## Herbrand Universe and Herbrand Base

## Summary

- Herbrand Universe [Chang-Lee Ch. 4.3]

■ Herbrand Base [Chang-Lee Ch. 4.3]

## Background

## Desiderata

- We know how to prove a theorem by proving that a set of clauses $S$ is inconsistent
- Given a set of clauses $S$ to prove that $S$ is inconsistent we need to check all interpretations over all possible domains: Unfeasible!
- Given Church and Turing we aim for a procedure that stops in a finite number of steps when $S$ is unsatisfiable
- This might not be good enough but it is the best we can have!

■ How can we find such a procedure?

## Herbrand's Approach

Herbrand Universe and

Herbrand Base

## General Idea

Given $S$ set of clauses

- Focus on a unique domain (Herbrand Universe)
- Turn the $S$ into a series of ground clauses over this domain (Expansion)
- $S$ is unsatisfiable iff we can find an unsatisfiable set of ground clauses in a finite number of steps
- Herbrand proved we can actually do this


## Hint on the Expansion Concept

## On Infinite Domain

Quantifiers can not be reduced to a finite number of check

## Example

$$
\forall x \exists y G(x, y)
$$

If domain is the the natural numbers and $G(x, y)$ represents that $x$ is greater or equal than $y$, intuitively this proposition is true, but we can not really check for every instance

## Hint on the Expansion Concept II

Herbrand Universe and Herbrand Base

## On Finite Domain

Quantifiers can be reduced to a finite number of check:

$$
\begin{aligned}
& \forall x P(x)=P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \cdots \wedge P\left(x_{n}\right) \\
& \square x P(x)=P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \cdots \vee P\left(x_{n}\right)
\end{aligned}
$$

## Example

$$
\forall x \exists y G(x, y)
$$

If domain is the the interval $[0,10]$ we can actually check that this is true

## Herbrand Universe

## Definition (Herbrand Universe)

Given $S$ set of clauses universally quantified (Skolem Standard Form)

- $H_{0}$ all constants in $S$. If no constant in $S$ then $H_{0}=a$

■ For $i>0 H_{i}=H_{i-1}$ united with the set of all terms $f^{n}\left(t_{1}, \cdots, t_{n}\right)$ for all functions $f^{n}$ occurring in $S$ where $t_{j} \in H_{i-1} j=1, \cdots, n$.

- $H_{i}$ is called the ith level constant set of $S$
- $H_{\infty}$ is called the herbrand universe of $S$


## Example of Herbrand Universe I

Herbrand Universe and Herbrand Base

## Example (no function)

$$
\text { Let } S=\{P(x) \vee Q(x), R(z), T(y) \vee \neg W(y)\}
$$

## Example of Herbrand Universe I

Herbrand Universe and Herbrand Base

## Example (no function)

Let $S=\{P(x) \vee Q(x), R(z), T(y) \vee \neg W(y)\}$
No function
$1 H_{0}=\{a\}$ (no constant)
$2 H_{1}=H_{0}$ (no function)
3...
$4 H_{\infty}=\{a\}$

## Example of Herbrand Universe II

Herbrand Universe and

Herbrand
Base

## Example (one function)

Let $S=\{P(a), \neg P(x) \vee P(f(x))\}$

## Example of Herbrand Universe II

## Example (one function)

Let $S=\{P(a), \neg P(x) \vee P(f(x))\}$
$1 H_{0}=\{a\}$ (all constants)
$2 H_{1}=\{a, f(a)\}$ (all functions applied to all terms in $H_{0}$ union $H_{0}$ )
3 $H_{2}=\{a, f(a), f(f(a))\}$ (all functions applied to all terms in $H_{1}$ union $\left.H_{1}\right)$
4 ...
$5 H_{\infty}=\{a, f(a), f(f(a)), f(f(f((a)))), \cdots\}$

## Example of Herbrand Universe III

Herbrand Universe and

Herbrand
Base

## Example (two functions) <br> Let $S=\{P(f(x), a, g(y), b)\}$

## Example of Herbrand Universe III

## Example (two functions)

Let $S=\{P(f(x), a, g(y), b)\}$
(1) $H_{0}=\{a, b\}$ (all constants)
$2 H_{1}=\{a, b, f(a), g(a), f(b), g(b)\}$ (all functions applied to all terms in $H_{0}$ union $H_{0}$ )
$3 H_{2}=\{a, b, f(a), g(a), f(b), g(b), f(f(a)), f(g(a)), f(f(b))$ $, f(g(b)), g(f(a)), g(g(a)), g(f(b)), g(g(b))\}$
(all functions applied to all terms in $H_{1}$ union $H_{1}$ )
$4 \cdots$

## Exercise

Herbrand Universe and Herbrand Base

## Example

Let $F=\forall x(P(x) \rightarrow Q(x)) \wedge \exists y P(y) \wedge \forall z \neg Q(z)$
■ $S=\neg P(x) \vee Q(x), P(a), \neg Q(z)$

- $S^{\prime}=\neg P(x) \vee Q(x), P(f(x)), \neg Q(z)$


## Exercise

Herbrand Universe and Herbrand Base

## Example

$$
\begin{aligned}
& \text { Let } F=\forall x(P(x) \rightarrow Q(x)) \wedge \exists y P(y) \wedge \forall z \neg Q(z) \\
& \quad-S=\neg P(x) \vee Q(x), P(a), \neg Q(z) \\
& \quad S^{\prime}=\neg P(x) \vee Q(x), P(f(x)), \neg Q(z)
\end{aligned}
$$

## Herbrand Universe for $S$

$1 H_{0}=H_{1}=\cdots=H_{\infty}=\{a\}$.

## Exercise

Herbrand Universe and Herbrand Base

## Example

$$
\begin{aligned}
& \text { Let } F=\forall x(P(x) \rightarrow Q(x)) \wedge \exists y P(y) \wedge \forall z \neg Q(z) \\
& \quad S=\neg P(x) \vee Q(x), P(a), \neg Q(z) \\
& \quad S^{\prime}=\neg P(x) \vee Q(x), P(f(x)), \neg Q(z)
\end{aligned}
$$

## Herbrand Universe for $S$

$1 H_{0}=H_{1}=\cdots=H_{\infty}=\{a\}$.
Herbrand Universe for $S^{\prime}$
$1 H_{0}=\{a\}$
(2) $H_{2}=\{a, f(a)\}$

3 ...
$4 H_{\infty}=\{a, f(a), f(f(a)), \cdots\}$.

## Herbrand Base

## Definition (Herbrand base)

Let $S$ be a set of clauses. the Herbrand Base for $S$ is the set of all ground atoms of the form $P^{n}\left(t_{1}, \cdots, t_{n}\right)$ for all $n$-placed predicates occurring in $S$, where $t_{j} j=1, \cdots, n$ are elements of the Herbrand universe of $S$.

## Herbrand Base: Example

## Example

Let $S=\{P(f(x)), Q(g(c))\}$

- The Herbrand Universe:

$$
\{c, f(c), g(c), f(f(c)), f(g(c)), g(f(c)), g(g(c)), \cdots\}
$$

- The Herbrand Base:

$$
\begin{aligned}
& \{P(c), Q(c), P(f(c)), P(g(c)), Q(f(c)) \\
& Q(g(c)), P(f(f(c))), P(f(g(c))), \cdots\}
\end{aligned}
$$

## Ground Instances for Clauses

Definition (Ground instances for an Herbrand Base)
A ground instance of a clause $C$ of a set $S$ of clauses is a clause obtained by replacing variables in $C$ by members of the Herbrand universe

Example (Ground instances for an Herbrand Base)
Let $S=\{P(x), Q(f(y)) \vee R(y)\}$
$1 C=P(x)$ is a clause
$2 H=\{a, f(a), f(f(a)), \cdots\}$
$3 P(f(a))$ and $P(a)$ are ground instances of $C$.

## Exercises

Herbrand Universe and

Herbrand Base

## Exercise

- Given $S=\{P(f(x), a, g(f(x), b))\}$

1 Find $H_{0}$ and $H_{1}$
2 Find all the ground instances of $S$ over $H_{0}$
3 Find all the ground instances of $S$ over $H_{1}$

- Let $F$ be a formula and let $S$ denote the standard form of $\neg F$. Find the necessary and sufficient condition for $F$ such that the Herbrand Universe of $S$ is finite.

