
Local Search
Strategies

Greedy Local
Search

Local Search Strategies



Local Search
Strategies

Greedy Local
Search

Summary

Greedy Local Search

Random Walk Strategies

Local Search on cycle cutset



Local Search
Strategies

Greedy Local
Search

Greedy Local Search... in short

G.B. Shaw

A life spent doing mistakes is not only more honorable, but more

useful than a life spent doing nothing



Local Search
Strategies

Greedy Local
Search

Solution Techniques Up to Now

Solution Techniques

Backtracking

Start from empty assignment
Build local consistent solutions

Inference

force local consistency
make constraints explicit



Local Search
Strategies

Greedy Local
Search

Local Search

Basic Ideas

start from a complete (inconsistent) assignment to all
variables

assignment can satify some constraints and violate others

modify the value on a subset of variables (most cases one)
such that number of violated constrained is reduced

until all constraints are satis�ed or we tried long enough



Local Search
Strategies

Greedy Local
Search

Example

Example (Local Search)

Variables: x1, x2, x3, x4 Domains: Di = {0, 1, 2, 3}
Constraints: x1 < x3, x2 < x3, x3 < x4

First assignment {1, 1, 0, 2}
change x3 : 0→ 2

change x4 : 2→ 3



Local Search
Strategies

Greedy Local
Search

Example

Example (Local Search for 4-Queens)

(1, 2, 3, 4) Con�icts: 6

(1, 2, 4, 4) Con�icts: 4

(1, 2, 4, 1) Con�icts: 2

(3, 2, 4, 1) Con�icts: 1 Local Minima



Local Search
Strategies

Greedy Local
Search

Why Study Local Search Methods then?

Features of Local Search

In general can not guarantee completeness

But are much better on average

Extremely e�cient in terms of memory and computation
time

Augmented with randomisation and heuristics for escaping
local minima are also extremely e�ective

Local Search vs. Backtrack

n-Queens k-SAT

Backtrack based 600 few hundreds

Local Search millions many thousands



Local Search
Strategies

Greedy Local
Search

Local Search for TSP

TSP and local search

TSP Optimisation problem: try to �nd a tour through a set of
cities that minimise travel cost visiting each city once.

Start with a random sequence of cities

Swap two cities in the sequence to improve solution quality

Until no improvement possible

Save the current solution and restart from a new random
assignment

Repeat this process for a given amount of time storing the
best solution found



Local Search
Strategies

Greedy Local
Search

Stochastic Local Search

Procedure

Algorithm 1 SLS
Require: A constraint network R, number of MAXTRIES, cost function
Ensure: A solution or noti�cation that the algorithm could not �nd one

for all i = 1 to MAXTRIES do
Initialisation: ā = {a1, · · · , an}
repeat

if ā is consistent then
return ā

else
Y = {< xi , a

′
i >} set of assignment that maximally improve current solution

choose one pair < xi , a
′
i >

ā← {a1, · · · , a′i , · · · , an}
end if

until current assignment can not be improved
end for

return false



Local Search
Strategies

Greedy Local
Search

SLS for SAT

GSAT

SLS algorithm for SAT

Cost of assignment is number of unsatis�ed clauses

Very popular algorithm for SAT



Local Search
Strategies

Greedy Local
Search

Example

Example (GSAT)

φ = {(¬C )(¬A ∨ ¬B ∨ C )(¬A ∨ D ∨ E )(¬B ∨ ¬C )}
(1, 1, 1, 1, 1) Initial assignment → cost = 2

Y = {< C , 0 >< B, 0 >} both new cost 1

choose < C , 0 >

(1, 1, 0, 1, 1) → cost = 1

Y = {< B, 0 >< A, 0 >} new cost 0

(1, 0, 0, 1, 1) → cost = 0 → solution



Local Search
Strategies

Greedy Local
Search

Improvements to SLS

Improving SLS

Trying to avoid local minima

Plateau Search

Constraint Weighting

Tabu Search



Local Search
Strategies

Greedy Local
Search

Plateau Search

Going Sideways

Plateau: set of solutions that have same cost

Local minima can be due to a plateau: SLS stops as soon
as a plateau is found

Keep on changing as long as solution is no worse than
current one

We can still have local minima



Local Search
Strategies

Greedy Local
Search

Example

Example (Plateau Search)

Variables: x , y , z , k , s, r Domains: Di = {0, 1, 2, 3}
Constraints: x < z , y < z , z < k , k < r , k < s

Initial Assignment (0, 0, 1, 1, 2, 2) → cost = 1 z < k

No single variable change improves the cost but a solution
exists (0, 0, 1, 2, 3, 3)

Changing to a same cost assignment we can �nd the
solution



Local Search
Strategies

Greedy Local
Search

Example: Cycles in Plateau Search

Example (Plateau Search and Cycles)

Variables: x , y , z , k ,m, r , s Domains: Di = {0, 1, 2, 3}
Constraints:
x = z , x = y , y = z , z < k , k < m,m = r , r = s,m = s

Initial Assignment (0, 0, 0, 1, 1, 1, 1) → cost = 1 k < m

Modifying any variable in {x , y , z ,m, r , s} results in at
least two violated constraints

Setting k = 0 cost is constant but now z < k is violated

The only modi�cation with constant cost is k = 1 → cycle



Local Search
Strategies

Greedy Local
Search

Constraint Weighting

Breakout Method

Cost function: F (ā) =
∑

i wiCi (ā)

wi current cost weight, Ci (ā) = 1 i� ā violates constraint
Ci

Find local modi�cation that maximise the decrement of F

When local minima adjust weights increasing by one
violated constraints

Current assignment is no longer a local minima and we can
progress towards a solution

In general is not complete but extremely good empirical
results [Morris 93]

If no solution exists we can still cycle through inconsistent
solutions



Local Search
Strategies

Greedy Local
Search

Example: Constraint Weighting

Example (Constraint Weighting)

Variables: x , y , z , k ,m, r , s Domains: Di = {0, 1, 2, 3}
Constraints:
x = z , x = y , y = z , z < k , k < m,m = r , r = s,m = s

Initial Assignment (0, 0, 0, 1, 1, 1, 1) → cost = 1 k < m

Increasing constraints by 1 each time a local minima is
reached we can �nd a solution



Local Search
Strategies

Greedy Local
Search

Example: Inconsistent Problem

Example (Constraint Weighting and Inconsistency)

Variables: x , y , z Domains: Di = {R,B}
Constraints: x! = y , x! = z , y ! = z

Initial Assignment (R,B,R) → cost = 1

Lifting weights results in cycling over inconsistent states



Local Search
Strategies

Greedy Local
Search

Tabu Search

Tabu Search

Preventing backward moves

Build a queue of last n assignments <variable,value>

Assignments in the list are forbidden

Forget the oldest assignment when the queue is full



Local Search
Strategies

Greedy Local
Search

Example: Tabu search

Example (Tabu Search)

Variables: x , y , z , k ,m, r , s Domains: Di = {0, 1, 2, 3}
Constraints:
x = z , x = y , y = z , z < k , k < m,m = r , r = s,m = s

Initial Assignment (0, 0, 0, 1, 1, 1, 1) → cost = 1 k < m

Fix n = 4, �rst three moves k = 0, k = 1, k = 2 with
constant cost

Then k can not be changed anymore and we can get out
of the cycle e.g. m = 2

We could make a wrong choice z = 1

If list is long enough at some point we will change m

If list is too long we can make good paths longer



Local Search
Strategies

Greedy Local
Search

Random Walk Strategies

Random Walk for CP

Include random moves in the search process

Instead of making always greedy steps sometimes move at
random

Increase probability of escaping local minima

Di�erence with greedy: sometimes modifying an
unsatis�ed assignment might cause more harm than doing
nothing, greedy would not do such moves

Example (Pure Random Walk for SAT)

Start from random assignment of all literals
Randomly select an unsatis�ed clause (constraint)
Flip (e.g., T → F or F → T) the assignment of one random
literal (variable) in the constraint [This might be harmful]



Local Search
Strategies

Greedy Local
Search

WalkSAT

WalkSAT

Random walk variant for SAT, can be extended for generic
problems, extremely succesful in practice

Select a constraint violated by current assignment

Make a random choice between:

1 change the value in one of the variables in the violated
constraint

2 greedily minimise the total number of constraints when
value of the variable is changed (break value)

Value p give probability of taking choice 1 (1− p is
probability of choice 2)

In general, step 2 should consider also the selected
constraint when minimising number of violated constraints

For SAT, changing the value of a variable that appears in
an unsatis�ed clause will automatically satisfy the clause



Local Search
Strategies

Greedy Local
Search

WalkSAT Procedure

Algorithm

Algorithm 2 WalkSAT
Require: A constraint network R, number of MAXTRIES, MAXFLIPS, probability p

Ensure: A solution or noti�cation that the algorithm could not �nd one and the best assignment
found
Initialisation: b̄ = {a1, · · · , an} random assignment
for all i = 1 to MAXTRIES do

Initialisation: ā = {a1, · · · , an} random assignment
for all i = 1 to MAXFLIPS do

if ā is consistent then
return true and ā

else
selecte a violated constraint C
if randomNumber < p then

select an arbitrary assignment x ← a′

else
select an assignment x ← a′ that minimises the number of new violated
constraints (considering also C)

end if
ā← ā with x ← a′

end if
end for
b̄ ← best assignment between ā and b̄

end for

return false and b̄



Local Search
Strategies

Greedy Local
Search

Simulated Annealing

Main ideas

Inspired by statistical mechanics

Main idea: probability of making a random move is a
function of the execution time steps

Allow more random moves at the beginning

we can reach zones with better solutions

Diminish probability of having a random move towards the
end

re�ne search to �nd a complete solution



Local Search
Strategies

Greedy Local
Search

Simulated Annealing

More Details

At each step select a variable x = a and a new value a′ and
compute δ

δ = F (x = a′)− F (x = a) where F is the cost function

If δ ≤ 0 change the value of x to a′ (we are minimising)

Otherwise change the value only with probability e−δ/T

T is a parameter (called temperature) that is decreased
with time (cooled)

For given cooling schedules (i.e. if T is decreased
gradually enough) the algorithm is guaranteed to converge
to the exact solution



Local Search
Strategies

Greedy Local
Search

Properties of Local Search

Most important property of local search approaches

always teminate at a local minima

anytime: the longer they run the better solution they
provide

General property of random walk

consider a random walk on a line starting at the origin

take a left or right move with 0.5 chances

it can be shown that on average after L2 steps the walk
will reach a point distant L from origin.



Local Search
Strategies

Greedy Local
Search

Properties of random walk for SAT

Properties for 2-SAT

For 2-SAT Random Walk is guaranteed to converge on formulas
with n literals, with probability 1 after O(n2) steps

A random assignment is on average n/2 �ips away from a
satisfying assignment

There is 1/2 prob. that a �ip on a 2-Clause will reduce the
distance by 1

On average a random walk will reach a satisfying assignment in
O(n2) steps

This is not true for 3-SAT

probability of reaching a satisfying assignment will reach
one after an exponential number of steps
other methods might never reach the assignment e.g.
GSAT

Empirical evaluations show very good performance when

compared with complete algorithm



Local Search
Strategies

Greedy Local
Search

SLS with cycle cutset decomposition

Hybrid approach

1 Find a cycle cutset

2 Fix an assignment for the cutset variables (this leaves a
forest of unassigned subproblems)

3 Force arc consistency on each tree and propagate
constraints. If solution found stop.

4 Otherwise stochastic local search on cutset variables only.

5 If improvement go to step 3

6 Otherwise stop



Local Search
Strategies

Greedy Local
Search

Tree Decomposition based on cycle cutset

Decomposing the problem

Idea: given an assignment for cutset cycle variables �nd an as-
signment of other variables that minimises number of violated
constraints

Partition X in {Z ,Y }
Y cutset variables, Z = X \ Y tree variables

āy current assignment of cycle cutset variables

Divide the problem in rooted sub-trees

Duplicate cutset variables for each neighbour and assign
current value (āy [yi ])



Local Search
Strategies

Greedy Local
Search

Tree Inference based on cycle cutset

Propagating constraints

Czi (ai , āy ) number of violated con�icts in the tree rooted
at the tree variable zi

C (āz , āy ) number of violated constraint for overall problem
with assignments z̄ and ȳ

Want to compute Cmin = minY=y minZ=z C (z , y)

General Idea

compute number of violated constraint from leaves to root
choose assignment at root
propagate assignment from root to leaves



Local Search
Strategies

Greedy Local
Search

Tree Algorithm

Tree Algorithm

Algorithm 3 Tree

Require: An arc consistent network R, a partition of X = {Z ,Y }, an
assignment for cutset variables āy

Ensure: An assignment āz such that C (āz , āy ) = CT
min(āy )

Initialisation: Cyi (āy [yi ], āy ) = 0 for all yi ∈ Y
going from leaves to root on the tree compute:
for all variable zi and every value ai ∈ Dzi do

compute Czi (ai , āy )
end for

going from root to leaves on the tree compute:
for all every tree variable zi ∈ Z let Dzi its consistent values with
its parent's value vpj

do

compute best a∗i
end for

return {< z1, a1 >, · · · , < zk , ak >}



Local Search
Strategies

Greedy Local
Search

Main Computation for Tree Algorithm

Main Computation

Computations performed in the algorithm

Czi (ai , āy ) =∑
zj |zj child of zi

minaj∈Dzj
(Czj (aj , āy ) + Rzi ,zj (ai , aj))

Rzi ,zj (ai , aj) = 0 if < ai , aj >∈ Rzi ,zj ; 1 Otherwise

a∗i = argminai∈Dzi
Czi (ai , āy ) + Rzi ,pj (ai , vpj )

pj parent of zi



Local Search
Strategies

Greedy Local
Search

Example for Tree Algorithm

Example (Execution of Tree Algorithm)

Variables: x1, x2, x3, x4, x5 Domain: R,B,Y

Constraints: x1! = x2, x1! = x3, x1! = x4, x1! = x5, x2! =
x3, x3! = x5, x4! = x5

Cycle Cutset variables Y = {x3, x5}
Assignment for cycle cutset variables āy = x3 = R, x5 = B



Local Search
Strategies

Greedy Local
Search

SLS with cycle cutset

SLS + CC

Replace backtracking with local search

Start random initial assignment

Perform a given number of TRY

within each TRY alternate between SLS and TREE:

Fix one assignment for CC variables, perform TREE
Fix the given assignment for tree variables and perform
SLS on CC



Local Search
Strategies

Greedy Local
Search

SLS with cycle cutset: performance

Behaviour of SLS and CC

Empirical result on randomly generated instances: SLS +
CC Not always better than SLS

Empirical evidence show that behavior depends on ratio of
CC variables

Crossing point around 36%

Not completely clear how general these results are



Local Search
Strategies

Greedy Local
Search

Properties of stochastic Local Search

General Features

Anytime: the longer they run the better the solution

Local Minima: guaranteed to terminate at local minima

Not complete: can not be used to prove inconsistency


	Greedy Local Search

