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

BackJumping Styles

Styles

Backtracking that backs up several layers when a not extensible

assignment is found

Gaschnig's

Graph based

Con�icts-directed



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Gaschnig's Backjumping

When and where to jump

When: Backtrack when leaf dead ends are found

Where: Backtrack to the culprit variable



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Culprit Variable

De�nition (culprit variable)

āi = a1, · · · , ai leaf dead end

culprit index → culp(a) = min1≤j≤i{a1, · · · , aj} con�icts
with xi+1



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Gaschnig's Backjumping: Example

Example (GC Example)

Consider previous GC example with same order

Consider the following trace for backtrack: R,B,B,B,G ,R

This is a leaf dead end and Gaschnig Backjump will

backtrack to x3

It saves searching the branch where x6 = Y



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Gaschnig's Backjumping: Properties

Properties

Historically �rst back jump algorithm

Performs only safe jump

It performs maximal jumps

jumping further back we could loose solutions

Can be implemented e�ciently

Culprit variables could be marked in the forward phase



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Gaschnig's Backjumping: Limitations

Limitations

Not very powerful

Do not cut signi�cant parts of the search space
Expands strictly more space than forward checking

It backtrack only at leaf dead ends

too late, most of the work already done.

Graph-Based Backjumping improves on this



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Graph-Based Backjumping

Main Ideas

jumps back at leaf dead ends and at internal dead ends

uses only information derived from the graph structure to
jump

do not use information on variables' domain or on nature
of constraints

De�nition (internal dead ends)

A no-good that is de�ned on the �rst i variables and is not a

leaf dead end.



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Jumps and internal dead ends

Example (Internal dead ends)

Consider the GC example

x3 is an internal dead ends

internal dead ends

In general, xi is an internal dead end if a backjumping algorithm

jumps there from a leaf dead end, and there are no more candi-

date values to instantiate.



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Graph-Based Backjumping: Where to Jump

Using Graph-based info

use preceding adjacent variables as an approximation of a
minimal con�ict set

adjacent: connected on the primal graph

assume all possible con�icts do appear

this really depends on the particular assignment

Latest preceding adjacent variable is the culprit variable



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Useful de�nitions

De�nition (Ancestor, parent)

Given constraint graph, node ordering and a variable x

The ancestor set of x anc(x) set of variable that precede

and are connected to x

The parent of x p(x) is the maximal (or latest) variable in

anc(x)



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Safe Jump for GB-Backjumping

Theorem (safe jump)

Given āi leaf dead end and xi+1 the leaf dead end variable

Then p(xi+1) is a safe jump

Proof.

āi consistent but any extension to xi+1 inconsistent

then āi is a con�ict set for xi+1

then also āp(xi+1) is a con�ict set for xi+1

because there are no variables xj with p(xi+1) < j < i + 1

that are adjacent to xi+1

since any con�ict set is a no-good then the jump is safe



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Comparing to Gaschnig

comparison

Jumping back to the parent can not be better than

jumping back to culprit variable, in general it can be worse

But we can jump from internal leaf dead end as well

simple idea: jump back to the parent of the internal dead

end variable

this is wrong: we could loose solutions



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Unsafe Jumps

Example (Unsafe Jump)

Consider the GC example

Suppose x5 is leaf dead end, if x4 = p(x5) is an internal

dead end it is safe to jump back to x1 = p(x4)

Suppose x7 is leaf dead end, we jump to x5 = p(x7), if x5
is an internal dead end it is safe to jump to x4 = p(x5),
however it is not safe to jump to x1 = p(x4)

x1 < x3 and x3 ∈ anc(x7)

Lesson: to decide where to jump from an internal dead-end

it does matter which variables initiated the backtrack



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

The concept of session

De�nition (Invisit)

The backtrack algorithm invisits xi when it attempts to extend

the assignment āi−1 to xi

De�nition (Session)

A session for xi starts when xi is invisited by the backtrack

algorithm and ends when the algorithm backtracks from xi (i.e.

all possible values of xi have been tried). It contains xi and all

the later variables visited during the session.



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Relevant dead ends

De�nition (Relevant dead ends)

r(xi ) = {xi} when xi is invisited

r(xi ) = r(xi ) ∪ r(xj) with j > i when the algorithm

backtrack to xi from xj (dead-end)



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

GB-Backjump Algorithm

Algorithm

When at a (leaf or internal) dead end āi

Jump back to the latest ancestor of any variable in r(xi )
that is before xi (culprit for GB backjumping)

Theorem (soundness)

Graph based backjump only performs safe, maximal jumps



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Con�ict Directed Backjumping

Combining the approaches

Gaschnig: exploits information about minimal pre�x

con�icts to jump further from leaf dead ends

Graph-Based: exploits connectivity information to jump

also at internal dead ends

Ideas can be combined: Con�ict Directed Backjumping

Better: avoids more state than either of the two previous

approaches



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

No-Good Learning

Avoiding thrashing

Backjumping can avoid many irrelevant choices thus

reducing the search space

Thrashing can still happen: same no-good rediscovered

over and over again

No-good learning or constraint recording can avoid this



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Adding No-Goods

Basic Idea

Very simple concept

When backtrack (or jump back)

Determine a con�ict set

Add a constraint to the network that avoids that con�ict

set



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Many possibilities

No-Good learning variations

Shallow Learning: determine a no-good that is easy to

generate but not minimal

Deep Learning: Determine a no-good which is minimal and

even derive all minimal ones from this no-good

Bounded Learning: Store only constraint with a bounded

arity (smaller than a predetermined parameter)

Relevance bounded learning: do not record the no-good if

the current state di�ers from the no-good in more than c

variables



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

No-Good Learning: trade-o�s

Finding a balance

Pruning power: more no-good → less visited states

Computation: more no-good → more e�ort in checking

consistency

Computation Overhead: processing no-goods to �nd

minimal con�icts sets has a cost

Space Overhead: storing no-good



Search
Strategies:
Lookback

Lookback
schemes

Gaschnig's
Backjumping

Graph Based
Backjumping

No-Good
Learning

Graph based learning

GB Learning

In some cases �nding relevant no-good is easy

When jumping back from a leaf dead end āi with dead end
variable xi , Rel(xi ) = anc(xi )
When jumping back from an internal dead end xi , Rel(xi )
the set of ancestors of all variables in r(xi ) that precede xi

Add the no-good {< x , v > |x ∈ Rel(xi ) ∧ v = āi (x)}


