Search
Strategies:
Lookahead

Search Strategies: Lookahead

Summary

Search
Strategies:
Lookahead

m Introduction and Consistency Levels
m Backtracking
m Look-Ahead

Approximate Inference and Search

Search
Strategies:
Lookahead

Need to take chances

Constraint m Complete inference (e.g., strong n-consistency) ensures no

Search for

Propagation

dead-end in extending partial solutions to complete
solutions

m However, strong i-consistency is exponential (in the
numnber of variables) — not practical

m Approximate Inference is polynomial but we still need to
search for a solution

m search: proceed by trial and errors

Search

Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Search for CP

m State: partial variable assignment

m Goal State: consistent complete allocation
m Move: assign one (or more) variable(s)
| |

Good Moves: assignments that go closer to the Goal

Backtracking Search

Search
Strategies:
Lookahead

Search for Backtrack
Constraint

SREes m Decide whether a state is closer to the goal is very hard

m Try promising moves
m Dead ends: backtrack changing previous assignments

m Halt: when a solution is found or all possible solution
where searched

m Worst case: exponential in the number of variables

Improving Backtrack

Search
Strategies:
Lookahead

Search for ImprovementS
Constraint

Ricracaticn m Reducing size of explored search space

m before the search, preprocess the problem

m variable orderings

m forcing consistency (e.g., arc or path consistency)
m during the search, search strategies

m look-ahead, which is the best next move
m look-back, where to backtrack

State Space

Search
Strategies:

Lookahead Basic Concept

et o m A set S of states
g?:::r;i:izn m consistent partial variable instantiations
m A set O of operators, 0 : S — S
m extension of partial instantiation to another variable

m An initial state sg
m the empty assignment
m A set of goal states S, C S
m a complete consistent assignment

m A terminal state is a state from which we can not reach
any other state

m any complete assignment

State Space and Orderings: Example

Search
Strategies:
Lookahead

Example (Dividing Integer Example)

Search for

o m Consider the following network R
Fropgstion m Variables: x,y,/, z,
m Domains:
D, =D, ={2,3,4},D;={2,5,6},D, = {2,3,5}
m Constraints: z divides evenly x, y,/
Compute search space for assigning variable with different
orderings:

| dl = {vaayvl}
mdr={x,y,1,z}

Variable Ordering and Search Space

Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Effect on Search Space Size

m d; — 20 legal states

m d» — 48 legal states
m Search space includes all solutions
m The less dead end the better

State Space and Consistency: Example

Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Example (Dividing Integer Example)

Force arc consistency

[
m Draw search space for d;
m Force path consistency

[

Draw search space for d>

Consistency Level and Search Space

Search
Strategies:
Lookahead

qoarch for Good effects on Search Space Size
onstraint

P ti . .
opegsHen m Tighter constraints — smaller search space

m Given two equivalent network R and R’

m if R’ C R then any solution path appearing in the search
space of R’ also appears in the search space of R, for any
ordering d.

m Higher level of consistency reduce the search space

Consistency Level and Search process

Search
Strategies:
Lookahead

Search for f H
e tor Negative effects on Searching

P ti
ropagation m Adding constraints requires more computation

m Each time a new variable is assigned need to check many
more constraints

m If only binary constraints we never have more than O(n)
checks

m If r-ary constraints then we could have O(n"~1) checks

Backtrack Free Search

Search
Strategies:
Lookahead

Search for
Constraint
Propagation

Backtrack Free Network

m A network R is backtrack free if every leaf is a goal state

m A DFS on a backtrack free network ensure a complete
consistent assignment

m E.g. R + arc consistency + d; — backtrack free network

Backtracking

Search
Strategies:
Lookahead

Basic Ideas

m Traverses the search space with a DFS

Backtracking
m Two phases:
m Forward phase: extend partial solutions by assigning a
consistent value if one exists
m Backward phase: if no further extension is possible return

to the previous variable assigned

Backtracking Example

Search
Strategies:
Lookahead

Example (Graph colouring)

Bl Variables: xi, xo, x3

(]
m Domains: D; =D, ={R,B} D3 ={R,B, Y}
m Fixed Ordering: {x3,x1,x2}

m Find one solution

]

Find all solutions

Backtracking Procedure

Search
Strategies:

Lookahead A|g0rlthm

Algorithm 1 Backtracking

g Require: A constraint network R
. Ensure: A solution or notification that the network is inconsistent
Backtracking i1
D; « D;
while 1 < i < n do
x; < SelectValue
if x; is null then
i+—i—1
else
i<—i+1
D} « D;
end if
end while
if i is O then
return inconsistent

else
return instantiated valuse for {x1,--- ,Xxn}

end if

Select Values Procedure

Search
Strategies:
Lookahead

Select Value Algorithm

Algorithm 2 SelectValue
Require: A partial assignment 3;_;
Ensure: A value in D! consistent with 3;_; or null
while D/ # {} do
v a value in D!
D! < D\ v
if <3;,_1,x; = v > is consistent then
return v
end if
end while

Backtracking

return null

Complexity of Backtracking

Search
Strategies:
Lookahead

Complexity

m Complexity of extending a partial solution:

Backtracking

m Complexity of consistent O(elogt)
m Complexity of SelectValue O(eklogt)

m t bounds tuple, e constraints, k values

Improvements for Backtracking

Search
Strategies:
Lookahead

Improving Backtracking

m Before Search

m Forcing Consistency

S m Fixing variable ordering

m During Search
m Look Ahead (Forward phase)

m Value Ordering
m Variable Ordering
m Look Back (Backward phase)
m Backjumping
m Constraint Recording

Look-Ahead

Search

Strategies:

Lookahead LOOk—Ahead SChemes

m Given approximate inference (arc consistency,
path-consistency)

m Foresee impact of next move (which variable, which value)
Backtracking

m Impact: how next move restricts future assignment
m Which Variable:

m if order not pre-defined

m instantiate variable that constraint the most the search
space

m e.g., most constrained variable with least possible
assignments

m Which Value

m value that maximises possible future assignments

Look-Ahead Strategies

Search
Strategies:
Lookahead

Strategies

m Forward Checking
m check unassigned variables separately

Backtracking

m Maintaining arc consistency

B propagate arc consistency
m Full look ahead

m one pass of arc consistency

Look-ahead: Discussion

Search
Strategies:
Lookahead

Discussion

. m Incur extra cost for assigning values
Backtracking m need to propagate constraints

m Can resctrict search space significantly
m e.g., discover that a value makes a sub-problem
inconsistent
m remove values from future variables’ domains
m Usually no changes on worst case performance: trade-off
between cost and benefit

Generalised Look-ahead

Search
Strategies:

Lookahead A|g0rlthm

Algorithm 3 Generalised Look-ahead

g Require: A constraint network R
Ensure: A solution or notification that the network is inconsistent
Backtracking i1
D; « D;
while 1 < i < n do
x; < SelectValueX
if x; is null then
i+—i—1
Reset D‘/(for each k > i to its value before i was last instantiated
else
i<—i+1
end if
end while
if i is O then
return inconsistent
else
return instantiated valuse for {xg,--- ,Xxn}

end if

Forward Checking

Search
Strategies:
Lookahead

Forward Checking

Backtracking m most limited form of constraint propagation

m propagates the effect of a selected value to future variables
separately

m if domains of one of future variables becomes empty, try
next value for current variable.

Select Value Forward Checking

Search)
Strategies: A|g0rlthm
Lookahead

Algorithm 4 SelectValueForwardChecking

a <+ D'f select an arbitrary value
while D] # { } do
Backtracking forall k, i < k < ndo
for all b, b € D; do
if <3 4, =a, X = b > is not consistent then
D; < D; \ {b}
end if
end for
if D"(= {} then
emptyDomain < true
end if
end for
if emptyDomain then
reset each D,/(to its value before assigning a
else
return a
end if
end while

return null

Search
Strategies:
Lookahead

Backtracking

Forward Checking: Example

Example (Graph Colouring Example)

m Variables: x1, x2, x3, x4, X5, X6, X7,

m Domains: Dy, = {R,B,G},Dx, = Dy, ={B, G}, Dy, =
Dy, =Dy, ={R,B},Dy, ={R,G, Y}

m Constraints: x1! = xo, x1! = x3,x1! = x4, x1! = x7, %! =
X5,X3! = X7,X4! = X5,X4! = X7,X5l = X5,X5! = X7

m x; = red reduces domains of x3, xa, x7

B x> = blue no effects

m x3 = blue (only available) makes x; empty — x3 dead-end

Complexity of Forward Checking

Search
Strategies:
Lookahead

Complexity of Forward Checking

m O(ek?) for each node
m ¢, consistency check for each value of each future variable

Backtracking

Xu
m k value for each future variables O(e, k)
m >, e, = e then O(ek)

m k value for the current variable

Arc Consistency Look-Ahead

Search
Strategies:
Lookahead

Arc Consistency Look ahead

force full arc consistency on all remaining variales

Backtracking .
select a value for current variable x; = a

]
m apply AC — 1 on all variable kK > / with x; = a
]

If a variable domain becomes empty reject current
assignment

can use AC — 3 or AC — 4 instead

Arc Consistency Look-Ahead Complexity

Search
Strategies:
Lookahead

Arc Consistency Look Ahead

m Best algorithm for AC is AC — 4 complexity O(ek?)

m worst case for Select Arc Consistency look-ahead is O(eK?)

Backtracking

Mantaining Arc Consistency

Search
Strategies:

Loclelrr MAC - variant of Arc Consistency Look-Ahead

m Apply Full Arc Consistency each time a value is rejected

m if empty domain — no solutions

Backtracking m otherwise continue with backtracking

m Given a network R

m Consider variable x; with D; = 1,234

m Apply Backtracking with AC look ahead

m Suppose value 1 is rejected: apply full AC with D; = 2,3,4

Full Look Ahead

Search
Strategies:
Lookahead

Approximation of Arc Consistency Look Ahead

m Same as Arc Consistency Look ahead

Backtracking

m Perform only one pass of AC (no repeat untill)

m More work than forward checking less than Arc
Consistency Look-ahead

Exploiting problem structure in Look ahead

Search
Strategies:

Lookahead Deﬁnltlon (CyC|e Cutset)

Given an undirected graph, a subset of nodes in the graph is a
cycle cutset iff its removal result in an acyclic graph

Exploiting problem structure

m Once a variable is assigned it can be removed from the
graph
m If we remove a cycle-cutset the rest of the problem is a tree

Backtracking

m Can use arc consistency to solve that sub-problem

m We need to check all possible assignment of cycle-cutset
variables and do arc propagation

m Complexity is still exponential but in the size of the
cycle-cutset!

Look Ahead for SAT

Search
Strategies:
Lookahead

DPLL

Backtracking can be applied to SAT for CNF
DPLL is a specific backtracking algorithm for SAT
Uses a CNF-specific look-ahead method: unit propagation

Backtracking u
|
|
|

Plus heuristics to choose next variable to expand

Boolean Constraint Propagation: Example

Search
Strategies:
Lookahead

Example (Boolean constraint propagation)

Backtracking

m ¢=AV-B,B, Ry nework representing ¢
m force arc consistency to R
mY=AV-B,BVC, Ry nework representing 9

m force path consistency to R

Boolean Constraint Propagation

Search
Strategies:
Lookahead

Constraint Propagation for CNF

m Domain restiction = unit clause

Backtracking

m Arc-consistency = to unit resolution

m Path consistency = to resolution between clauses of length
2

Unit Propagation

Search o
Strategies: Algorlthm

Lookahead

Algorithm 5 UnitPropagate(¢)

Require: A CNF formula ¢
Ensure: An equivalent formula with unit clause removed
Q < all unit clauses in ¢
Backtracking while Q # { } do
T < one unit clause in Q@
for all clause 3 in ¢ containing T or =T do
if T € 3 then
delete 3

else
7 < Resolve(3,)
if v is the empty clause then
return theory unsatisfiable
else
add v to ¢ and delete 3
if v is a unit clause then
add v to Q
end if
end if
end if
end for

end while

Unit Propagation: discussion

Search
Strategies:
Lookahead

Characteristics

m force arc consistency

Backtracking
m arc consistency for general constraints (not-only binary)
m perform arc consistency in linear time:

m each step we either eliminate a clause or eliminate a literal
m number of unit resolution is at most the length of the CNF
formula

DPLL as backtracking for CNF

Seareh DPLL algorithm

Strategies:
Lookahead

Algorithm 6 DPLL(¢)

Require: A CNF formula ¢
Ensure: A decision on whether ¢ is satisfiable
UnitPropagate(¢)
if empty clause is generated then
return false
else
if All variables are assigned then
return true
else
Q@ < one unassigned variable
return (DPLL(¢ A Q) V DPLL(¢ A =Q))
end if
end if

Backtracking

DPLL: discussion

Search
Strategies:
Lookahead

DPLL as backtrack for DCSP

m backtracking with arc consistency

Pttt ® unit propagation forces arc consistency at each node

m we can force higher level of consistency
m path consistency by applying resolution to clauses of lenght
two
m heuristics to choose next variables

m choose the one that causes the most unit clauses to appear
m approximated by the number of 2-literals clauses in which
the variable appears

Example: DPLL

Search
Strategies:
Lookahead

Backtracking

Example (CNF with DPLL)

Consider the formula
¢={(-AVB),(-CVA),(AvBVD),(C)}

	Search for Constraint Propagation
	Backtracking

