
Under consideration for publication in Math. Struct. in Comp. Science

Reversible Combinatory Logic

Al e s s and ra D i P i e r r o1, Ch r i s Hank i n2 and He rb e r t Wik l i c ky2†

1 Dipartimento di Informatica, Universitá di Pisa
Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
dipierro@di.unipi.it
2 Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, United Kingdom
{clh,herbert}@doc.ic.ac.uk

Received 1 December 2005; Revised 23 March 2006

The λ-calculus is destructive: its main computational mechanism – beta reduction –

destroys the redex and makes it thus impossible to replay the computational steps.

Combinatory logic is a variant of the λ-calculus which maintains irreversibility. Recently,

reversible computational models have been studied mainly in the context of quantum

computation, as (without measurements) quantum physics is inherently reversible.

However, reversibility also changes fundamentally the semantical framework in which

classical computation has to be investigated. We describe an implementation of classical

combinatory logic into a reversible calculus for which we present an algebraic model

based on a generalisation of the notion of group.

1. Introduction

It has been suggested, e.g. (Mundici and Sieg, 1995), that the standard model for com-

putation as embodied in Turing Machines answers the problem of what constitutes a

“computational procedure” in Hilbert’s 10th Problem by reference to mental arithmetic

as practised in previous times by European school children, accountants and waiters. This

“waiter’s arithmetic” is non-reversible and destructive. It is open to speculation whether

a culture based on reversible computation like an abacus would have developed a differ-

ent basic computational model. Quantum computation (Kitaev et al., 2000; Nielsen and

Chuang, 2000), various issues in systems biology (Danos and Krivine, 2004; Phillips and

Ulidowski, 2005), and the need for minimal energy loss (Vitanyi, 2005) make reversible

computation once again interesting. Quantum Computation has been the motivation for

van Tonder (van Tonder, 2004) who presents a reversible applied lambda calculus with

quantum constants; his operational semantics provided the inspiration for the operational

semantics of our reversible version of Combinatory Logic. On the other hand, the set of

combinators that we consider here have also been studied by Abramsky (Abramsky, 2001;

† The authors are partly funded by the EPSRC project S77066A “Quantitative Analysis of Computa-

tional Resources”.

Di Pierro, Hankin, and Wiklicky 2

Abramsky et al., 2002), although with a different motivation, namely the links between

reversible calculus and linear logic.

Our main motivation for investigating a reversible version of Combinatory Logic is

ultimately the development of a denotational semantics of (probabilistic versions of) the

λ-calculus reflecting the operational semantics we introduced in (Di Pierro et al., 2005).

This kind of semantics is based on linear operator algebras and aims to support a com-

positional approach to (probabilistic) program analysis. The close relationship between

reversibility and certain important classes of linear operators – in particular unitary and

normal operators – was the starting point of a deeper investigation of the structure of

reversible computation.

In this paper we introduce an extension of the classical Combinatory Logic CL and

its associated notion of reduction, which incorporates information useful to reconstruct

the redex from the contractum. Intuitively, we can reverse a computation if we keep

information about its ‘history’, i.e. information about the reduction steps that have

been performed during the computation. Our extension is based on this intuition and in

particular on the notion of a ’history term’, which consists in a sequence of variables and

appropriately annotated combinators. This notion and in general the information that

has to be recorded as a history is strictly dependent on the nature and structure of the

original calculus; for example, in Van Tonder’s λ-calculus (van Tonder, 2004) the history

keeps track only of the substitutions which take place in each β-reduction step.

Reversibility naturally introduces a notion of symmetry into computation and is there-

fore strongly related to the theory of groups; these are considered by most mathemati-

cians as being virtually synonymous of symmetry (Weinstein, 1996). However, the notion

of automorphism associated to group is in some sense too “trivial” to characterise the

symmetry involved in a reversible computation. According to R. Brown (Brown, 1987),

this has motivated the extension of the theory of groups to the theory of groupoids. A

groupoid can be informally described as a group with many objects, where objects can

be thought of as the start and end points of computational processes. While group the-

ory only allows us to characterise processes which start from one point and (possibly

after a number of steps) come back to the same point, in groupoid theory processes can

have different start and end points but they can be composed if and only if the starting

point of one process is the end point of the previous one. Thus, the algebraic structure

of groupoids naturally reflects the structure of reversible processes which may traverse a

number of states, and is therefore more suitable for our purposes.

Based on this idea, we show that computations in the reversible CL can be modelled

as elements of the groupoid associated to the reduction relation. This corresponds to

the action of a group on the set of reversible terms, the group being determined by the

history terms.

This last characterisation allows us to show that the reversible CL is universal for

classical reversible computation, in the sense that all reversible computations can be

represented as a reversible CL reduction and vice versa. Moreover, as every reversible

reduction corresponds to a permutation, that is a unitary operator, reversible CL rep-

resents a high-level, though extremely inefficient way, to embed classical (irreversible)

computation in quantum computation.

Reversible CL 3

2. Combinatory Logic

Combinatory Logic (Curry and Feys, 1958; Hindley et al., 1972; Hindley and Seldin,

1986) (CL) is a formalism which, similarly to the λ-calculus, was introduced to describe

functions and certain primitive ways to combine them to form other functions. With

respect to the λ-calculus it has the advantage that is variable free; this allows one to

avoid all the technical complications concerned with substitutions and congruence. It

has on the other hand the disadvantage of being less intuitive than the λ-notation. For

the purpose of this work we have opted for this more involved formalism because it allows

for a more agile treatment and definition of our notion of reversible computation.

Definition 1 (Combinatory Logic Terms). The set of combinatory logic terms, CL-

terms, over a finite or infinite set of constants containing K and S and an infinite set of

variables is defined inductively as follows:

1 all variables and constants are CL-terms,

2 if X and Y are CL-terms, then (XY) is a CL term.

Following Barendregt (Barendregt, 1984), in the following we will use the symbol ≡

to denote syntactic equivalence. The two combinators S and K form a common basis for

combinatory logic. However, other sets of basic combinators can be defined. We will use

the base consisting of four basic operations encoded in the combinators B (implementing

bracketing), C (elementary permutations), W (duplication), and K (for deletion) which

could be λ-defined as follows (Curry and Feys, 1958, p379):

K ≡ λxy.x,

W ≡ λxy.xyy,

C ≡ λxyz.xzy,

B ≡ λxyz.x(yz).

Importantly, we can use B, W and C to implement the common combinator S (Curry

and Feys, 1958, p155):

S ≡ B(B(BW)C)(BB).

In order to generate equalities provable in this calculus we use a notion of reduction

similar to the weak reduction for the SK-calculus (Barendregt, 1984). This is defined as

the smallest extension of the relation on CL-terms induced by the basic operators which

is compatible with application.

Definition 2 (Reduction in CL). The reduction relation // on CL-terms is de-

fined by the following rules:

1 KXY // X ,

2 WXY // XY Y ,

3 CXY Z // XZY ,

4 BXY Z // X(Y Z),

5 X // X ′ implies XY // X ′Y ,

6 X // X ′ implies Y X // Y X ′,

Di Pierro, Hankin, and Wiklicky 4

We will denote by // // the reflexive transitive closure of // . Following Barendregt

(Barendregt, 1984) we will denote by = the least equivalence relation extending // // .

This relation coincides with the set of all equalities which are provable in CL (Barendregt,

1984, Prop 7.2.2).

The relation between the λ-calculus and CL is a standard result (Barendregt, 1984).

With reference to the standard base {S, K} there is a canonical encoding ()CL of λ terms

in CL terms. It is well known that in presence of a rule for extensionality the two theories

λ-calculus and CL (which are in general not equivalent) become equivalent (Barendregt,

1984, Def 7.3.14).

2.1. Invertible Terms

The assumption of extensionality is also essential in the investigation of invertibility, as

shown in (Dezani-Ciancaglini, 1976; Bergstra and Klop, 1980) in the context of λ-calculus.

Within the theory CL+ext that is CL extended with the rule (Barendregt, 1984,

Def 7.1.10):

Px = P ′x for all x 6∈ FV (PP ′) implies P = P ′,

we can characterise the invertible combinatory logic terms. We first observe that a semi-

group structure on the extended theory CL+ext is given by defining a composition of

terms by means of the B combinator as

X · Y = BXY

as for all Z we get (X · Y)Z = BXY Z = X(Y Z). This operation is associative and can

be seen as implementing ‘sequential’ or ‘functional composition’. In the λ-calculus it is

defined by

M · N = λz.M(Nz)

for any two λ-terms M, N .

Moreover, we can take the I combinator as the identity; in the λ-calculus this can be

defined, for example, by the term λx.x.

Naturally, the question arises which terms of a calculus like CL+ext form a group,

i.e. for which terms X we have an element X−1 (the inverse) such that

X · X−1 = X−1 · X = I.

The classically invertible CL terms are all those terms X for which there is a Y such

that BXY = BY X = I holds (cf also (Curry and Feys, 1958, Sect 5.D.5 and Def 5.D.1)).

A very simple example of an invertible term is the identity combinator I which is its own

inverse. In fact, we have that

I · I = BII = I.

However, in calculi without extensionality this might be about the only example of an

invertible term. According to (Barendregt, 1984, Section 21.3) the invertible terms in the

λ-calculus (without extensionality) form the trivial group {I}. Extensionality is therefore

needed to obtain some non-trivial invertible elements. It allows us to show for example

Reversible CL 5

that C = C−1, i.e. C is its own inverse. This is intuitively clear as the combinator C is

essentially representing a transposition of its 2nd and 3rd argument and permutations

are reversible.

Dezani (Dezani-Ciancaglini, 1976) and Bergstra and Klop (Bergstra and Klop, 1980)

have studied the problem of how to describe the invertible elements in different calculi

and theories. This also resulted in a description of the group of all invertible elements in

the λη-calculus cf. (Barendregt, 1984, Ch 21).

Contrary to the classical approach we will define a calculus which is reversible in the

sense that all reductions in the calculus can be expanded in a unique way to get the same

derivation but in the opposite direction. The new reversible calculus will be an extension

of the CL+ext theory, so that all classical CL+ext reductions will still be reductions

in the new calculus.

3. Reversible Combinatory Logic

Providing a mechanism for recording the computational history of a term allows us to

define a reversible version of CL, which we will call rCL.

Formally, we define a reversible combinatory logic term, or rCL term, as a pair 〈M | H〉,

where M is a classical CL term, which we refer to as the proper term, and H is a list

of elements which record the reduction steps S (forward execution) and their expansion

steps S (backward execution). We refer to H as the history term.

Definition 3 (Reversible Combinatory Logic Terms). A term in rCL is a pair

〈M | H〉, where M is a classical CL term and H has the following syntax:

H ::= ε | S : H

S ::= TK
m

n
| W

m

n
| B

m

n
| C

m

n
| S

where T is a classical CL-term, n, m ∈ N and S is defined as S.

If H ≡ S1 : S2 : . . . : Sn then we will denote by H the term Sn : Sn−1 : . . . : S1. We

identify the terms H and H , i.e. H = H . We denote by H the set of all history terms

modulo this equivalence. It is easy to see that by construction the set of histories H forms

a group with respect to the composition operation “:” by defining the neutral element of

the group as the empty history ε and the inverse of H by H , i.e. H : H = H : H = ε.

The meaning of the two numbers n and m is to record the exact point in the term in

which the combinator, i.e. its corresponding reduction rule, is applied, and the length

of prefix of the reduced term, respectively. This information is important to guarantee

a unique replay of all reduction steps. We will often omit ε and use blank to represent

the empty history. We will denote by S + l with l ∈ N a history step where the position

reference is increased by l, e.g. TKm
n + l ≡ TKm

n+l
and by H + l a position shift applied

to a whole history, i.e. H + l ≡ S1 + l : S2 + l : . . . : Sk + l.

Formally, we define the function len on classical CL-terms by:

len(X) =

{

1 if X is a constant or variable

n + m if X = (Y Z) with len(Y) = n and len(Z) = m.

Di Pierro, Hankin, and Wiklicky 6

Definition 4 (Reduction in rCL). The reversible reduction relation // // is defined

by the following rules

Forward rules

1 〈KXY | 〉 // // 〈X | Y K
len(X)
0 〉,

2 〈WXY | 〉 // // 〈XY Y | W
len(X)
0 〉,

3 〈CXY Z | 〉 // // 〈XZY | C
len(X)
0 〉,

4 〈BXY Z | 〉 // // 〈X(Y Z) | B
len(X)
0 〉,

Backward rules

1 〈X | 〉 // // 〈KXY | Y K
len(X)

0 〉,

2 〈XY Y | 〉 // // 〈WXY | W
len(X)

0 〉,

3 〈XZY | 〉 // // 〈CXY Z | C
len(X)

0 〉,

4 〈X(Y Z)| 〉 // // 〈BXY Z| B
len(X)

0 〉,

Structural rules

1 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈XY | 〉 // // 〈X ′Y | H ′〉,

2 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈Y X | 〉 // // 〈Y X ′ | H ′ + len(Y)〉,

3 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈X | H〉 // // 〈X ′ | H : H ′〉.

We will refer to the backward rule i as the symmetric of the forward rule i and vice

versa, for i = 1, 2, 3, 4. The structural rules guarantee the compatibility of the reduction

relation with the composition operation on the proper terms (rules 1 and 2), and with

the composition of history terms (rule 3).

We call the relation // // on rCL defined by the forward, backward and structural

rules in Definition 4 the forward reduction, and we denote by // // // the reflexive and

transitive closure of // // . The relation // // is a proper relation, i.e. not a function;

reductions in rCL are therefore non-deterministic. However, the converse transition re-

lation oo oo , defined as

〈P2 | H2〉 oo oo 〈P1 | H1〉 iff 〈P1 | H1〉 // // 〈P2 | H2〉,

and referred to as backward reduction, is deterministic. This allows us to reconstruct

the reduction sequences uniquely despite the non-deterministic nature of // // . We

will formally show this in Proposition 1 whose proof will highlight the fundamental

role played by the pair of integers (m, n) occurring in the history terms in making the

backward reduction deterministic. Since oo oo is defined only on those terms 〈P2 | H2〉

for which there is a forward reduction, it is a partial function.

In the following we will use interchangeably the words ’reduction’, ’reduction sequence’,

’computational path’, ’computation’.

Proposition 1. The relation oo oo is a partial function.

Proof. We have to show for every rCL term 〈P2 | H2〉: either there is no term 〈P1 | H1〉

different from 〈P2 | H2〉 with 〈P2 | H2〉 oo oo 〈P1 | H1〉 or if there exists such a term

〈P1 | H1〉, then the term is uniquely determined.

Reversible CL 7

The proof is a straightforward induction on the depth of the derivation tree for

〈P2 | H2〉 oo oo 〈P1 | H1〉.

There are eight base cases corresponding to the four forward rules and the four back-

ward rules. In each case H2 is a single term; the history H1 is empty; and the term P1

can be uniquely determined from 〈P2 | H2〉 (by inspection of the rules).

There are three parts to the inductive step: one case for each of the structural rules.

Since each of the rules has a single premise, each case follows from a single use of the

Induction Hypothesis.

If we represent classical CL terms as binary trees then the last step S of the history

H ′
2 : S specifies a simple tree transformation. This transformation together with removing

S from the history implements the reverse relation oo oo . To do this we first have to

decompose the tree representation of P2 according to the information provided by the

sub- and superscripts m and n and then transform the tree.

Example 1. Consider the classical term P2 ≡ (((WW)(KC))B). This term can be rep-

resented by the binary tree:

•

kkkkkkkkkkkkkk

TTTTTTTTTTTTT

•

jjjjjjjjjjjjjj

SSSSSSSSSSSSSS B

•

uuuuuu

IIIIII •

vvvvvv

HHHHHH

W W K C

Let us assume that the history contains only one step, e.g. H2 ≡ CK1
4, then we can

(re)construct the sub-tree corresponding to P ′
2 by isolating the sub-tree on the first

4 leaves, and the one corresponding to X as the (degenerate) sub-tree with just one

leaf, such that P2 = P ′
2XP ′′

2 : in our case we get the sub-trees corresponding to P ′
2 ≡

((WW)(KC)) and X ≡ B while P ′′
2 is omitted. Based on this decomposition we can

(re)construct the tree P1 ≡ P ′
2(KXT)P ′′

2 ≡ (((WW)(KC))(KBC)).

In terms of tree-transformations, we just have to replace the subtree X ≡ B by the

subtree representing ((KX)T) ≡ (KBC);

•

jjjjjjjjjjjjj

TTTTTTTTTTTTT

•

jjjjjjjjjjjjjj

SSSSSSSSSSSSSS •

SSSSSSSSSSSS

•

vvvvvv

HHHHHH •

wwwwww

GGGGGG •

RRRRRRRRRRRR C

W W K C K B

It is important to note that the decomposition of P2 according to the data provided

by n and m might not always be possible. If we had taken, for example, H2 ≡ CK1
3 it

would have been impossible to isolate a complete sub-tree with the first three leaves W,

W and K. This would represent a case where the reverse computation is not defined.

Di Pierro, Hankin, and Wiklicky 8

An important property of rCL is that reductions always increase the length of the

history term. We can interpret accumulation of steps in the history as reflecting the

progress of time.

Proposition 2. Let T = 〈M | H ′〉 and T ′ = 〈N | H ′′〉 be two rCL terms. If T // // // T ′,

then there exists H ∈ H such that H ′′ = H ′ : H .

Proof. Straightforward by induction on the length of the reduction T // // // T ′.

The identification of histories in H via the equivalence H : H = ε allows us to eliminate

“computational loops”, that is the cyclic application of a certain sequence of rules. In

this way we can return to the start of a computation by undoing all its steps (in reverse

order) as in the following two simple reductions:

〈W | 〉 // // 〈KWB | BK
1

0〉 // // 〈W | BK
1

0 : BK
1
0〉 = 〈W | 〉, and

〈KWB | 〉 // // 〈W | BK
1
0〉 // // 〈KWB | BK

1
0 : BK

1

0〉 = 〈KWB | 〉

The following example shows that without the position references it would be impos-

sible to reconstruct or retrace a given computational path.

Example 2. Consider the two reductions for terms 〈K(CW)C | 〉 and 〈KCCW | 〉, respec-

tively

〈K(CW)C | 〉 // // 〈CW | CK〉 and 〈KCCW | 〉 // // 〈CW | CK〉

It is therefore impossible to tell where 〈CW | CK〉 came from. However, by adding the

position information we have

〈K(CW)C | 〉 // // 〈CW | CK
2
0〉 and 〈KCCW | 〉 // // 〈CW | CK

1
0〉

The position information also allows us to encode different reduction strategies (e.g.

n = 0 indicates left-most reduction) as in the following example.

Example 3. Let us consider the classical term W(BXY Z)K. It has two possible reduc-

tion paths which are reflected in the history terms:

〈W(BXY Z)K | 〉 // // 〈(BXY Z)KK | W
4
0〉 // // 〈(X(Y Z))KK | W

4
0 : B

1
0〉 and

〈W(BXY Z)K | 〉 // // 〈(W(X(Y Z))K | B
1
1〉 // // 〈(X(Y Z))KK | B

1
1 : W

3
0〉

Note that fixing a strategy in a reduction effectively rules out the use of the structural

rule 2 in the reduction.

The retracing of a computational path, i.e. the reverse reduction relation oo oo , is

naturally implemented within the transition relation // // .

Lemma 1. If 〈P2 | H2〉 oo oo 〈P1 | H1〉 then there exists a history H with H ≡ H1 such

that 〈P2 | H2〉 // // // 〈P1 | H〉.

Proof. If 〈P2 | H2〉 oo oo 〈P1 | H1〉 then 〈P1 | H1〉 // // 〈P2 | H2〉 (by definition of the

converse relation). Assume that H1 = S1 : . . . : Sn−1 and H2 = S1 : . . . : Sn−1 : Sn. Take

Reversible CL 9

H = S1 : . . . : Sn−1 : Sn : Sn, then

〈P2 | S1 : . . . : Sn−1 : Sn〉 // // 〈P1 | S1 : . . . : Sn−1 : Sn : Sn〉

as for every forward rule there is a symmetric backward rule in Definition 4, and obviously

S1 : . . . : Sn−1 ≡ S1 : . . . : Sn−1 : Sn : Sn.

3.1. Embedding CL in rCL

Classical combinatory logic can be embedded in rCL by representing any CL-term M

with a rCL-term T of the form 〈M | ε〉. The following result shows that the weak

reduction relation for CL-terms can be simulated by the reversible reduction relation on

rCL.

Proposition 3. For every M ∈ CL we have:

If M // // N then for all H ∈ H there exists H ′ ∈ H : 〈M | H〉 // // // 〈N | H ′〉.

Proof. By hypothesis there exists a classical reduction

M = N0
// N1 . . . // Ni . . . // Nn = N

for some n ≥ 1, where for all 0 ≤ i ≤ n, Ni
// Ni+1 is an instance of one of the rules

1 − 4 of Definition 2.

By replacing each reduction step by the corresponding reversible forward reduction

step obtained by the rules in Definition 4 we get

〈M | 〉 // // // 〈N | H ′′〉,

with H ′′ the history term produced in the reversible forward reduction. For any H ∈ H

we can now apply the structural rule 3 in Definition 4 to get

〈M | H〉 // // // 〈N | H : H ′′〉.

Then take H ′ = H : H ′′.

The reverse of the proposition above does not hold, as shown by the following example.

Example 4. Consider the CL term M = KCBBB and its corresponding rCL term

〈KCBBB | 〉. The following is a possible reversible reduction for this term:

〈KCBBB | 〉 // // 〈CBB | BK
1
0〉 // // 〈WCB | BK

1
0 : W

1

0〉

The first step is a forward rule 1 the second step is by backward rule 2. We therefore

have the situation:

〈M | H〉 // // // 〈N | H ′〉

with M = KCBBB, N = WCB, H = ε and H ′ = BK1
0 : W

1

0.

However, neither of the two classical reductions

KCBBB // // WCB or WCB // // KCBBB

Di Pierro, Hankin, and Wiklicky 10

are possible as classically the two terms KCBBB and WCB reduce as follows:

KCBBB // CBB

and

WCB // CBB.

3.2. Invertible CL terms and rCL reduction

The inverse of a history and the inverse of a classical CL term, if it exists, are closely

related. The inverse history can, to a certain degree, simulate the effects of the inverse of

a classical term. In order to establish this relation, we first show how the group structure

of the history terms interacts with the reversible reduction rules introduced before.

Lemma 2. Let X be a classical CL term, and let H ∈ H. Then

〈X | 〉 // // // 〈X ′ | H〉 iff 〈X ′ | 〉 // // // 〈X | H〉.

Proof. Provided that 〈X | 〉 // // // 〈X ′ | H〉 we have by structural rule 3

〈X | H〉 // // // 〈X ′ | H : H〉 ≡ 〈X ′ | 〉

and thus by replacing in this derivation each rule by its symmetric rule

〈X ′ | 〉 // // // 〈X | H〉.

We can now show that for classical invertible terms M, histories can be used to simulate

a reduction for the inverse M−1 given a reduction for M .

Proposition 4. Let M be an invertible term in CL. Given a history H ∈ H and two

CL terms N1 and N2 such that

〈MN1 | 〉 // // // 〈N2 | H〉.

Then there exists H ′ ∈ H such that

〈M−1N2 | 〉 // // // 〈N1 | H ′〉.

Proof. By Lemma 2 and the hypothesis 〈MN1 | 〉 // // // 〈N2 | H〉 we have

〈N2 | 〉 // // // 〈MN1 | H〉.

By structural rule 2 this reduction holds in any context, e.g. M−1, and by applying

backward rule 4 and structural rule 3 we get:

〈M−1N2 | 〉 // // // 〈M−1(MN1) | H + len(M−1)〉

// // // 〈BM−1MN1 | H + len(M−1) + 1 : B
1

0〉

= 〈(M−1 · M)N1 | H + len(M−1) + 1 : B
1

0〉

= 〈IN1 | H + len(M−1) + 1 : B
1

0〉

// // // 〈N1 | H ′〉,

Reversible CL 11

where the last reduction is by Proposition 3.

In this proof the existence of H ′ is guaranteed by Proposition 3 which allows us to trans-

late classical equivalence into reversible equivalence: From P = P ′ and PM // // N , we

can conclude classically – by exploiting extensionality – P ′M // // N for any M . Thanks

to Proposition 3 this can be translated into a similar statement in rCL: 〈PM | 〉 // // // 〈N | H〉

implies that there exists H ′ such that for any P = P ′ and any M , 〈P ′M | 〉 // // // 〈N | H ′〉.

Thus in the proof above, H ′ can be constructed as in the proof for Proposition 3.

Note that since there are many different representations of the identity, e.g. I ≡ WK or

I ≡ SKK ≡ B(B(BW)C)(BB)KK, the derivations of 〈WKM | 〉 and 〈B(B(BW)C)(BB)KKM | 〉

will result in rCL terms 〈M | H〉 and 〈M | H ′〉 with the same proper term M but with

completely different histories H and H ′. We therefore can say nothing about the concrete

nature of H ′ in the previous proposition.

4. The Groupoid Structure of Reversible Computations

A groupoid can be succinctly defined as a small category in which every morphism is

an isomorphism (Brown, 1987). This algebraic structure introduced by Brandt (Brandt,

1926) (for further details see e.g. (Renault, 1980; Weinstein, 1996; Ramsay and Renault,

2001; Brown, 1987)) naturally reflects the operational meaning of term reduction and its

reverse process. In fact, the reduction relation // // // defines a reversible computation

as an isomorphism between rCL terms.

In this section we will develop this analogy in full detail. We will refer to a definition

of groupoid as in (Brown, 1987).

Definition 5. A groupoid with base B is a set G with mappings α and β from G onto B,

a partially defined binary operation (product) (g, h) 7→ g · h = gh, and a function i from

B to G satisfying the following conditions:

1 gh is defined whenever β(g) = α(h), and in this case α(gh) = α(g) and β(gh) = β(h).

2 The product is associative: if gh and hk are defined then so are (gh)k and g(hk) and

they are equal.

3 For each b ∈ B, i(b) is the identity morphism: α(i(b)) = β(i(b)) = b.

4 Each g ∈ G has an inverse g−1 satisfying g−1g = i(β(g)), gg−1 = i(α(g)), α(g−1) =

β(g) and β(g−1) = α(g).

An element g ∈ G is often written as an arrow g : α(g) → β(g).

Groups are particular cases of groupoids, namely those where the base B contains only

a single element. In this case, we get a universal identity, left and right inverse of any

g ∈ G coincide, and the composition is defined for any two elements g and h.

Example 5 (Groups). Any group (G, •) with identity e and typical elements g, h etc.

defines a groupoid G in the following way: Take G = G and as base any one element

set B = {∗}; define α(g) = ∗ and β(g) = ∗ for all g ∈ G. The group operation “•”

is translated in the obvious way into the groupoid operation “·” via g · h = g • h. In

particular, composition is defined in this situation for any two elements g and h in

Di Pierro, Hankin, and Wiklicky 12

G = G as α(g) = ∗ = β(h). We also get a universal identity e ∈ G = G, and the inverse

g−1 ∈ G and g−1 ∈ G coincide.

The prototypical example of a groupoid which is not a group is the ‘path space’

groupoid.

Example 6 (Paths). Consider any (finite) directed graph Γ = (E, V) and denote by

s(e) and d(e) the source and the destination vertex of an edge e ∈ E. Let P be the set

of finite paths on Γ, i.e. the finite sequences π = e0e1 . . . en of edges ei ∈ E such that

two successive edges share a common vertex, i.e. d(ei) = s(ei+1) for i = 0, . . . , n− 1. We

denote the path of length zero with ε. We interpret an undirected graph as a directed

graph where every edge e ∈ E also has a reverse edge e∗ ∈ E such that s(e) = d(e∗) and

d(e) = s(e∗). We call an edge ev ∈ E with s(e) = d(e) = v a self-loop. We furthermore

define an equivalence relation between paths which have the same start and end points,

i.e. π1 ∼ π2 with π1 = e1
0e

1
1 . . . e1

n and π2 = e2
0e

2
1 . . . e2

m iff s(e1
0) = s(e2

0) and d(e1
n) = d(e2

m).

As usual we denote the set of equivalence classes by P/∼ .

We can then define a groupoid structure on the equivalence classes of paths on any

undirected graph Γ as follows: Take G = P/∼ and B = V , i.e. all vertices of Γ. Further-

more, define α(π) = s(e0) and β(π) = d(en) for any path π = e0e1 . . . en ∈ P . We can

“compose” any two paths π1 = e1
0e

1
1 . . . e1

n
and π2 = e2

0e
2
1 . . . e2

m
if and only if the ending

and beginning match, i.e. iff β(π1) = d(e1
n
) = s(e2

0) = α(π2); in which case we obtain

the path π1 · π2 = e1
0e

1
1 . . . e1

n
e2
0e

2
1 . . . e2

m
. Clearly this product is associative. The empty

path ε (or equivalently a self-loop ev) defines the identity i(v) on any vertex v. As in an

undirected graph every edge has a reverse we can define the inverse of π = e0e1 . . . en as

π−1 = e∗
n

. . . e∗1e
∗
0.

These two examples clearly illustrate the main difference between groups and groupoids:

While composition in groups is always defined we have in groupoids a “matching” condi-

tion which has to be fulfilled. In this sense groupoids are groups with “typing”. Moreover,

the fact that in a group there is a single base element makes the notion of a reverse path

in this structure quite restrictive: it only includes paths which start from point ∗ and

come back to point ∗ itself. In a groupoid such a notion can be defined between different

start and end points as long as the path can be “retraced” or “reverted”.

A groupoid model for our reversible CL allows us therefore to include reversible re-

ductions like the one in Example 3:

〈W(BXY Z)K | 〉 // // 〈(BXY Z)KK | W
4
0〉

// // 〈(X(Y Z))KK | W
4
0 : B

1
0〉

where the end and start points differ and yet the computation can be retraced backward.

This kind of computation would be excluded from a model based on a group structure;

this would only allow us to include reversible reduction like

〈W | 〉 // // 〈KWB | BK
1

0〉 // // 〈W | BK
1

0 : BK
1
0〉 = 〈W | 〉, or

〈KWB | 〉 // // 〈W | BK
1
0〉 // // 〈KWB | BK

1
0 : BK

1

0〉 = 〈KWB | 〉

that is ‘computational loops’ where the same sequence of steps are first done and then

undone in reverse order (cf. Section 3).

Reversible CL 13

Groupoids

Group Actions

Equivalence Relations

Groups

Fig. 1. Groups, Group Actions and Equivalence Relations

In our rCL model for reversible computations, we cannot talk about the inverse of a

term M per se; since 〈MN1 | 〉 and 〈MN2 | 〉 will in general reduce to different terms

〈M1 | H1〉 and 〈M2 | H2〉, an “inverse” of M would depend on the context. Instead

we have for every computational path (represented by a history H1 or H2) an inverse

computational path (represented essentially by H1 or H2). If we consider invertible terms

in CL, we can ignore the context: If a term M has an inverse term M−1 then any

execution of M−1 will undo the effects of the execution of M in any context. This means

that we only need a dummy context N such that M−1 · MN = N which correspond to

a one-element base, i.e. a group instead of a general groupoid.

In other words, while groups are convenient and natural for investigating invertible

terms (cf. (Dezani-Ciancaglini, 1976; Bergstra and Klop, 1980)), reversible computation

requires to reason about (reversible) paths with matching conditions and multiple base

points. Groupoids are therefore the natural generalisation of groups which allow us to do

this.

Besides being a generalisation of groups, groupoids can also be seen as a generalisation

of other mathematical structures, such as group actions and equivalence relations, as

shown in Figure 1 (Ramsay and Renault, 2001).

The reduction relation // // // establishes an equivalence relation on the rCL terms. We

can therefore define a model for rCL by taking the corresponding groupoid. According

to (Brown, 1987), this is given by G = G(T , // // //), where T is the set of all rCL terms

and α, β, the identity i and the product operation are defined as follows:

— G ⊆ T × T with (T, T ′) ∈ G iff T // // // T ′.

— B = T

— α((T, T ′)) = T and β((T, T ′)) = T ′

— (T, T ′) · (T ′, T ′′) = (T, T ′′)

— i(T) = (T, T)

— (T, T ′)−1 = (T ′, T).

4.1. The Actor Groupoid

We now show that the groupoid G(T , // // //) of reversible computations on rCL de-

fined above, can also be introduced via the action of the history group H on the set of

rCL terms. Intuitively, this means that each history term determines a permutation on

rCL corresponding to a reversible computation, and vice versa.

Di Pierro, Hankin, and Wiklicky 14

Given a group G with identity e and a set X , a group action of G on X is defined as a

homomorphism π of G into the automorphism group of X , i.e. π(g) ∈ Aut(X) such that

π(e) = id, where id is the identity automorphism, and π(gh)(x) = π(g)(π(h)(x)). Given

a group action π of G on X we can define a groupoid G = G(X, G, π), as follows:

— G ⊆ X × G × X with (x, g, y) ∈ G iff π(g)(x) = y.

— B = X

— α((x, g, y)) = x and β((x, g, y)) = y

— (x, g, y) · (y, h, z) = (x, hg, z)

— (x, g, y)−1 = (y, g−1, x).

This construction is due to Ehresmann (Ehresmann, 1957) and is sometimes called

actor groupoid or semi-direct product groupoid.

Consider the groupoid G defined by the action π of H on rCL given by

π(H)(〈M | H ′〉) =

{

〈N | H ′ : H〉 if 〈M | H ′〉 // // // 〈N | H ′ : H〉

〈M | H ′〉 otherwise

Proposition 5. For all H ∈ H, π(H) is a permutation on rCL.

Proof. Given an enumeration of the rCL terms, for any H ∈ H the map π(H) realises

a shift on rCL terms.

It is interesting to note that the structure of the permutation group Aut(rCL) =

{π(H) | h ∈ H} is determined by the structure of the history group. In fact, composition,

identity and inverse are defined in Aut(rCL) as π(H1)(π(H2)) = π(H2 : H1), π(ε), and

π(H) = π(H), respectively.

It is easy to verify that the groupoid G(rCL, // // //) is identical to the group action

groupoid G(rCL,H, π) defined above. In fact, we can define a groupoid isomorphism by

simply forgetting about the “connecting history”.

Proposition 6. The map δ : G(rCL,H, π) → G(rCL, // // //) defined by

δ(〈T, H, T ′〉) = 〈T, T ′〉

is a groupoid isomorphism.

Proof. The map δ is a groupoid morphism since it is compatible with the product,

head and tail maps of the two groupoids, that is we have that δ(g1g2) = δ(g1)δ(g2),

δ(α(g)) = α(δ(g)) and δ(β(g)) = β(δ(g)). Thus, we only need to show that it is injective

and surjective.

Surjective:

Let 〈T, T ′〉 ∈ G(rCL, // // //), and let T = 〈M | H ′〉 and T ′ = 〈N | H ′′〉. Then

there exists a reversible reduction T // // // T ′. By Proposition 2 we have that H ′′ =

H ′ : H for some H ∈ H. Therefore 〈T, H, π(H)(T)〉 = 〈T, H, T ′〉 is the element in

G(rCL,H, π) such that δ(〈T, H, T ′〉) = 〈T, T ′〉.

Injective:

If δ(〈T1, H1, T
′
1〉) = δ(〈T2, H2, T

′
2〉), then 〈T1, T

′
1〉 and 〈T2, T

′
2〉 identify the same ele-

ment in G(rCL, // // //). Thus, by Proposition 2 there exists a history H ∈ H such that

Reversible CL 15

〈M | H ′〉 // // // 〈N | H ′ : H〉 with T1 = T2 = 〈M | H ′〉 and T ′
1 = T ′

2 = 〈N | H ′ : H〉.

This implies that H1 = H2 must hold. Otherwise we would have:

T ′
1 = π(H1)(T1) = 〈N | H ′ : H1〉 6= 〈N | H ′ : H2〉 = π(H2)(T2) = T ′

2.

5. Conclusion

We have introduced a reversible version rCL of Combinatory Logic where terms are

enriched with a history part which allows us to uniquely replay every computational

step. We have taken an “application-oriented” approach and given prominence to the

computation features of the λ-calculus and the related theory of combinatory logic rather

than their other important aspects as a foundation of mathematics and in their pure form.

Given the well known relation between CL and the λ-calculus we can in principle

define a reversible version of the λ-calculus by exploiting the encoding of the λ-calculus

in CL. However, the variable-freeness of CL requires only a relatively simple kind of

history term as we can avoid recording details of (multiple) variable substitution, etc.

The definition of the formal semantics of rCL does not change the non-deterministic

nature of classical CL: depending on the particular reduction strategy we may get differ-

ent computational paths starting from the same term. However, as the history term not

only records “which” kind of reduction has happened, but also “where”, we are able to

define a converse transition relation (which is “going back in time”) which is deterministic

and thus allows us to reconstruct reduction sequences uniquely.

We also established a clear distinction between the closely related concepts of invert-

ibility of terms and the reversibility of computations. A term M , e.g. in CL, is invertible if

a(nother) term M−1 exists which is always able to compensate for the effects of the first

one and vice versa. In order to introduce this notion we need concepts like an identity

term I and term composition “·”. A computation is reversible, if it can be “replayed”, i.e.

it is possible to reconstruct the computational steps given the outcome. While invertible

terms form a group we need the more general notion of a groupoid to describe reversible

computations, as we can “compose” two computations only if terminal and initial term

coincide. We have shown that the computational paths of our reversible calculus can be

seen as the orbits of the history group acting on the space of rCL terms. On the other

hand, the reduction rules of the rCL calculus introduce an equivalence relation on the

terms with an associated groupoid. We have shown that the two definitions essentially

identify the same groupoid as a model for the computational paths in rCL.

Reversibility is an essential requirement for the embedding of classical computation

in Quantum Mechanics, as quantum computing devices are essentially represented by

unitary, that is invertible, transformations. The reversible combinatory logic we have

presented offers a universal model for classical reversible computation, in the sense that

every classical reversible computation corresponds to a rCL reduction and vice versa.

In the field of quantum computation this result provides an alternative high-level way

to look at reversible classical computation; this is usually described in terms of circuits

built out of a particular universal gate, namely the Toffoli gate (Nielsen and Chuang,

Di Pierro, Hankin, and Wiklicky 16

2000). The universality of rCL for classical reversible computation comes from the fact

that, as shown by the actor groupoid model, an rCL reduction effectively corresponds to

a permutation of the rCL terms. However, rCL is an extremely wasteful way to provide

reversibility and hence of no practical use as a base for any plausible implementation of

classical (irreversible) computation in a quantum mechanical setting. For this purpose

much more efficient approaches have been devised (Bennet, 1973).

A more promising direction for further work is related to the definition of a model

for rCL which is more denotational in nature. For this we aim at clarifying the relation

between reversible reductions and a particular class of linear operators, namely unitary

operators, which may serve as a base for a fixpoint semantics of rCL and similar reversible

extensions of the λ-calculus as well as for the semantics of more concrete quantum pro-

gramming languages such as those recently proposed in the literature (Gay, 2005). For

this we hope to exploit well-established results on the relation between operator algebras

(in particular C∗ algebras) and groupoids (Renault, 1980).

References

Abramsky, S. (2001). A structural approach to reversible computation. In Beauquier, D. and

Matiyasevich, Y., editors, LCCS 2001: Proceedings of the International Workshop on Logic

and Complexity in Computer Science, pages 1–16.

Abramsky, S., Haghverdi, E., and Scott, P. (2002). Geometry of interaction and linear combi-

natory algebras. Mathematical Structures in Computer Science, 12:625–665.

Barendregt, H. P. (1984). The Lambda Calculus – Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam – New

York – Oxford, revised edition.

Bennet, C. (1973). Logical reversibility of computation. IBM J. Res. Develop., 17:525–532.

Bergstra, J. and Klop, J. W. (1980). Invertible terms in the lambda calculus. Theoretical

Computer Science, 11:19–37.

Brandt, W. (1926). Über eine Verallgemeinerung des Gruppengriffes. Mathematische Annalen,

96:360–366.

Brown, R. (1987). From groups to groupoids: a brief survey. Bull. London Math. Soc., 19:113–

134.

Curry, H. B. and Feys, R. (1958). Combinatory Logic. North-Holland, Amsterdam.

Danos, V. and Krivine, J. (2004). Reversible communicating systems. In Proceedings of CON-

CUR 2004, volume 3170 of LNCS, pages 292–307. Springer Verlag.

Dezani-Ciancaglini, M. (1976). Characterization of normal forms possessing inverse in the λ −

β − η-calculus. Theoretical Computer Science, 2:323–337.

Di Pierro, A., Hankin, C., and Wiklicky, H. (2005). Probabilistic lambda-calculus and quanti-

tative program analysis. Journal of Logic and Computation, 15:159–179.

Ehresmann, C. (1957). Gattungen von lokalen Strukturen. Jahresber. Deutsch. Math.-Verein,

60:49–77.

Gay, S. (2005). Quantum programming languages. Bulletin of the EATCS, 86.

Hindley, J. R., Lercher, B., and Seldin, J. P. (1972). Introduction to Combinatory Logic, volume 7

of London Mathematical Society Lecture Note Series. Cambridge University Press.

Hindley, J. R. and Seldin, J. P. (1986). Introduction to Combinators and λ-Calculus, volume 1

of London Mathematical Society Student Texts. Cambridge University Press.

Reversible CL 17

Kitaev, A., Shen, A., and Vyalyi, M. (2000). Classical and Quantum Computation. Cambridge

University Press, Cambridge, UK.

Mundici, D. and Sieg, W. (1995). Paper machines. Philosophica Mathematica, Series III, 3(1):5–

30.

Nielsen, M. and Chuang, I. (2000). Quantum Computation and Quantum Information. Cam-

bridge University Press, Cambridge, UK.

Phillips, I. and Ulidowski, I. (2005). Operational semantics of reversibility in process algebra. In

Aceto, L. and Gordon, A., editors, Workshop on Algebraic Process Calculi: The First Twenty

Five Years and Beyond (PA ’05), number NS-05-3 in BRICS Notes Series, pages 200–203,

Bertinoro, Forli, Italy.

Ramsay, A. and Renault, J., editors (2001). Groupoids in Analysis, Geometry, and Physics,

volume 282 of Contemporary Mathematics. AMS, Providence, RI.

Renault, J. (1980). A Groupoid Approach to C∗-Algebras, volume 793 of Lecture Notes in

Mathematics. Springer Verlag, Berlin – Heidelberg – New York.

van Tonder, A. (2004). A lambda calculus for quantum computation. SIAM Journal of Com-

putation, 33(5):1109–1135.

Vitanyi, P. (2005). Time, space, and energy in reversible computing. In Proceedings of the ACM

International Conference on Computing Frontiers, Ischia, Italy. ACM.

Weinstein, A. (1996). Groupoids: Unifying internal and external symmetry. Notices of the AMS,

43(7):744–752.

