
Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking Search Strategies: Lookahead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Summary

Introduction and Consistency Levels

Backtracking

Look-Ahead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Approximate Inference and Search

Need to take chances

Complete inference (e.g., strong n-consistency) ensures no

dead-end in extending partial solutions to complete

solutions

However, strong i-consistency is exponential (in the

numnber of variables) → not practical

Approximate Inference is polynomial but we still need to

search for a solution

search: proceed by trial and errors



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Search

Search for CP

State: partial variable assignment

Goal State: consistent complete allocation

Move: assign one (or more) variable(s)

Good Moves: assignments that go closer to the Goal



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Backtracking Search

Backtrack

Decide whether a state is closer to the goal is very hard

Try promising moves

Dead ends: backtrack changing previous assignments

Halt: when a solution is found or all possible solution

where searched

Worst case: exponential in the number of variables



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Improving Backtrack

Improvements

Reducing size of explored search space

before the search, preprocess the problem

variable orderings
forcing consistency (e.g., arc or path consistency)

during the search, search strategies

look-ahead, which is the best next move
look-back, where to backtrack



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

State Space

Basic Concept

A set S of states

consistent partial variable instantiations

A set O of operators, O : S → S

extension of partial instantiation to another variable

An initial state s0
the empty assignment

A set of goal states Sg ⊆ S

a complete consistent assignment

A terminal state is a state from which we can not reach
any other state

any complete assignment



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

State Space and Orderings: Example

Example (Dividing Integer Example)

Consider the following network R
Variables: x , y , l , z ,

Domains:

Dx = Dy = {2, 3, 4},Dl = {2, 5, 6},Dz = {2, 3, 5}
Constraints: z divides evenly x , y , l

Compute search space for assigning variable with di�erent

orderings:

d1 = {z , x , y , l}
d2 = {x , y , l , z}



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Variable Ordering and Search Space

E�ect on Search Space Size

d1 → 20 legal states

d2 → 48 legal states

Search space includes all solutions

The less dead end the better



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

State Space and Consistency: Example

Example (Dividing Integer Example)

Force arc consistency

Draw search space for d1

Force path consistency

Draw search space for d2



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Consistency Level and Search Space

Good e�ects on Search Space Size

Tighter constraints → smaller search space

Given two equivalent network R and R′

if R′ ⊆ R then any solution path appearing in the search

space of R′ also appears in the search space of R, for any
ordering d .

Higher level of consistency reduce the search space



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Consistency Level and Search process

Negative e�ects on Searching

Adding constraints requires more computation

Each time a new variable is assigned need to check many

more constraints

If only binary constraints we never have more than O(n)
checks

If r -ary constraints then we could have O(nr−1) checks



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Backtrack Free Search

Backtrack Free Network

A network R is backtrack free if every leaf is a goal state

A DFS on a backtrack free network ensure a complete

consistent assignment

E.g. R + arc consistency + d1 → backtrack free network



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Backtracking

Basic Ideas

Traverses the search space with a DFS

Two phases:

Forward phase: extend partial solutions by assigning a
consistent value if one exists
Backward phase: if no further extension is possible return
to the previous variable assigned



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Backtracking Example

Example (Graph colouring)

Variables: x1, x2, x3

Domains: D1 = D2 = {R,B} D3 = {R,B,Y }
Fixed Ordering: {x3, x1, x2}
Find one solution

Find all solutions



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Backtracking Procedure

Algorithm

Algorithm 1 Backtracking
Require: A constraint network R
Ensure: A solution or noti�cation that the network is inconsistent

i ← 1
D′
i
← Di

while 1 ≤ i ≤ n do
xi ← SelectValue

if xi is null then
i ← i − 1

else
i ← i + 1
D′
i
← Di

end if
end while
if i is 0 then

return inconsistent
else

return instantiated valuse for {x1, · · · , xn}

end if



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Select Values Procedure

Select Value Algorithm

Algorithm 2 SelectValue

Require: A partial assignment āi−1
Ensure: A value in D ′

i
consistent with āi−1 or null

while D ′
i
6= { } do

v a value in D ′
i

D ′
i
← D ′

i
\ v

if < āi−1, xi = v > is consistent then
return v

end if

end while

return null



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Complexity of Backtracking

Complexity

Complexity of extending a partial solution:

Complexity of consistent O(elogt)
Complexity of SelectValue O(eklogt)

t bounds tuple, e constraints, k values



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Improvements for Backtracking

Improving Backtracking

Before Search

Forcing Consistency
Fixing variable ordering

During Search
Look Ahead (Forward phase)

Value Ordering

Variable Ordering

Look Back (Backward phase)

Backjumping

Constraint Recording



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Look-Ahead

Look-Ahead Schemes

Given approximate inference (arc consistency,

path-consistency)

Foresee impact of next move (which variable, which value)

Impact: how next move restricts future assignment

Which Variable:

if order not pre-de�ned
instantiate variable that constraint the most the search
space
e.g., most constrained variable with least possible
assignments

Which Value

value that maximises possible future assignments



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Look-Ahead Strategies

Strategies

Forward Checking

check unassigned variables separately

Maintaining arc consistency

propagate arc consistency

Full look ahead

one pass of arc consistency



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Look-ahead: Discussion

Discussion

Incur extra cost for assigning values

need to propagate constraints

Can resctrict search space signi�cantly

e.g., discover that a value makes a sub-problem
inconsistent
remove values from future variables' domains

Usually no changes on worst case performance: trade-o�

between cost and bene�t



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Generalised Look-ahead

Algorithm

Algorithm 3 Generalised Look-ahead
Require: A constraint network R
Ensure: A solution or noti�cation that the network is inconsistent

i ← 1
D′
i
← Di

while 1 ≤ i ≤ n do
xi ← SelectValueX

if xi is null then
i ← i − 1
Reset D′

k
for each k > i to its value before i was last instantiated

else
i ← i + 1

end if
end while
if i is 0 then

return inconsistent
else

return instantiated valuse for {x1, · · · , xn}

end if



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Forward Checking

Forward Checking

most limited form of constraint propagation

propagates the e�ect of a selected value to future variables

separately

if domains of one of future variables becomes empty, try

next value for current variable.



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Select Value Forward Checking

Algorithm

Algorithm 4 SelectValueForwardChecking
a← D′

i
select an arbitrary value

while D′
i
6= { } do

for all k, i < k ≤ n do
for all b, b ∈ D′

k
do

if < āi−1, xi = a, x
k

= b > is not consistent then

D′
k
← D′

k
\ {b}

end if
end for
if D′

k
= { } then

emptyDomain ← true

end if
end for
if emptyDomain then

reset each D′
k
to its value before assigning a

else
return a

end if
end while

return null



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Forward Checking: Example

Example (Graph Colouring Example)

Variables: x1, x2, x3, x4, x5, x6, x7,

Domains: Dx1 = {R,B,G},Dx2 = Dx5 = {B,G},Dx3 =
Dx4 = Dx7 = {R,B},Dx6 = {R,G ,Y }
Constraints: x1! = x2, x1! = x3, x1! = x4, x1! = x7, x2! =
x6, x3! = x7, x4! = x5, x4! = x7, x5! = x6, x5! = x7

x1 = red reduces domains of x3, x4, x7

x2 = blue no e�ects

x3 = blue (only available) makes x7 empty → x3 dead-end



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Complexity of Forward Checking

Complexity of Forward Checking

O(ek2) for each node

eu consistency check for each value of each future variable

xu

k value for each future variables O(euk)∑
u eu = e then O(ek)

k value for the current variable



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Arc Consistency Look-Ahead

Arc Consistency Look ahead

force full arc consistency on all remaining variales

select a value for current variable xi = a

apply AC − 1 on all variable k > i with xi = a

If a variable domain becomes empty reject current

assignment

can use AC − 3 or AC − 4 instead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Arc Consistency Look-Ahead Complexity

Arc Consistency Look Ahead

Best algorithm for AC is AC − 4 complexity O(ek2)

worst case for Select Arc Consistency look-ahead is O(eK 3)



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Mantaining Arc Consistency

MAC - variant of Arc Consistency Look-Ahead

Apply Full Arc Consistency each time a value is rejected

if empty domain → no solutions

otherwise continue with backtracking

Example

Given a network R
Consider variable x1 with D1 = 1, 2, 3, 4

Apply Backtracking with AC look ahead

Suppose value 1 is rejected: apply full AC with D1 = 2, 3, 4



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Full Look Ahead

Approximation of Arc Consistency Look Ahead

Same as Arc Consistency Look ahead

Perform only one pass of AC (no repeat untill)

More work than forward checking less than Arc

Consistency Look-ahead



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Exploiting problem structure in Look ahead

De�nition (Cycle Cutset)

Given an undirected graph, a subset of nodes in the graph is a

cycle cutset i� its removal result in an acyclic graph

Exploiting problem structure

Once a variable is assigned it can be removed from the

graph

If we remove a cycle-cutset the rest of the problem is a tree

Can use arc consistency to solve that sub-problem

We need to check all possible assignment of cycle-cutset

variables and do arc propagation

Complexity is still exponential but in the size of the

cycle-cutset!



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Look Ahead for SAT

DPLL

Backtracking can be applied to SAT for CNF

DPLL is a speci�c backtracking algorithm for SAT

Uses a CNF-speci�c look-ahead method: unit propagation

Plus heuristics to choose next variable to expand



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Boolean Constraint Propagation: Example

Example (Boolean constraint propagation)

φ = A ∨ ¬B,B , Rφ nework representing φ

force arc consistency to Rφ
ψ = A ∨ ¬B,B ∨ C , Rψ nework representing ψ

force path consistency to Rψ



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Boolean Constraint Propagation

Constraint Propagation for CNF

Domain restiction = unit clause

Arc-consistency = to unit resolution

Path consistency = to resolution between clauses of length

2



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Unit Propagation

Algorithm

Algorithm 5 UnitPropagate(φ)
Require: A CNF formula φ
Ensure: An equivalent formula with unit clause removed

Q ← all unit clauses in φ
while Q 6= { } do

T ← one unit clause in Q

for all clause β in φ containing T or ¬T do
if T ∈ β then

delete β
else

γ ← Resolve(β, γ)
if γ is the empty clause then

return theory unsatis�able
else

add γ to φ and delete β
if γ is a unit clause then

add γ to Q

end if
end if

end if
end for

end while



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Unit Propagation: discussion

Characteristics

force arc consistency

arc consistency for general constraints (not-only binary)

perform arc consistency in linear time:

each step we either eliminate a clause or eliminate a literal
number of unit resolution is at most the length of the CNF
formula



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

DPLL as backtracking for CNF

DPLL algorithm

Algorithm 6 DPLL(φ)

Require: A CNF formula φ
Ensure: A decision on whether φ is satis�able

UnitPropagate(φ)
if empty clause is generated then

return false
else

if All variables are assigned then

return true
else

Q ← one unassigned variable
return (DPLL(φ ∧ Q) ∨ DPLL(φ ∧ ¬Q))

end if

end if



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

DPLL: discussion

DPLL as backtrack for DCSP

backtracking with arc consistency

unit propagation forces arc consistency at each node

we can force higher level of consistency

path consistency by applying resolution to clauses of lenght
two

heuristics to choose next variables

choose the one that causes the most unit clauses to appear
approximated by the number of 2-literals clauses in which
the variable appears



Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtracking

Example: DPLL

Example (CNF with DPLL)

Consider the formula

φ = {(¬A ∨ B), (¬C ∨ A), (A ∨ B ∨ D), (C )}


	Search for Constraint Propagation
	Backtracking

