H-Interpretation and H-Satisfiability

Semantic Trees

H-Interpretation and H-Satisfiability

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

H-Interpretation and H-Satisfiability

Semantic Trees

H-Interpretation and H-Satisfiability [Chang-Lee Ch. 4.3]
Semantic Trees [Chang-Lee Ch. 4.4]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Interpretations over the Herbrand Universe

H-Interpretation and H-Satisfiability

Semantic Trees

Interpretations and the Herbrand Universe

Let us consider Interpretations over the Herbrand universe. Given a set of clauses S an interpretation must provide:

- assignment for costants to element of the domain
- an assignment for function symbols to element of the domain

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 \blacksquare an assignment for predicate symbols to \top, \bot

Where the domain is the Herbrand Universe for S

H Interpretations

H-Interpretation and H-Satisfiability

Semantic Trees

Definition (H Interpretation)

Let S be a set of clauses, H the Herbrand Universe of S and $I = \langle D, A \rangle$ an Interpretation of S. I is an H-Interpretation of S if the following holds:

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

In more detail

• Let c be a costant symbol $c^A = c$.

• Let
$$f$$
 be a n -ary function symbol f^A maps $(h_1, \cdots, h_n) \in H^n$ to $f(h_1, \cdots, h_n) \in H$

H Interpretations: Predicate symbols

H-Interpretation and H-Satisfiability

Semantic Trees

H-Interpretations: Predicate

No restrictions for predicate symbols Given S, let $A = \{A_1, \dots, A_n, \dots\}$ be the Herbrand base (or atom set) of S, an H-Interpretation can be represented as:

$$I = \{m_1, \cdots, m_n, \cdots\}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

where $m_j = A_j$ or $m_j = \neg A_j$ for $j = 1, \cdots, n, \cdots$

Example of H-Interpretation

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Consider the set $S = \{P(x) \lor Q(x), R(f(y))\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example of H-Interpretation

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Consider the set $S = \{P(x) \lor Q(x), R(f(y))\}$

H-Interpretation

•
$$H = \{a, f(a), f(f(a)), \dots \}$$

• $A = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \cdots \}$

Possible H-Interpretations:

- $I_1 = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \cdots \}$
- $I_2 = \{\neg P(a), Q(a), R(a), \neg P(f(a)), Q(f(a)), R(f(a)), \cdots \}$ $I_3 =$

 $\{\neg P(a), \neg Q(a), \neg R(a), \neg P(f(a)), \neg Q(f(a)), \neg R(f(a)), \cdots \}$

Example of not H-Interpretation H-Interpretation and H-Satisfiability Example (not *H*-Interpretation) Consider the set $S = \{P(x) \lor Q(x), R(f(y))\}$. $NHI = \langle D, A \rangle$ • $D = \{1, 2\}$ • $f^{A}(1) = 1, f^{A}(2) = 2$ • { $P(1), \neg P(2), Q(1), \neg Q(2), R(1), \neg R(2)$ }

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

N // ·		1 · · · · · · · · · · · · · · · · · · ·
Mapping	among	Interpretations

H-Interpretation and H-Satisfiability

Semantic Trees

mapping to H-Interpretations

Given an Interpretation I we can always find a corresponding I^* H-Interpretation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example of not H-Interpretation II

H-Interpretation and H-Satisfiability

Example

Semantic Trees

Consider the set $S = \{P(x), Q(y, f(y, a))\}$. $I = \langle D, A \rangle$ • $D = \{1, 2\}$ • $a^A = 2$ • $f^A(1, 1) = 1, f^A(1, 2) = 2, f^A(2, 1) = 2, f^A(2, 2) = 1$ • $\{P(1), \neg P(2), \neg Q(1, 1), Q(1, 2), \neg Q(2, 1), Q(2, 2)\}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Example of mapping between H-Interpretation

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Given $S = \{P(x), Q(y, f(y, a))\}$ and I we can define I^* as follows:

1
$$H = \{a, f(a, a), f(a, f(a, a)), f(f(a, a), a), f(f(a, a), f(a, a)), \cdots \}$$

2 $A = \{P(a), Q(a, a), Q(a, f(a, a)), Q(f(a, a), a), P(f(a, a)), Q(f(a, a), f(a, a)), \cdots \}$
3 $I^* = \{\neg P(a), Q(a, a), P(f(a, a)), \neg Q(a, f(a, a)), \cdots \}$
• $P(a) = P(2) = \bot$
• $Q(a, a) = Q(2, 2) = \top$
• $P(f(a, a)) = P(1) = \top$
• $Q(a, f(a, a)) = Q(2, f(2, 2)) = Q(2, 1) = \bot$
• \cdots

Multiplicity of H-Interpretation mapping

H-Interpretation and H-Satisfiability

Semantic Trees

Multiple H-Interpretions

Consider an Interpretation I

If there is no constant appearing in S then the added costant a in the Herbrand Universe can be mapped to any element in D.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Therefore there are more that one H-Interpretation I* corresponding to I depending on values given to a

Example of Multiple H-Interpretations

H-Interpretation and H-Satisfiability

Example

Semantic Trees

Consider the set
$$S = \{P(x), Q(y, f(y, z))\}$$
.
 $P = \langle D, A \rangle$
 $D = \{1, 2\}$
 $f^{A}(1, 1) = 1, f^{A}(1, 2) = 2, f^{A}(2, 1) = 2, f^{A}(2, 2) = 2, f^{A}(2, 2)$

1

Example

Corresponding H-Interpretations

- $l_1^* = \{\neg P(a), Q(a, a), P(f(a, a)), \neg Q(a, f(a, a)), \cdots\}$ if a = 2
- $l_2^* = \{P(a), \neg Q(a, a), P(f(a, a)), \neg Q(a, f(a, a)), \cdots \}$ if a = 1

Example of Multiple H-Interpretations II

H-Interpretation and H-Satisfiability

Example

Semantic Trees Given $S = \{P(x) \lor Q(x), R(f(y))\}$ and $NHI = \langle D, A \rangle$ $D = \{1, 2\}$ • $f^{A}(1) = 1, f^{A}(2) = 2$ • { $P(1), \neg P(2), Q(1), \neg Q(2), R(1), \neg R(2)$ } we can define I_1^* as follows: **1** $H = \{a, f(a), f(f(a)), \dots \}$ 2 $A = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \dots \}$ 3 $a^A = 1$ 4 $\{P(a) = P(1) = \top, Q(a) = Q(1) = \top, R(a) = R(1) =$ \top , $P(f(a)) = P(1) = \top \cdots$

Example of Multiple H-Interpretations II

H-Interpretation and H-Satisfiability

Semantic Trees

Example (cont. from previous example)

we can also define I_2^* as follows:

1
$$H = \{a, f(a), f(f(a)), \dots \}$$

2 $A = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \dots \}$ 3 $a^A = 2$

4 {
$$P(a) = P(2) = \bot$$
, $Q(a) = Q(1) = \bot$, $R(a) = R(1) = \bot$, $P(f(a)) = P(1) = \bot \cdots$ }

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Mapping to H-Interpretation

H-Interpretation and H-Satisfiability

Semantic Trees

Definition (Mapping to H-Interpretation)

Given $I = \langle D, A \rangle$ interpretation over D, an H-interpretation $I^* \langle H, A^* \rangle$ corresponding to I is an H-interpretation that satisfies the following condition:

• Let h_1, \dots, h_n be elements of H and let $m : H \to D$ be a mapping from H to D, then $P^{A^*}(h_1, \dots, h_n) = P^A(m(h1), \dots, m(h_n))$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Preserving Satisfiability

H-Interpretation and H-Satisfiability

Semantic Trees

Lemma

If an interpretation I over a domain D satisfies a set of clauses S, then any of the H-Interpretation I^* corresponding to I satisfies S.

Sketch of proof.

Suppose $I \models S$ but $I^* \not\models S$.

- Since $I^* \not\models S$ then $\exists C^*$ ground that is not satisfied by I^*
- Since I* is an H-Interpretation corresponding to I, for each element in I* we can find an element in I with the same truth value.
- Therefore we have a ground clause C corresponding to C* that is not satisfied by I, which contradicts the hypothesis

Preserving Satisfaibility Example

H-Interpretation and H-Satisfiability

Semantic Trees Consider the set of clauses $S = \{P(x, f(x))\}$. Consider the interpretation *I*:

Example

•
$$f(1) = 1, f(2) = 2$$

•
$$P(1,1) = \top, P(1,2) = \bot, P(2,1) = \bot, P(2,2) = \top,$$

 $I \models S$ because all ground clauses $\{P(1, 1), P(2, 2)\}$ are satisfied by *I*. Assume I^* is the H-Interpretation corresponding to *I* with a = 1.

•
$$H_0 = \{a\}, H_1 = \{a, f(a)\}, H_3 = \{a, f(a), f(f(a)), \cdots\}$$

• $A = \{P(a, a), P(a, f(a)), P(f(a), a), P(f(a), f(a)), \cdots\}$
• $P(a, a) = P(1, 1) = \top, P(a, f(a)) = P(1, 1) = \top, P(f(a), a) = P(1, 1) = \top P(f(a), f(a)) = P(1, 1) = \top$
* $\models S$ as well.

H-Satisfiability

H-Interpretation and H-Satisfiability

Semantic Trees

Theorem (H-Satisfiability)

A set S of clauses is unsatisfiable iff S is false under all the H-Interpretations

Proof.

Sketch of proof

- ⇒ If unsatisfiable then must be false under all interpretations and thus specifically under all H-Interpretations
- \Leftarrow Assume S is false under all H-Interpretations but S is satisfiable. Then there exists $I \models S$. Then for the above lemma there exists an H-Interpretation I^* corresponding to I such that $I^* \models S$ which contraddicts the hypothesis

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Observations on Satisfiability I

H-Interpretation and H-Satisfiability

Semantic Trees A ground instance C' fo a clause C is satisfied by an H-Interpretation I iff there is at least one literal $L' \in C'$ such that $L' \in I$, which is $C' \cap I \neq \{\}$.

Example

Observation 1

Given $C \triangleq \neg P(x) \lor Q(f(x))$ and $C' \triangleq \neg P(a) \lor Q(f(a))$ a ground instance, and $I = \{P(a), \neg Q(a), P(f(a)), Q(f(a)), \neg Q(f(f(a))) \cdots \}$. Does $I \models C'$?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Observations on Satisfiability I

H-Interpretation and H-Satisfiability

Semantic Trees

Observation I

A ground instance C' fo a clause C is satisfied by an H-Interpretation I iff there is at least one literal $L' \in C'$ such that $L' \in I$, which is $C' \cap I \neq \{\}$.

Example

Given
$$C \triangleq \neg P(x) \lor Q(f(x))$$
 and $C' \triangleq \neg P(a) \lor Q(f(a))$ a
ground instance, and
 $l = \{P(a), \neg Q(a), P(f(a)), Q(f(a)), \neg Q(f(f(a))) \cdots \}$. Does
 $l \models C'$?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sol.

 $I \cap C' = Q(f(a)) \neq \{\}$ therefore $I \models C'$

Observation on Satifiability II

H-Interpretation and H-Satisfiability

Semantic Trees

Observation II

Given a clause C and an H-Interpretation I, $I \models C$ iff for every C' ground instance $I \models C'$

Observation III

A clause C is falsified by an H-Interpretation I iff there is at least one C' ground instance such that $I \not\models C'$

Example

Given
$$C \triangleq \neg P(x) \lor Q(f(x))$$
, and
 $I = \{P(a), \neg Q(a), P(f(a)), Q(f(a)), \neg Q(f(f(a))) \cdots \}$. Does
 $I \models C$?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Observation on Satifiability II

H-Interpretation and H-Satisfiability

Semantic Trees

Observation II

Given a clause C and an H-Interpretation I, $I \models C$ iff for every C' ground instance $I \models C'$

Observation III

A clause C is falsified by an H-Interpretation I iff there is at least one C' ground instance such that $I \not\models C'$

Example

Given
$$C \triangleq \neg P(x) \lor Q(f(x))$$
, and
 $I = \{P(a), \neg Q(a), P(f(a)), Q(f(a)), \neg Q(f(f(a))) \cdots \}$. Does
 $I \models C$?

Sol.

$$\mathcal{C}'' = \neg \mathcal{P}(f(a)) \lor \mathcal{Q}(f(f(a))) \ I \cap \mathcal{C}'' = \{ \ \}$$
 therefore $I \not\models \mathcal{C}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Observations on Satisfiability III

H-Interpretation and H-Satisfiability

Semantic Trees

Observation IV A set of clause S is unsatisfiable iff for every H-Interpretation I there is at least one C' ground clause of some $C \in S$ such that $I \not\models C'$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example

Given
$$S \triangleq \{\neg P(x), P(a)\}$$
 is S unsatisfiable ?

Observations on Satisfiability III

H-Interpretation and H-Satisfiability

Semantic Trees

Observation IV

A set of clause S is unsatisfiable iff for every H-Interpretation I there is at least one C' ground clause of some $C \in S$ such that $I \not\models C'$

Example

Given
$$S \triangleq \{\neg P(x), P(a)\}$$
 is S unsatisfiable ?

Sol.

- $H = \{a\}, A = \{P(a)\}$
- Only two H-Interpretations $I_1 = \{P(a)\}$ and $I_2 = \{\neg P(a)\}$
- $I_1 \not\models S$: $C' = \neg P(a)$ ground instance of $C = \neg P(x)$ and $I_1 \not\models C'$
- $l_2 \not\models S$: C'' = P(a) ground instance of C = P(a) and $l_2 \not\models C''$
- Therefore *S* is unsatisfiable.

Example on Satisfiability

H-Interpretation and H-Satisfiability

Semantic Trees

Consider the clause
$$C = \neg P(x) \lor Q(f(x))$$
.
 $H = \{a, f(a), f(f(a)), \dots\}$ and
 $A = \{P(a), Q(a), P(f(a)), Q(f(a)), \dots\}$
• $I_1 = \{\neg P(a), \neg Q(a), \neg P(f(a)), \neg Q(f(a)), \dots$
• $I_2 = \{P(a), Q(a), P(f(a)), Q(f(a)), \dots\}$
• $I_3 = \{P(a), \neg Q(a), P(f(a)), \neg Q(f(a)), \dots\}$
Then $I_1 \models C$, $I_2 \models C$ but $I_3 \not\models C$.

Note

Example

We are assuming a pattern on the Interpretations otherwise we could not decide on satisfiability

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Exercises

Exercise

H-Interpretation and H-Satisfiability

Semantic Trees

- Consider the following clause $C : P(x) \lor Q(x, f(x))$ $I : \{\neg P(a), \neg P(f(a)), \neg P(f(f(a))), \cdots$ $\neg Q(a, a), Q(a, f(a)), \neg Q(a, f(f(a))), \cdots$ $\neg Q(f(a), a), Q(f(a), f(a)), \neg Q(f(a), f(f(a))), \cdots$ } Does $I \models C$? [Chang-Lee 8 page 68]
- Consider the following set of clauses S : {P(x), Q(f(y))}
 I : {P(a), P(f(a)), P(f(f(a))), ···
 Q(a), ¬Q(f(a)), Q(f(f(a))), ··· } Does I ⊨ S ?
 [Chang-Lee 9 page 68]
- Consider the following set of clauses $S : \{P(x), \neg P(f(y))\}$
 - **1** Give H_0 , H_1 , H_2 and H_3 .
 - Is it possible to find an interpretation that satisfies S? If yes provide one. If no explain why [Chang-Lee 10 page 68].

Semantic Trees

H-Interpretation and H-Satisfiability

Semantic Trees

Basic Concept

- Tree representation of a set of clauses
- Provides information on the satisfiability of the set of clauses

Example

Simple Example for Propositional Logic

Figure: Semantic tree for $S = P \lor Q$

Semantic Trees: Definition

H-Interpretation and H-Satisfiability

Semantic Trees

Definition (Semantic Tree)

Given a set of Clauses S let A be the Herbrand base (or atom set) of S a Semantic Tree for S is a tree T, where each link of the tree is annotated with a set of atoms or negation of atoms from A such that

- **1** property | For each node N there are only finitely many immediate links $\{L_1, \dots, L_m\}$ from N. Let Q_i be the conjunction of all literals attached to the link L_i , then $Q_1 \vee Q_2 \vee \cdots \vee Q_n$ is a valid propositional formula.
- Property II For each node N let I(N) be the union of all sets attached to the links of the branch connecting N up to the root and including N. Then I(N) does not contain any complementary pair.

Complementary Pair: Definition

H-Interpretation and H-Satisfiability

Semantic Trees

Definition (Complementary Pair)

If A is an atom then the two literals A and $\neg A$ are said to be each other's complement and the set $\{A, \neg A\}$ is said to be a complementary pair.

Note

A Clause that contains a complementary pair is a tautology

Example

 $C = P(x) \lor Q(y, f(y)) \lor \neg R(z) \lor \neg P(x)$ is a tautology as $\{P(x), \neg P(x)\}$ is a complementary pair

Example |

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Figure: Semantic tree for the atom set A = P, Q, R

 $I(\mathcal{X}) = \{Q, P\} \ I(\mathcal{Y}) = \{\neg R, \neg P, Q\} \ I(\mathcal{Z}) = \{\neg R, \neg P, \neg Q\}$ Note that for the root node we have $Q_1 = \{P\}$ and $Q_2 = Q$ and $Q_3 = \{\neg P, \neg Q\}$ therefore $Q_1 \lor Q_2 \lor Q_3$ is a valid formula.

Example II

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Consider the set of clauses $S = \{P(x), P(a)\}$. The atom set for this set of clauses is A = P(a)

Figure: Semantic tree the atom set A = P(a)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Complete Semantic tree: Definition

Semantic Trees

Definition

Complete Semantic Tree Given an atom set $A = A_1, \dots, A_k, \dots$ A semantic tree is complete iff for every leaf node N, I(N) contains A_i or $\neg A_i$ for $i = 1, 2, \dots$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Note

All previous semantic trees were complete

Example

H-Interpretation and H-Satisfiability

Semantic Trees

Example

Consider a set of cluses S = P(f(x)), the Herbrand Base for S is $A = \{P(a), P(f(a)), \dots\}$ The following Semantic Tree represents S and is not complete

Figure: Not Complete Semantic tree

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Observations on Semantic Tree

H-Interpretation and H-Satisfiability

Semantic Trees

- Given a semantic tree T representing a set of clause S for each node N, I(N) is a subset of an interpretation for S
- I(N) is therefore a partial interpretation of S
- Given S, if A infinite then any complete semantic tree T for S is infinite

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Observations on Semantic Trees and Satisfiability

H-Interpretation and H-Satisfiability

Semantic Trees We can use semantic trees to check satisfiability of S

- Given a set of clause S any complete semantic tree for S contains all possible interpretations of S.
- When expanding the semantic tree, we can stop expanding as soon as a partial interpretation falsifies S.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• If I(N) falsifies S we can stop at node N.

Definition: Failure Node

H-Interpretation and H-Satisfiability

Semantic Trees

Definition (Failure Node)

Given a set of clauses S and a semantic tree for S, a node N is called a failure node iff I(N) falsifies some ground instances of a clause in S, but I(N') does not falsify any ground instance of a clause in S for every ancestor N' of N.

Example

Consider the clause $S = \{P \lor Q, Q\}$ build a semantic tree and check which node is a failure node.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

	Definition: Closed Tree
H- Interpretation and H- Satisfiability	
Semantic	Definition (Closed Semantic Tree)
Irees	A semantic tree T is said to be closed iff every branch of T terminates at a failure node.
	Definition (Inference Node)
	A node N of a closed semantic tree is called an inference node if all its immediate descendant nodes are failure nodes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Closed Semantic Tree: Example |

H-Interpretation and H-Satisfiability Example

Semantic Trees

Figure: Closed Semantic tree

Closed Semantic Tree: Example II

H-Interpretation and H-Satisfiability

Example

Semantic Trees

Consider the formula $S = \{\neg P(x) \lor Q(x), P(a), \neg Q(z)\},\$ $H = \{a\} A = \{P(a), Q(a)\}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Closed Semantic Tree: Example II

H-Interpretation and H-Satisfiability

Example

Semantic Trees

Figure: Closed Semantic tree

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Closed Semantic Tree: Example III

H-Interpretation and H-Satisfiability Example

Semantic Trees Consider the formula $S = \{\neg P(x) \lor Q(x), P(f(a)), \neg Q(z)\}$ $H = \{a, f(a), f(f(a)), \cdots\} A = \{P(a), Q(a), P(f(a)), Q(f(a)), \cdots\}$

Closed Semantic Tree: Example III

H-Interpretation and H-Satisfiability

Example

Semantic Trees Consider the formula $S = \{\neg P(x) \lor Q(x), P(f(a)), \neg Q(z)\}$ $H = \{a, f(a), f(f(a)), \cdots\} A = \{P(a), Q(a), P(f(a)), Q(f(a)), \cdots\}$

Figure: Closed Semantic tree

Exercise: Semantic Tree

H-Interpretation and H-Satisfiability

Semantic Trees

Exercise

- S = {P, ¬P ∨ Q, ¬Q} Give a closed Semantic Tree of S [Chang-Lee Ex 11, page 68]
- 2 $S = \{P(x), \neg P(x) \lor Q(x, a), \neg Q(y, a)\}$ [Chang-Lee Ex 12, page 68]

ション ふゆ く は マ く ほ マ く し マ

- Give the atom set of *S*
- Give a complete Semantic Tree of S
- Givw a closed Semantic Tree of S