
Herbrand's

Theorem

Herbrand's Theorem

Herbrand's

Theorem

Summary

Herbrand's Theorem [Chang-Lee 4.5]

Implementation of the Herbrand Theorem [Chang-Lee Ch.
4.6]

Herbrand's

Theorem

Herbrand's Theorem: Intro

Basic Concepts

Very important for symbolic logic

Foundation for many automatic proof procedures

Closely Related to H-Satis�ability:

A set S of clauses is unsatis�able i� S is false under all the

H-Interpretations

Herbrand's

Theorem

H-Satis�ability: Main bene�t

Bene�t

To check whether S is inconsistent we do not need to
check all possible interpretations

We can focus on H-Interpretations

We need to consider only the Herbrand Universe (not all
possible domains)

Herbrand's

Theorem

H-Satis�ability not good enough

Problem

To check whether S is inconsistent we do need to check all
H-Intepretations

H-Interpretations can be in�nitely many

We need a �nite procedure!

Semantic Tree can help to systematically organise all
possible H-Interpretations

Herbrand's

Theorem

Herbrand's Theorem: Version I

Theorem (Herbrand's Theorem: Version I)

A set S of clauses is unsatis�able i� corresponding to every

complete semantic tree of S, there is a �nite closed semantic

tree.

Herbrand's

Theorem

Example

Example (Closed semantic tree for unsatis�able clauses)

Consider the formula S = {¬P(x) ∨ Q(x),P(f (a)),¬Q(z)}
H = {a, f (a), f (f (a)), · · · } A = {P(a),Q(a),P(f (a)),Q(f (a)), · · · }

XX

X

X X

X

P(a) ¬P(a)

Q(a) ¬Q(a)

P(f (a)) ¬P(f (a))

Q(f (a)) ¬Q(f (a))

¬Q(a)
Q(a)

¬P(x = a) ∨ Q(x = a)

¬Q(z = a)

¬Q(z = f (a))

¬P(x = f (a)) ∨ Q(x = f (a))

P(f (a))

¬Q(z = a)

Figure: Closed Semantic tree

Herbrand's

Theorem

Herbrand's Theorem: Version I, proof ⇒

Herbrand's Theorem: Version I, ⇒.

S unsat. ⇒ �nite closed semantic tree for every complete tree
Suppose: S is unsat., T complete semantic tree for S .

Consider each branch B of T : for each branch B there is a
complete interpretation IB .

S is unsatis�able: IB must falsify a ground instance C ′ of
some clause C of S .

Since C ′ is �nite, then there must be a failure node NB

which is a �nite number of links away from the root.

Since for every branch B we can �nd a failure node NB

there is a corresponding closed semantic tree T ′.

Since only a �nite number of links are connected to each
node then T ′ is �nite (using Konig's lemma).

Herbrand's

Theorem

Herbrand's Theorem: Version I, proof ⇐

Herbrand's Theorem: Version I, ⇐.

Finite closed semantic tree for every complete tree ⇒ S unsat.
Suppose: T ′ �nite closed semantic tree corresponding to every
complete semantic tree T of S .

For every branch of T there must be an interpretation that
falsify S .

Every possible interpretation falsi�es S , thus S is
unsatis�able.

Herbrand's

Theorem

Herbrand's Theorem: Version II

Theorem (Herbrand's Theorem: Version II)

A set S of clauses is unsatis�able i� there is a �nite

unsatis�able set S ′ of ground instances of clauses S

Herbrand's

Theorem

Example: Building S'

Example (Building S')

Consider the formula S = {¬P(x) ∨ Q(x),P(f (a)),¬Q(z)}
S ′ =
{¬Q(f (a)),¬P(f (a))∨Q(f (a)),P(f (a)),¬Q(a),¬P(a)∨Q(a)}

XX

X

X X

X

P(a) ¬P(a)

Q(a) ¬Q(a)

P(f (a)) ¬P(f (a))

Q(f (a)) ¬Q(f (a))

¬Q(a)
Q(a)

¬P(x = a) ∨ Q(x = a)

¬Q(z = a)

¬Q(z = f (a))

¬P(x = f (a)) ∨ Q(x = f (a))

P(f (a))

¬Q(z = a)

Figure: Closed Semantic tree

Herbrand's

Theorem

Herbrand's Theorem: Version II, proof ⇒

Herbrand's Theorem: Version II, ⇒.

S unsat. ⇒ �nite unsatis�able set S ′ of ground instances.
Suppose: S is unsat., T a complete semantic tree for S

Previous version of Herbrand's Theorem ⇒ there is a �nite
closed semantic tree T ′ corresponding to T .

Build S ′ as the set of all ground instances of clauses that
are falsi�ed at all the failure nodes of T ′

S ′ is �nite because there are a �nite number of failure
nodes in T ′

S ′ is unsatis�able because it is falsi�ed by every
interpretation of S .

Herbrand's

Theorem

Herbrand's Theorem: Version II, proof ⇐

Herbrand's Theorem: Version II, ⇐.

Finite unsat. set S ′ of ground instances ⇒ S unsat.
Suppose: S ′ �nite unsatis�able set of ground instances of
clauses in S .

Every I interpretation for S must contain one I ′ for S ′.

If I ′ 6|= S ′ then I 6|= S ′

Since S ′ is unsatis�able then for every I ′ 6|= S ′

Then S ′ is falsi�ed by every interpretation I of S .

Therefore S is falsi�ed by every possible interpretation I ,
and thus S is unsatis�able.

Herbrand's

Theorem

Example

Example

Consider the formula S = {P(x),¬P(a)}
S is unsatis�able (We can check all H-Interpretations).

Then by Herbrand's theorem there is a �nite set S ′ of
ground instances of clauses in S , which are unsatis�able.

S ′ = {P(a),¬P(a)} is one of these sets.

Note

Given a set of clauses S , unsatis�able, the set S ′ of unsatis�-
able ground instances of clauses in S in general is not unique.
For example S ′ = {P(f (a),¬P(f (a)) ∨ Q(f (a)),¬Q(f (a))}
is a di�erent (smaller) set of unsatis�able ground clauses for
S = {P(f (a)),¬P(x) ∨ Q(x),¬Q(z)}

Herbrand's

Theorem

Exercise: building S'

Exercise

1 Consider the unsatis�able formula
S = {P(x),Q(x , f (x)) ∨ ¬P(x),¬Q(g(y), z)} Find one of
the �nite unsatis�able set S ′. [Chang-Lee, Ex. 14 pag.69]

2 Consider the unsatis�able formula
S = {P(x , a, g(x , b)),¬P(f (y), z , g(f (a), b))} Find one of
the �nite unsatis�able set S ′. [Chang-Lee, Ex. 13 pag.69]

Herbrand's

Theorem

Herbrand's Theorem and semi-decidability of FOL

Herbrand's theorem and semi-decidability of FOL

Herbrand's Theorem implies semi-decidability of FOL

Semi-decidable: if S is unsatis�able the decision procedure
will halt proving it, if not, decision procedure may loop
forever.

Herbrand's

Theorem

Refutation procedure based on Herbrand's Theorem

Refutation based on ground clauses

Given Herbrand's results to develop a mechanical procedure for
testing unsatis�ability of S we need to:

successively generate sets S ′
0
, S ′

1
, S ′

2
, · · · , S ′

n, · · · of ground
instances of clauses in S

successively test S ′
i
for unsatis�ability

if S is unsatis�able this procedure will terminate after N
iteration �nding an unsatis�able S ′

N
with N �nite.

Herbrand's

Theorem

Gilmore's method

Gilmore 1960

Gilmore built such a procedure:

S ′
i
is the set of ground clauses obtained by replacing the

variables in S with the constants in the ith level constant
set of the Herbrand Universe Hi .

Each S ′
i
is a set of ground clauses

We can use any method for propositional logic to prove
unsatis�ability

Gilmore used the Multiplication method.

Herbrand's

Theorem

Example: Gilmore's Method

Example (Generating S ′
i
)

Consider the formula S = {P(x),¬P(a)}
H0 = {a}
S ′
0
= P(a) ∧ ¬P(a)

Herbrand's

Theorem

Multiplication method

Multiplication Method

For each S ′
i

Reduce S ′
i
into a DNF

S ′
i
= D1 ∨ D2 ∨ · · · ∨ Dm where each

Di = L1 ∧ L2 ∧ · · · ∧ Lk .
it is possible to do this by using the distributive property of

∨ and ∧.
Any Di that contains a complementary pair is removed
from S ′

i

If S ′
i
is empty then it is unsatis�able and the proof is found.

Herbrand's

Theorem

Example: Gilmore's Method

Example (Prooving unsatis�ability of S ′
i
)

Consider the formula S = {P(x),¬P(a)}
H0 = {a}
S ′
0
= P(a) ∧ ¬P(a)

S ′
0
contains a complementary pair

⇒ S ′
0
is unsatis�able.

⇒ S is unsatis�able.

Herbrand's

Theorem

Example: Gilmore's Method

Example

Consider the formula S = {P(a),¬P(x) ∨ Q(f (x)),¬Q(f (a))}
H = {a, f (a), f (f (a)), · · · }

H0 = {a}
S ′
0
= P(a) ∧ (¬P(a) ∨ Q(f (a))) ∧ ¬Q(f (a))

DNF for S ′
0
:

((P(a) ∧ ¬P(a)) ∨ (P(a) ∧ Q(f (a)))) ∧ (¬Q(f (a)))
((P(a)∧¬P(a)∧¬Q(f (a)))∨ (P(a)∧Q(f (a))∧¬Q(f (a)))

⇒ S ′
0
is unsatis�able

⇒ S is unsatis�able.

Herbrand's

Theorem

Example: not termination

Example (Gilmore's might not terminate)

Consider the formula S = {P(x , f (x))}
H = {a, f (a), f (f (a)), · · · }

H0 = {a}
P(a, f (a)) not unsatis�able

H1 = {a, f (a)}
P(f (a), f (f (a))) not unsatis�able

H2 = {a, f (a), f (f (a))}
P(f (f (a)), f (f (f (a)))) not unsatis�able

· · ·

Herbrand's

Theorem

Computational issues

Gilmore's method ine�ciency

multiplication method to test satis�ability is highly
ine�cient

Number of conjunctions explode (for ten two-literals
clauses we have 210 conjunctions)

Many formulas could not be proved unsatis�able in a
reasonable amount of time

Davis Putnam addressed this computational ine�ciency

