Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-

Consistency Enforcing and Constraint Propagation: Node and Arc Consistency

Summary

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint

Arc-

■ Node consistency and Arc Consistency

Solution Techniques for Constraint Network

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Solving Constraint Networks

- Inference:
 - Infer new constraints based on existing ones
 - Eliminate values from variables that do not meet constraints
- Search:
 - Look for a solution trying different values of variables
 - backtracking and similar approaches
 - local search

Backtracking

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

general ideas

- Choose a variable x
- list its domain values
- for each value add a constraint x = v and recursively evaluate the rest of the problem

Local Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

general ideas

- Partial assignments can lead to constraint violations
 - We can evaluate a constraint as soon as all variables in its scope are assigned
- We can backtrack as soon as a constraint is not locally consistent

Inference and constraint propagation

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Example (inference)

- Variables: $\{A, B, C\}$
- Domain: $\{0,1\}$ or true, false
- Constraint: $\{A \rightarrow B, C \rightarrow A, C\}$
- Propagating the constraints we can infer $\{A, B\}$
- Similar reasoning if we know $\{\neg B\}$ holds

Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistenc

Consistency Methods

- Approximation of inference
 - arc, path and i-consistency
- Generate tighter networks
- Partial assignments can be discarded earlier

Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistenc

Example (Consistency)

- n-Queen problem
- Minimal network is tighter than original network
- On minimal network finding the solution is easier

Tightness and search space

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

restricting the searchspace

- lacksquare Given two equivalent network ${\mathcal R}$ and ${\mathcal R}'$
- lacksquare if $\mathcal{R}'\subset\mathcal{R}$ (\mathcal{R}' is tighter than \mathcal{R})
- \blacksquare then searching for a solution on \mathcal{R}' is more efficient than seraching on \mathcal{R}
- lacksquare \mathcal{R}' has a smaller search space

Complete inference

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution

Consistency Enforcing and Constraint Propagation

Arc-Consistency

finding solution with no dead end

- We can deduce constraints until:
 - an inconsistency is found
 - or we can derive a solution with depth-first and no backtracking
- but we might need to introduce an exponential number of constraint
- usually it is preferable to introduce a bounded amount of constraints

Consistency approaches

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistenc

consistency enforcing

- Given a partial solution of length i-1 we extend the solution to one more variable
- Consistency enforcing:
 - any partial solution of a subnetwork extensible to a surrounding network
 - size of the subnetwork defines different approaches
- Arc-Consistency: from 1 variable to 2
- Path-Consistency: from 2 variables to 3
- I-consistency: from i-1 to i

Extending solutions

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

consistency and solution extension

- i-1 consistency:
 - for any legal value for i-1 variables
 - we can find a legal value for any other connected variables.
- A network that is i-consistent for $i = 1, \dots, n$ is globally consistent

Consistency and computational issues

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistenc

consistency and computation

- The higher is *i* the better a search algorithm will behave
- time and space cost to ensure i-consistency is exponential in i
- Trade-off addressed with experimental evaluation

Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Example (consistency)

- Variables: $\{X, Y, T, Z\}$, $D_i = 1, 2, 3$
- Constraints: X < Y, Y = Z, T < Z, X < T, X < 4

Node consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Node consistency

- Variable x_i , Domain D_i
- x_i is node consistent if every value of its domain satisfy every unary constraint
- $\forall v \in D_i \ \forall C = \{ \langle x \rangle, R_{x_i} \} \ a \in R_{x_i}$

Constraint propagation

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Constraint Propagation

- We modify the constraint network so that:
 - local consistency is satisfied (enforcing consistency)
 - solutions do not change (maintaning equivalence)

Constraint propagation for node consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

CP for node consistency

- If a variable x_i is not node consistent:
 - remove all values from D_i that do not satisfy all unary constraints
 - $D_i' = D_i \setminus \{v | \exists C = \{\langle x_i \rangle, R_{x_i}\} \land v \notin R_{x_i} \}$
- D'_i contains only values that satisfy all unary constraints (enforcing consistency)
- all removed values could not be part of any solution (maintaining equivalence)

Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Example (Arc consistency)

- Variables x,y with domains $D_x = D_y = \{1,2,3\}$.
- $C = \{ \langle x, y \rangle, R_{x,y} = x \langle y \}$
- D_x and D_y are not arc consistent with $R_{x,y}$
- $D_x' = \{1,2\}$ $D_y' = \{2,3\}$ are arc consistent
- $lackbox{0.5} D_x'' = \{1\} \ D_y'' = \{2\}$ are arc consistent but...

Constraint propagation for arc consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

CP for arc consistency

- If a variable x_i is not arc consistent w.r.t. x_j :
 - remove all values from D_i that does not have a matching value in x_i
- D'_i contains only values that satisfy binary constraints (enforcing consistency)
- all removed values could not be part of any solution (maintaining equivalence)

Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Arc Consistency

- Network $\mathcal{R} = \langle X, D, C \rangle$
- $\mathbf{x}_i, x_j \in X$
- \blacksquare x_i arc consitent w.r.t. x_i iff
- R_{x_i,x_j} is arc consistent iff x_i arc consistent w.r.t. x_j and x_j arc consistent w.r.t. x_i
- lacksquare R is arc consitent iff all its constraints are arc consitent

Revise Procedure

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Revise proc.

```
Require: R_{x_i,x_j}, D_i, D_j

Ensure: D_i such that x_i is arc consistent w.r.t. x_j

for all a_i \in D_i do

if \neg \exists \ a_j \in D_j | (a_i, a_j) \in R_{x_i,x_j} then

delete a_i from D_i
```

end if end for

Algorithm 1 Revise $((x_i), x_i)$

Equivalent to $R_{xy} \leftarrow R_{xy} \cap \pi_{xy}(R_{xz}D_zR_{zy})$

Revise Procedure for Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Revise for Network

```
for all x_i \in X do

for all R_{x_i,x_j} \in C do

Revise((x_i),x_j);

Revise((x_j),x_i);

end for
```

- This algorithm does not work!
- Revising arc consistency on a variable might make another variable not-arc consistent

Revising Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagation

Arc-<u>Co</u>nsistency

Example (Revise for Network)

- Variables x,y,z with domains $D_x\{0,1,2,3\}, D_v=\{1,2\}, D_z=\{0,1,2\}.$
- $C_{x,y} = \{ \langle x, y \rangle, R_{x,y} = x \langle y \}, \\ C_{z,x} = \{ \langle z, x \rangle, R_{z,x} = z \langle x \}$

Revising Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Techniques

Consistency Enforcing and Constraint Propagatior

Arc-Consistency

An algorithm that does work!

AC-1

```
Require: \mathcal{R} = \langle X, D, C \rangle

Ensure: \mathcal{R}' the loosest arc consistent network for \mathcal{R}

repeat

for all Pairs x_i, x_j that participate in a constraint do

Revise((x_i), x_j);

Revise((x_j), x_i);

end for

until no domain is changed
```

This algorithm does work!

Inconsistent Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution

Consistency Enforcing and Constraint Propagation

Arc-Consistency

AC-1 always terminate

- lacksquare If we do not change any domain then we stop and ${\mathcal R}$ is AC
- If we remove a value we make at least one domain smaller
- If a domain is empty the network is inconsistent: we can not find any solution

Inconsistent Networks: Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Example

Example

- Variables: $\{x, y, z\}$, domains $D_x = D_y = D_z = \{1, 2, 3\}$
- Constraints $\{x < y, y < z, z < x\}$
- apply AC-1

Technique Consistend

Enforcing and Constraint Propagation

Arc-Consistency

Computational complexity of AC-1

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Arc-

Consistency

Comp. complexity

AC-1 is $O(nek^3)$

- n: nodes, e: edges, k: max number of values of a domain
- each cycle: ek² operations
- worst case we delete 1 element from one domain at each cycle
- we can have at most *nk* cycles

Improving AC-1: AC-3

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

AC-3

```
Require: \mathcal{R} = \langle X, D, C \rangle
Ensure: \mathcal{R}' the loosest arc consistent network for \mathcal{R}
  for all every pairs (x_i, x_i) that participate in a constraint
  R_{x_i,x_i} \in \mathcal{R} do
       Q \leftarrow Q \cup \{(x_i, x_i), (x_i, x_i)\}
  end for
  while Q \neq \{\} do
       pop (x_i, x_i) from Q
       REVISE((x_i),x_i)
      if D_i changed then
           Q \leftarrow Q \cup \{(x_k, x_i), k \neq i, k \neq i\}
       end if
  end while
```

AC-3 Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Example

AC-3

■ Variables x, y, z, domains $D_x = D_z = \{2, 5\}$, $D_y = \{2, 4\}$

Constraints: $R_{x,z} = \{a_x, a_z, | (a_x mod a_z = 0)\}$ $R_{y,z} = \{a_y, a_z, | (a_y mod a_z = 0)\}$

■ Run AC-3

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

AC-3 Computational Complexity

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Comp. Complexity

- $O(ek^3)$
- Revise for each couple is $O(k^2)$
- worst case we evaluate 2*ek*
- because we can put back each couple at most k times

Distributed Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

AC-1 can be distributed

- Each node a computer, they can send messages to neighbours
- Each computer knows only its direct neighbours and shared constraints
- Revise = $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_i)$
- Node j sends a message to i: $h_{j \to i} = \pi_i(R_{ij} \bowtie D_j)$
- Node *i* computes $D_i \leftarrow D_i \cap h_{j \leftarrow i}$ for each message received by its neighbours

Consistency and Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

C-1......

Consistency Enforcing and Constraint

Arc-Consistency

Empty Domain and Arc Consistency

- lacktriangle Arc consistency + empty domain ightarrow inconsistent problem
- Arc consistent + all domains are not empty → consistent problem
- Arc consistency is not complete
 - It checks only single (binary) constraints and single domain constraint

Example: incompleteness of AC for consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Example

Binary Graph Colouring

- Variables: x, y, z Domain: $D_i = \{R, Y\}$
- Constraints: x! = y, y! = z, z! = x

Arc-Consistency

Exercise

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution Technique

Consistency Enforcing and Constraint Propagation

Arc-Consistency

Exercise 1

Consider the following network:

- Variables: $\{X,Y,Z,W\}$, Domain $D_i = \{0,1,2\}$
- Constraints: X < Y, Z = X, Z < W, W < Y

describe an execution of AC-3. Is the resulting network arc consistent? Is the resulting network consistent? Motivate your answers.