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Summary

Herbrand's Theorem [Chang-Lee 4.5]

Implementation of the Herbrand Theorem [Chang-Lee Ch.
4.6]
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Herbrand's Theorem: Intro

Basic Concepts

Very important for symbolic logic

Foundation for many automatic proof procedures

Closely Related to H-Satis�ability:

A set S of clauses is unsatis�able i� S is false under all the

H-Interpretations
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H-Satis�ability: Main bene�t

Bene�t

To check whether S is inconsistent we do not need to
check all possible interpretations

We can focus on H-Interpretations

We need to consider only the Herbrand Universe (not all
possible domains)
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H-Satis�ability not good enough

Problem

To check whether S is inconsistent we do need to check all
H-Intepretations

H-Interpretations can be in�nitely many

We need a �nite procedure!

Semantic Tree can help to systematically organise all
possible H-Interpretations
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Herbrand's Theorem: Version I

Theorem (Herbrand's Theorem: Version I)

A set S of clauses is unsatis�able i� corresponding to every

complete semantic tree of S, there is a �nite closed semantic

tree.
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Example

Example (Closed semantic tree for unsatis�able clauses)

Consider the formula S = {¬P(x) ∨ Q(x),P(f (a)),¬Q(z)}
H = {a, f (a), f (f (a)), · · · } A = {P(a),Q(a),P(f (a)),Q(f (a)), · · · }

XX

X

X X

X

P(a) ¬P(a)

Q(a) ¬Q(a)

P(f (a)) ¬P(f (a))

Q(f (a)) ¬Q(f (a))

¬Q(a)
Q(a)

¬P(x = a) ∨ Q(x = a)

¬Q(z = a)

¬Q(z = f (a))

¬P(x = f (a)) ∨ Q(x = f (a))

P(f (a))

¬Q(z = a)

Figure: Closed Semantic tree
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Herbrand's Theorem: Version I, proof ⇒

Herbrand's Theorem: Version I, ⇒.

S unsat. ⇒ �nite closed semantic tree for every complete tree
Suppose: S is unsat., T complete semantic tree for S .

Consider each branch B of T : for each branch B there is a
complete interpretation IB .

S is unsatis�able: IB must falsify a ground instance C ′ of
some clause C of S .

Since C ′ is �nite, then there must be a failure node NB

which is a �nite number of links away from the root.

Since for every branch B we can �nd a failure node NB

there is a corresponding closed semantic tree T ′.

Since only a �nite number of links are connected to each
node then T ′ is �nite (using Konig's lemma).
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Herbrand's Theorem: Version I, proof ⇐

Herbrand's Theorem: Version I, ⇐.

Finite closed semantic tree for every complete tree ⇒ S unsat.
Suppose: T ′ �nite closed semantic tree corresponding to every
complete semantic tree T of S .

For every branch of T there must be an interpretation that
falsify S .

Every possible interpretation falsi�es S , thus S is
unsatis�able.
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Herbrand's Theorem: Version II

Theorem (Herbrand's Theorem: Version II)

A set S of clauses is unsatis�able i� there is a �nite

unsatis�able set S ′ of ground instances of clauses S
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Example: Building S'

Example (Building S')

Consider the formula S = {¬P(x) ∨ Q(x),P(f (a)),¬Q(z)}
S ′ =
{¬Q(f (a)),¬P(f (a))∨Q(f (a)),P(f (a)),¬Q(a),¬P(a)∨Q(a)}

XX

X

X X

X

P(a) ¬P(a)

Q(a) ¬Q(a)

P(f (a)) ¬P(f (a))

Q(f (a)) ¬Q(f (a))

¬Q(a)
Q(a)

¬P(x = a) ∨ Q(x = a)

¬Q(z = a)

¬Q(z = f (a))

¬P(x = f (a)) ∨ Q(x = f (a))

P(f (a))

¬Q(z = a)

Figure: Closed Semantic tree
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Herbrand's Theorem: Version II, proof ⇒

Herbrand's Theorem: Version II, ⇒.

S unsat. ⇒ �nite unsatis�able set S ′ of ground instances.
Suppose: S is unsat., T a complete semantic tree for S

Previous version of Herbrand's Theorem ⇒ there is a �nite
closed semantic tree T ′ corresponding to T .

Build S ′ as the set of all ground instances of clauses that
are falsi�ed at all the failure nodes of T ′

S ′ is �nite because there are a �nite number of failure
nodes in T ′

S ′ is unsatis�able because it is falsi�ed by every
interpretation of S .
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Herbrand's Theorem: Version II, proof ⇐

Herbrand's Theorem: Version II, ⇐.

Finite unsat. set S ′ of ground instances ⇒ S unsat.
Suppose: S ′ �nite unsatis�able set of ground instances of
clauses in S .

Every I interpretation for S must contain one I ′ for S ′.

If I ′ 6|= S ′ then I 6|= S ′

Since S ′ is unsatis�able then for every I ′ 6|= S ′

Then S ′ is falsi�ed by every interpretation I of S .

Therefore S is falsi�ed by every possible interpretation I ,
and thus S is unsatis�able.
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Example

Consider the formula S = {P(x),¬P(a)}
S is unsatis�able (We can check all H-Interpretations).

Then by Herbrand's theorem there is a �nite set S ′ of
ground instances of clauses in S , which are unsatis�able.

S ′ = {P(a),¬P(a)} is one of these sets.

Note

Given a set of clauses S , unsatis�able, the set S ′ of unsatis�-
able ground instances of clauses in S in general is not unique.
For example S ′ = {P(f (a),¬P(f (a)) ∨ Q(f (a)),¬Q(f (a))}
is a di�erent (smaller) set of unsatis�able ground clauses for
S = {P(f (a)),¬P(x) ∨ Q(x),¬Q(z)}
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Exercise: building S'

Exercise

1 Consider the unsatis�able formula
S = {P(x),Q(x , f (x)) ∨ ¬P(x),¬Q(g(y), z)} Find one of
the �nite unsatis�able set S ′. [Chang-Lee, Ex. 14 pag.69]

2 Consider the unsatis�able formula
S = {P(x , a, g(x , b)),¬P(f (y), z , g(f (a), b))} Find one of
the �nite unsatis�able set S ′. [Chang-Lee, Ex. 13 pag.69]
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Herbrand's Theorem and semi-decidability of FOL

Herbrand's theorem and semi-decidability of FOL

Herbrand's Theorem implies semi-decidability of FOL

Semi-decidable: if S is unsatis�able the decision procedure
will halt proving it, if not, decision procedure may loop
forever.
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Refutation procedure based on Herbrand's Theorem

Refutation based on ground clauses

Given Herbrand's results to develop a mechanical procedure for
testing unsatis�ability of S we need to:

successively generate sets S ′
0
, S ′

1
, S ′

2
, · · · , S ′

n, · · · of ground
instances of clauses in S

successively test S ′
i
for unsatis�ability

if S is unsatis�able this procedure will terminate after N
iteration �nding an unsatis�able S ′

N
with N �nite.
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Gilmore's method

Gilmore 1960

Gilmore built such a procedure:

S ′
i
is the set of ground clauses obtained by replacing the

variables in S with the constants in the ith level constant
set of the Herbrand Universe Hi .

Each S ′
i
is a set of ground clauses

We can use any method for propositional logic to prove
unsatis�ability

Gilmore used the Multiplication method.
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Example: Gilmore's Method

Example (Generating S ′
i
)

Consider the formula S = {P(x),¬P(a)}
H0 = {a}
S ′
0
= P(a) ∧ ¬P(a)
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Multiplication method

Multiplication Method

For each S ′
i

Reduce S ′
i
into a DNF

S ′
i
= D1 ∨ D2 ∨ · · · ∨ Dm where each

Di = L1 ∧ L2 ∧ · · · ∧ Lk .
it is possible to do this by using the distributive property of

∨ and ∧.
Any Di that contains a complementary pair is removed
from S ′

i

If S ′
i
is empty then it is unsatis�able and the proof is found.
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Example: Gilmore's Method

Example (Prooving unsatis�ability of S ′
i
)

Consider the formula S = {P(x),¬P(a)}
H0 = {a}
S ′
0
= P(a) ∧ ¬P(a)

S ′
0
contains a complementary pair

⇒ S ′
0
is unsatis�able.

⇒ S is unsatis�able.
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Example: Gilmore's Method

Example

Consider the formula S = {P(a),¬P(x) ∨ Q(f (x)),¬Q(f (a))}
H = {a, f (a), f (f (a)), · · · }

H0 = {a}
S ′
0
= P(a) ∧ (¬P(a) ∨ Q(f (a))) ∧ ¬Q(f (a))

DNF for S ′
0
:

((P(a) ∧ ¬P(a)) ∨ (P(a) ∧ Q(f (a)))) ∧ (¬Q(f (a)))
((P(a)∧¬P(a)∧¬Q(f (a)))∨ (P(a)∧Q(f (a))∧¬Q(f (a)))

⇒ S ′
0
is unsatis�able

⇒ S is unsatis�able.



Herbrand's

Theorem

Example: not termination

Example (Gilmore's might not terminate)

Consider the formula S = {P(x , f (x))}
H = {a, f (a), f (f (a)), · · · }

H0 = {a}
P(a, f (a)) not unsatis�able

H1 = {a, f (a)}
P(f (a), f (f (a))) not unsatis�able

H2 = {a, f (a), f (f (a))}
P(f (f (a)), f (f (f (a)))) not unsatis�able

· · ·
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Computational issues

Gilmore's method ine�ciency

multiplication method to test satis�ability is highly
ine�cient

Number of conjunctions explode (for ten two-literals
clauses we have 210 conjunctions)

Many formulas could not be proved unsatis�able in a
reasonable amount of time

Davis Putnam addressed this computational ine�ciency


