Local	Search
Stra	tegies

Greedy Loca Search

Local Search Strategies

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Su	mmary
Local Search Strategies	
	 Greedy Local Search Random Walk Strategies Local Search on cycle cutset

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

Greedy Local Search... in short

Local Search Strategies

Greedy Local Search

G.B. Shaw

A life spent doing mistakes is not only more honorable, but more useful than a life spent doing nothing

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Solution Techniques Up to Now Local Search Strategies Greedy Local Search Solution Techniques Backtracking Start from empty assignment Build local consistent solutions Inference force local consistency make constraints explicit

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Local Search

Local Search Strategies

Greedy Local Search

Basic Ideas

- start from a complete (inconsistent) assignment to all variables
- assignment can satify some constraints and violate others
- modify the value on a subset of variables (most cases one) such that number of violated constrained is reduced

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

until all constraints are satisfied or we tried long enough

	Example
Local Search Strategies	
Greedy Local Search	Example (Local Search)
	• Variables: x_1, x_2, x_3, x_4 Domains: $D_i = \{0, 1, 2, 3\}$
	• Constraints: $x_1 < x_3, x_2 < x_3, x_3 < x_4$
	■ First assignment {1, 1, 0, 2}
	• change $x_3: 0 \rightarrow 2$
	• change $x_4: 2 \rightarrow 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Why Study Local Search Methods then?

Local Search Strategies

Greedy Local Search

Features of Local Search

- In general can not guarantee completeness
- But are much better on average
- Extremely efficient in terms of memory and computation time
- Augmented with randomisation and heuristics for escaping local minima are also extremely effective

Local Search vs. Backtrack

	n-Queens	k-SAT
Backtrack based	600	few hundreds
Local Search	millions	many thousands

Local Search for TSP

Local Search Strategies

Greedy Local Search

TSP and local search

TSP Optimisation problem: try to find a tour through a set of cities that minimise travel cost visiting each city once.

- Start with a random sequence of cities
- Swap two cities in the sequence to improve solution quality
- Until no improvement possible
- Save the current solution and restart from a new random assignment
- Repeat this process for a given amount of time storing the best solution found

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Stochastic Local Search

Local Search Strategies

Greedy Local Search

Procedure

Algorithm 1 SLS

```
Require: A constraint network \mathcal{R}, number of MAXTRIES, cost function

Ensure: A solution or notification that the algorithm could not find one

for all i = 1 to MAXTRIES do

Initialisation: \bar{a} = \{a_1, \dots, a_n\}

repeat

if \bar{a} is consistent then

return \bar{a}

else

Y = \{ < x_i, a'_i > \} set of assignment that maximally improve current solution

choose one pair < x_i, a'_i >

\bar{a} \leftarrow \{a_1, \dots, a'_i, \dots, a_n\}

end if

until current assignment can not be improved

end for

return false
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

SLS for SAT Local Search Strategies Greedy Local Search GSAT SLS algorithm for SAT Cost of assignment is number of unsatisfied clauses

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Very popular algorithm for SAT

Example

Local Search Strategies

Greedy Local Search

Example (GSAT)

• $\phi = \{ (\neg C) (\neg A \lor \neg B \lor C) (\neg A \lor D \lor E) (\neg B \lor \neg C) \}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (1,1,1,1,1) Initial assignment \rightarrow cost = 2
- $Y = \{ < C, 0 > < B, 0 > \}$ both new cost 1
- choose < C, 0 >

$$\blacksquare (1,1,0,1,1) \rightarrow \mathsf{cost} = 1$$

- $Y = \{ < B, 0 > < A, 0 > \}$ new cost 0
- $(1,0,0,1,1) \rightarrow \text{cost} = 0 \rightarrow \text{solution}$

	Improvements to SLS
Local Search Strategies	
Greedy Local Search	
	Improving SLS
	Trying to avoid local minima
	Plateau Search
	Constraint Weighting
	Tabu Search

Plateau Search

Local Search Strategies

Greedy Local Search

Going Sideways

- Plateau: set of solutions that have same cost
- Local minima can be due to a plateau: SLS stops as soon as a plateau is found

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Keep on changing as long as solution is no worse than current one
- We can still have local minima

Example

Local Search Strategies

Greedy Local Search

Example (Plateau Search)

- Variables: x, y, z, k, s, r Domains: $D_i = \{0, 1, 2, 3\}$
- Constraints: x < z, y < z, z < k, k < r, k < s
- Initial Assignment (0, 0, 1, 1, 2, 2) \rightarrow cost = 1 z < k</pre>
- No single variable change improves the cost but a solution exists (0, 0, 1, 2, 3, 3)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Changing to a same cost assignment we can find the solution

Example: Cycles in Plateau Search

Local Search Strategies

Greedy Local Search

Example (Plateau Search and Cycles)

- Variables: x, y, z, k, m, r, s Domains: $D_i = \{0, 1, 2, 3\}$
- Constraints:
 - x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = s
- Initial Assignment $(0, 0, 0, 1, 1, 1, 1) \rightarrow \text{cost} = 1 \ k < m$
- Modifying any variable in {x, y, z, m, r, s} results in at least two violated constraints
- Setting k = 0 cost is constant but now z < k is violated
- The only modification with constant cost is $k=1
 ightarrow {
 m cycle}$

Constraint Weighting

Local Search Strategies

Greedy Local Search

Breakout Method

- Cost function: $F(\bar{a}) = \sum_{i} w_i C_i(\bar{a})$
- w_i current cost weight, $C_i(\bar{a}) = 1$ iff \bar{a} violates constraint C_i
- Find local modification that maximise the decrement of F
- When local minima adjust weights increasing by one violated constraints
- Current assignment is no longer a local minima and we can progress towards a solution
- In general is not complete but extremely good empirical results [Morris 93]
- If no solution exists we can still cycle through inconsistent solutions

Example: Constraint Weighting Local Search Strategies Greedy Local Example (Constraint Weighting) Search • Variables: x, y, z, k, m, r, s Domains: $D_i = \{0, 1, 2, 3\}$ Constraints: x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = sInitial Assignment $(0, 0, 0, 1, 1, 1, 1) \rightarrow \text{cost} = 1 \ k < m$ Increasing constraints by 1 each time a local minima is reached we can find a solution

ション ふゆ アメリア メリア しょうめん

Example: Inconsistent Problem

Local Search Strategies

Greedy Local Search

Example (Constraint Weighting and Inconsistency)

- Variables: x, y, z Domains: $D_i = \{R, B\}$
- Constraints: x! = y, x! = z, y! = z
- Initial Assignment $(R, B, R) \rightarrow \text{cost} = 1$
- Lifting weights results in cycling over inconsistent states

ション ふゆ アメリア メリア しょうめん

Tabu Search

Local Search Strategies

Greedy Local Search

Tabu Search

- Preventing backward moves
- Build a queue of last n assignments <variable,value>
- Assignments in the list are forbidden
- Forget the *oldest* assignment when the queue is full

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: Tabu search

Example (Tabu Search)

Local Search Strategies

Greedy Local Search

- Variables: x, y, z, k, m, r, s Domains: D_i = {0, 1, 2, 3}
 Constraints:
 - x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = s
- Initial Assignment $(0, 0, 0, 1, 1, 1, 1) \rightarrow \text{cost} = 1 \ k < m$
- Fix *n* = 4, first three moves *k* = 0, *k* = 1, *k* = 2 with constant cost
- Then *k* can not be changed anymore and we can get out of the cycle e.g. *m* = 2
- We could make a wrong choice z = 1
- If list is long enough at some point we will change m
- If list is too long we can make good paths longer

Random Walk Strategies

Local Search Strategies

Greedy Local Search

Random Walk for CP

- Include random moves in the search process
- Instead of making always greedy steps sometimes move at random
- Increase probability of escaping local minima
- Difference with greedy: sometimes modifying an unsatisfied assignment might cause more harm than doing nothing, greedy would not do such moves

Example (Pure Random Walk for SAT)

- Start from random assignment of all literals
- Randomly select an unsatisfied clause (constraint)
- Flip (e.g., T → F or F → T) the assignment of one random literal (variable) in the constraint [This might be harmful]

WalkSAT

Local Search Strategies

Greedy Local Search

WalkSAT

- Random walk variant for SAT, can be extended for generic problems, extremely succesful in practice
- Select a constraint violated by current assignment
- Make a random choice between:
 - change the value in one of the variables in the violated constraint
 - 2 greedily minimise the total number of constraints when value of the variable is changed (break value)
- Value p give probability of taking choice 1 (1 p is probability of choice 2)
- In general, step 2 should consider also the selected constraint when minimising number of violated constraints
- For SAT, changing the value of a variable that appears in an unsatisfied clause will automatically satisfy the clause

WalkSAT Procedure

Local Search Strategies

Greedy Local Search

Algorithm

Algorithm 2 WalkSAT

```
Require: A constraint network \mathcal{R} number of MAXTRIES MAXFLIPS probability p
Ensure: A solution or notification that the algorithm could not find one and the best assignment
    found
    Initialisation: \bar{b} = \{a_1, \cdots, a_n\} random assignment
    for all i = 1 to MAXTRIES do
         Initialisation: \bar{a} = \{a_1, \cdots, a_n\} random assignment
         for all i = 1 to MAXELIPS do
              if a is consistent then
                   return true and ā
              else
                   selecte a violated constraint C
                   if random Number < p then
                         select an arbitrary assignment x \leftarrow a'
                   else
                         select an assignment x \leftarrow a' that minimises the number of new violated
                         constraints (considering also C)
                   end if
                   \bar{a} \leftarrow \bar{a} with x \leftarrow a'
              end if
         end for
         \bar{b} \leftarrow \text{best} assignment between \bar{a} and \bar{b}
    end for
    return false and b
```

Simulated Annealing

Local Search Strategies

Greedy Local Search

Main ideas

- Inspired by statistical mechanics
- Main idea: probability of making a random move is a function of the execution time steps
- Allow more random moves at the beginning
 - we can reach zones with better solutions
- Diminish probability of having a random move towards the end

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

refine search to find a complete solution

Simulated Annealing

Local Search Strategies

Greedy Local Search

More Details

- At each step select a variable x = a and a new value a' and compute δ
- $\delta = F(x = a') F(x = a)$ where F is the cost function
- If $\delta \leq 0$ change the value of x to a' (we are minimising)
- Otherwise change the value only with probability $e^{-\delta/T}$
- T is a parameter (called temperature) that is decreased with time (cooled)
- For given cooling schedules (i.e. if T is decreased gradually enough) the algorithm is guaranteed to converge to the exact solution

Properties of random walk for SAT

Local Search Strategies

Greedy Local Search

Properties for 2-SAT

- For 2-SAT Random Walk is guaranteed to converge on formulas with *n* literals, with probability 1 after *O*(*n*²) steps
- A random assignment is on average n/2 flips away from a satisfying assignment
- There is 1/2 prob. that a flip on a 2-Clause will reduce the distance by 1
- On average a random walk will reach a satisfying assignment in $O(n^2)$ steps
- This is not true for 3-SAT
 - probability of reaching a satisfying assignment will reach one after an exponential number of steps
 - other methods might never reach the assignment e.g. GSAT
- Empirical evaluations show very good performance when compared with complete algorithm

SLS with cycle cutset decomposition

Local Search Strategies

Greedy Local Search

Hybrid approach

- 1 Find a cycle cutset
- 2 Fix an assignment for the cutset variables (this leaves a forest of unassigned subproblems)
- **3** Force arc consistency on each tree and propagate constraints. If solution found stop.
- **4** Otherwise stochastic local search on cutset variables only.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- **5** If improvement go to step 3
- 6 Otherwise stop

Tree Decomposition based on cycle cutset

Local Search Strategies

Greedy Local Search

Decomposing the problem

Idea: given an assignment for cutset cycle variables find an assignment of other variables that minimises number of violated constraints

- Partition X in $\{Z, Y\}$
- Y cutset variables, $Z = X \setminus Y$ tree variables
- ā_y current assignment of cycle cutset variables
- Divide the problem in rooted sub-trees
- Duplicate cutset variables for each neighbour and assign current value (ā_y[y_i])

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Tree Inference based on cycle cutset

Local Search Strategies

Greedy Local Search

Propagating constraints

- C_{zi}(a_i, ā_y) number of violated conflicts in the tree rooted at the tree variable z_i
- C(ā_z, ā_y) number of violated constraint for overall problem with assignments z̄ and ȳ

• Want to compute $C_{min} = \min_{Y=y} \min_{Z=z} C(z, y)$

- General Idea
 - compute number of violated constraint from leaves to root

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- choose assignment at root
- propagate assignment from root to leaves

Tree Algorithm

Local Search Strategies

Greedy Local Search

Tree Algorithm

Algorithm 3 Tree

Require: An arc consistent network \mathcal{R} , a partition of $X = \{Z, Y\}$, an assignment for cutset variables \overline{a}_v

Ensure: An assignment \bar{a}_z such that $C(\bar{a}_z, \bar{a}_y) = C_{min}^T(\bar{a}_y)$ Initialisation: $C_{y_i}(\bar{a}_y[y_i], \bar{a}_y) = 0$ for all $y_i \in Y$ going from leaves to root on the tree compute:

for all variable z_i and every value $a_i \in D_{z_i}$ do

compute $C_{z_i}(a_i, \bar{a}_y)$

end for

going from root to leaves on the tree compute:

for all every tree variable $z_i \in Z$ let D_{z_i} its consistent values with its parent's value v_{p_i} do

compute best a_i^*

end for

return $\{ < z_1, a_1 >, \cdots, < z_k, a_k > \}$

Main Computation for Tree Algorithm Local Search Strategies Greedy Local Main Computation Search Computations performed in the algorithm • $C_{z_i}(a_i, \bar{a}_v) =$ $\sum_{z_i|z_i \text{ child of } z_i} \min_{a_j \in D_{z_i}} (C_{z_j}(a_j, \bar{a}_y) + R_{z_i, z_j}(a_i, a_j))$ • $R_{z_i,z_i}(a_i,a_j) = 0$ if $\langle a_i,a_j \rangle \in R_{z_i,z_i}$; 1 Otherwise • $a_i^* = \arg \min_{a_i \in D_{z_i}} C_{z_i}(a_i, \overline{a}_y) + R_{z_i, p_i}(a_i, v_{p_i})$ p_i parent of z_i

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SLS with cycle cutset

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

SLS with cycle cutset: performance

Local Search Strategies

Greedy Local Search

Behaviour of SLS and CC

- Empirical result on randomly generated instances: SLS + CC Not always better than SLS
- Empirical evidence show that behavior depends on ratio of CC variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Crossing point around 36%
- Not completely clear how general these results are

Properties of stochastic Local Search

Local Search Strategies

Greedy Local Search

General Features

- Anytime: the longer they run the better the solution
- Local Minima: guaranteed to terminate at local minima

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Not complete: can not be used to prove inconsistency