
Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Constraint Optimisation Problems



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Summary

Constraint Optimisation

Cost Network

Branch and Bound Search

Bucket Elimination



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Constraint Optimisation

Soft Constraint

Soft Constraints express preferences over variable

assignments

Preferences give di�erent values over variable assignment

A student can follow only one class at a time (hard

constraint)

A student would like to have no class on Friday (soft

constraint)



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Global Cost Function

Cost Function and COP

Optimisation criterion or objective function

De�ned over all the variables

Constrained Optimisation Problem:

�nd assignment for all variables
that satis�es all constraint
and optimises the global cost function



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

COP in practice: Scheduling

Power plant maintainance

Many power generating units

Each unit needs to be stopped for preventive maintainance

Power Plant must not stop generating required energy with

remaining units

Find a schedule (sequence and duration) for single unit

maintainance minimising the maintainance cost



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

COP in practice: Electronic Commerce

Combinatorial Auction

Combinatorial auction: bidder are allowed to put one bid

for a set of items

Winner determination problem for combinatorial auction

S = {a1, · · · , an} set of items, B = {b1, · · · , bm} set of
bids

bi = (Si , ri ), where Si ⊆ S and ri is cost paid for bid i

Find a subset of bids B ′ ⊆ B such that any two bids in B ′

do not share any items and C (B ′) =
∑

bi∈B′ ri is

maximised



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Combinatorial auction in practice

Regional Fixed Wireless Access

FWA use of radio to provide last mile connection between

users and core telecommunication network

Used in conuntry with emerging economy: easier and faster

to deploy, e.g. Nigeria

Region based: need to buy licence for regions to roam

tra�c in that region

Auctioneer: Government, Bidders: Telecomunication

companies, Items: license in each region

Bid a subset of licences for regions

Combinatorial: more bene�cial to have licenses in

�synergic� regions (e.g. adjacent)

Framework used Nigeria in 2002, business of about 38

billion of USA dollars!



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

COP and CSP

Max-CSP

Any CSP can be seen as COP

Find the assignment that minimises the number of violated

constraints: Max-CSP

Max-SAT: �nd the assignment that minimises the number

of falsi�ed clauses

When constraint are assigned importance weight

Goal: minimise the sum of violated constraints



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Solving COP

Main approaches

Search

Similar to backtracking
Most common approach: branch and bound

Inference

Similar to consistency enforcing approaches
Most common approach: dynamic programming



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Cost Functions

De�nition of Cost Function

Cost Network: Constraint Network + Cost Function

Cost Function

X = {x1, · · · , xn} variables and ā = {a1, · · · , an}
assignments for variables
F1, · · · ,Fl real-valued functional conponents
Fi de�ned over scope Qi ⊆ X

F (ā) =
l∑

j=1

Fj(ā)

Fi (ā) = Fi (ā[Qi ]) that is Fi restricted over its scope



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Cost Networks

De�nition of Cost Networks

C = {X ,D,Ch,Cs}
Rc = {X ,D,Ch} Constraint network Ch hard constraints

Cs = {FQ1
, · · · ,FQl

} soft constraints
Fi :./k∈Qi

Dk → <+

Aim: �nd ā∗ such that ā is a solution for Rc and

ā∗ = maxāF (ā) (or ā∗ = mināF (ā))

Two variables are linked by a soft constraint if they appear

in the scope of a cost function



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Example: Cost Network

Example (General Cost Network CN )

C = {X ,D,Ch,Cs}
X = {a, b, c, d , f , g}
Ch = { }
Cs =
{F0(a),F1(a, b),F2(a, c),F3(b, c , f ),F4(a, d , b),F5(f , g)}
Edges representing soft constraints: {< a, b >,< a, c ><
a, d >< b, c >< b, f >< b, d >< c , f >< f , g >}
Cost function C (a, b, c , d , f , g) = F0(a) + F1(a, b) +
F2(a, c) + F3(b, c, f ) + F4(a, d , b) + F5(f , g)



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Formalisation of Combinatorial Auctions using Cost

Networks

Combinatorial Auction

Variables: bi Domains: Di = {0, 1}
bi = 1 bid i was selected by the auctioneer

Hard Constraints: two selected bids can not share any
items:

∀i , j∃Ri,j such that (bi = 1, bj = 1) 6∈ Ri,j

Soft Constraints: select the bids that maximise the sum of
their cost

Fi (bi ) = ri ∗ bi

Cost function
∑

bi∈B Fi (bi )



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Example: A Combinatorial Auction

Example (A Combinatorial Auction CA)

Items: {1, · · · , 8}
Bids: {b1, b2, b3, b4, b5}
b1 = ({1, 2, 3, 4}, 8), b2 = ({2, 3, 6}, 6), b3 = ({1, 5, 4}, 5),
b4 = ({2, 8}, 2), b5 = ({5, 6}, 2)

Ch = {R1,2,R1,3,R1,4,R2,4,R2,5,R3,5}
Graph for constraint network is the same as the graph for

cost network (all cost functions are unary)

Aim: maxb1,b2,b3,b4,b5
∑

5

i=1
bi ∗ ri



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Solving COP as a series of CSP

COP as a series of CSP

Given a cost network C = {X ,D,Ch,Cs}
Introduce a cost bound c i

Solve the constraint network Ri = {X ,D,C i
h}

Where C i
h = Ch ∪ H i and H i =

∑l
j=1

Fj ≥ c i



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Solving COP as a series of CSP II

Increasing the cost bound

Initialise to a low value

low value depends on the cost functions

e.g. if all functions are strictly positive we can set c i = 0

Increase the cost bound c j ≥ c j−1 ≥ · · · ≥ c1

Assume we �nd a solution sk for the cost bound ck and no

solution can be found for ck+1

Then the optimal solution is bounded by

Val(s̄k) ≤ Val(s̄∗) < ck+1

Val(s̄k) =
∑

i Fi (s̄
k) and s̄∗ is the optimal solution



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Solving COP

Speci�c approaches

Using CSP techniques

can re-use all e�cient techniques seen so far (+)
need to solve many CSPs and not clear how many (-)

Speci�c techniques are more e�cient

Branch and Bound
Bucket elimination



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Branch and Bound

main ideas

Do a backtracking to �nd all solution

Store the current best solution

Return the best solution found or state problem is

inconsistent if no solution exists

main idea use current best solution to prune useless

branches of the search tree



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Pruning the search space

Keeping a bound

Assume we are maximising the cost function

We can use the current best solution as a lower bound L
on any future solution:

we can disregard solutions that have a value lower than L

We need to predict the value of a complete solution given
a partial assignment

we want to avoid looking further down the tree

Given a partial instantiation āi we use f (āi )

f (āi ) a bounding evaluation function for the possible

complete solution

If f (āi ) ≤ L we can stop searching along that branch

f (āi ) must be an overestimation to visit all relevant

solutions



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Controlling the search

Searching technique

We can use all approaches seen so far for backtracking

(Lookahead, Lookback)

Just need to check the estimated upper bound against the

lower bound when selecting a new value

If minimisation problem exactly same thing:

Current best solution is an upper bound U

Underestimate the future cost of current partial
assignment f (āi )
Prune if f (āi ) ≥ U



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Computing the bounding evaluation function

bounding evaluation function

Bounding evaluation function is crucial for e�cient search

Need to be easy to compute and as accurate as possible

If we overestimate too much we never prune

Simple approach: �rst choice bounding function

Similar to forward checking: each constraint is considered

independently

ffc (āi ) =
∑
j

max
ai+1,··· ,an

Fj(āi , ai+1, · · · , an)



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Branch and Bound: Example

Example (Combinatorial Auction)

Consider the combinatorial auction CA previously de�ned

Consider the order d = {b1, b2, b3, b4, b5}
Optimal: ā = {0, 1, 1, 0, 0} F (ā) = 11



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Dynamic Programming for COP

basic ideas

Build the solution of a problem incrementally from those of

smaller subproblems

Very convenient for COPs as it exploits the underlying

structure of the problem

Solve subproblems locally and propagate only important

information (e.g. counting people along a line)

Bucket Elimination: dynamic programming procedures to

solve COPs



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Dynamic programming for COPs: Example

Example (DP for General Constraint Networks)

Consider the general cost network CN
Consider the order d = {a, c , b, f , d , g}
We want to compute maxa,c,b,f ,d ,g F0(a) + F1(a, b) +
F2(a, c) + F3(b, c, f ) + F4(a, d , b) + F5(f , g)

We can manipulate the formula to push maximisation

where needed



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

Bucket Elimination for COPs

Basic Concept

Bucket Bi : a set of constraints that refer to a variable xi

1 Assign constraints to bucket

2 Process bucket from last variable to �rst according to a

variable ordering

3 Compute optimal tuple propagating values from �rst

variable to last



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE for COPs: Example

Example (Bucket partition)

Consider the general cost network CN
Consider the order d = {a, c , b, f , d , g}
Buckets: {Ba,Bc ,Bb,Bf ,Bd ,Bg}
Partition: Bg = {F5(f , g)},Bd = {F4(a, d , b)},Bf =
{F3(b, c, f )},Bb = {F1(b, a)},Bc = {F2(c , a)},Ba =
{F0(a)}



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: partitioning constraints

Constraint partition

We partition constraints based on variable ordering:

Put all constraint in a set

consider variables from last to �rst according to ordering

put all constraints in the set that refers to current variable

xi in Bucket Bi

remove assigned constraints from the set



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE for COPs: Example

Example (Bucket processing)

Process last buckets: Bg = {F5(f , g)}
Hg (f ) = maxg F5(f , g), place Hg (f ) in bucket Bf

Process bucket: Bd = {F4(d , b, a)},
Hd (b, a) = maxd F4(d , b, a), place Hd (b, a) in Bb

Process bucket: Bf = {F3(f , b, c),Hg (f )},
H f (b, c) = maxf (F3(f , b, c) + Hg (f )), place H f (b, c) in

Bb

...

Process bucket: Ba = {F0(a),Hc(a)},
M = maxa(F0(a) + Hc(a))



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: bucket processing

bucket processing

Process bucket based on reverse variable orderings

Process = Sum all functions and eliminate corresponding

variable by maximisation

This creates a new constraint with scope: all variables

mentioned by constraint in this bucket - the variable

corresponding to the bucket

Put new constraint to the highest lower bucket that

corresponds to a variable in its scope



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE for COPs: Example

Example (Value propagation)

Compute ā1
∗ = {a∗} a∗ = argmaxa(F0(a) + Hc(a))

Compute ā2
∗ = {a∗, c∗}

c∗ = argmaxc(F2(a∗, c) + Hb(a∗, c))

...

Compute ā6
∗ = {a∗, c∗, b∗, f ∗, d∗, g∗}

g∗ = argmaxg (F5(f ∗, g))



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: value propagation

value propagation

Propagate values to compute an optimal tuple

Compute a (partial) tuple that maximise sum of functions

of �rst bucket

Propagate tuple value to next bucket

Compute a (partial) tuple that maximises sum of functions

given values of propagated tuple from previous bucket



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE for COPs: Example for di�erent ordering

Example (di�erent ordering)

Consider the cost network CN
Apply Bucket elimination using d = {a, f , d , c, b, g}
Note that functions of 4 variables were created



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: discussion

Discussion

After processing buckets (backward phase) we �nd the

optimal value for the COP

After propagating values (forward phase) we �nd the

optimal assignment for the COP

Ordering used impacts on size of created functions and

therefore on complexity



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: complexity

Discussion on BE complexity

The order impacts size of generated functions

Generated function size equals the number of variables in a

bucket minus the bucket variable

Storing and solving (i.e. maximising) function is

exponential in their size

Thus BE is exponential in the size of the largest bucket.



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: complexity and induced width

correspondence between BE complexity and induced width

Size of largest bucket equals the induced width of the graph for

the given order:

Functions are recorded when processing all the variables

appearing in the bucket

Variables appearing in a bucket depends on the earlier

neighbours according to the ordering

Such variables should then be connected to represent their

relationships in the computation

This results exactly in the induced graph, and the function

size is the induced width

Finding the order that gives the minimum induced width is hard



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

hard vs soft constraints

hard vs. soft constraints

We can always encode hard constraints using only soft
constraints:

Give RS hard constraints in a maximisation (minimisation)
problem
De�ne FS(ā) = 0 if ā satis�es RS

FS(ā) =∞(−∞) otherwise

However an explicit representation of hard constraints can

be more e�cient (i.e., enforcing arc consistency etc.)



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE: hard constraints

Incorporating hard constraints

We can incorporate hard constraints into BE

Consider in the maximisation only tuples that satisfy the

constraints in the bucket:

Distribute new constraints as with cost function

For bucket p. Rp join of constraints in the bucket, F p set

of functions in the bucket

Hp(t) = max{ap |(t,ap)∈Rp}
∑
Fi∈Fp

Fi (t, ap)

Partition constraints into bucket as with cost functions

(optional)

Create new constraints by joining constraints in the bucket

and project out the bucket variable (optional)



Constraint
Optimisation
Problems

Constraint
Optimisation

Cost
Networks

Branch and
Bound

Dynamic
Program-
ming

BE for combinatorial auctions

Example (Solving Combinatorial Auction with BE)

Consider the combinatorial auction CA
Apply Bucket elimination using d = {b1, b5, b2, b3, b4}


	Constraint Optimisation
	Cost Networks
	Branch and Bound
	Dynamic Programming

