
MFCSIT 2004 Preliminary Version

Operator Algebras and the Operational
Semantics of Probabilistic Languages

Alessandra Di Pierro 1

Dipartimento di Informatica, Universitá di Pisa, Italy

Herbert Wiklicky 1

Department of Computing, Imperial College London, United Kingdom

Abstract

We investigate the construction of linear operators representing the semantics of
probabilistic programming languages expressed via probabilistic transition systems.
Finite transition relations, corresponding to finite automata, can easily be repre-
sented by finite dimensional matrices; for the infinite case we need to consider an
appropriate generalisation of matrix algebras. We argue that C∗-algebras, or more
precisely Approximately Finite (or AF) algebras, provide a sufficiently rich mathe-
matical structure for modelling probabilistic processes.

We show how to construct for a given probabilistic language a unique AF al-
gebra A and how to represent the operational semantics of processes within this
framework: finite computations correspond directly to operators in A, while infi-
nite processes are represented by elements in the so-called strong closure of this
algebra.

1 Introduction

The operational semantics of programming languages is usually phrased in
terms of the notion of transition system. Transition systems can be seen as
abstract machines which specify an interpreter for the programming language
via a binary relation on some state space.

We present a general method for transforming transition systems into an
equivalent operator-algebraic semantics. More precisely, we show how to con-
struct the semantics of a programming language as a continuous linear oper-
ator on a suitable space. This allows us to study and analyse programs using

1 The authors are partly funded by the EPSRC project S77066A “Quantitative Analysis
of Computational Resources”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Di Pierro, Wiklicky

powerful tools from functional analysis. For example, we can use an appro-
priate operator norm (which depends on the specific application) to introduce
a “measure” for the program semantics. Possible uses of such a measure are
the definition of approximate programs properties (e.g. probabilistic termi-
nation [22], security properties [18]) and a quantitative comparison between
programs, where the result needs not be boolean (programs are equivalent or
not) and can be used to define approximative notions of process equivalence
[17].

Intuitively, the idea of interpreting transition systems as matrices is very
simple. In the classical case transition relations on a set X, representing
the set of states or configurations, can be expressed by 0/1 matrices, that is
linear operators on a space representing the elements in X. By considering
matrices with generic (numerical) entries, we obtain the more general notion
of a quantitative relation, of which probabilistic relations are typical examples.

We will show that probabilistic relations which are defined on (at most
countable) infinite sets can be modelled via continuous linear operators, which
represent the elements of a C∗-algebra. The theory of C∗-algebras, introduced
by Gelfand and Naimark in the 1940s, offers an appropriate setting to deal
with recursive definitions on infinite sets, where topological considerations are
essential for the construction of a consistent general model.

We will define the semantics of probabilistic programming languages as
follows. Starting from the probabilistic transition system defining the oper-
ational semantics of the language we construct a corresponding continuous
linear operator on a Hilbert space built out of the computational states. We
will illustrate our approach by showing the construction of the operators repre-
senting the operational semantics of a simple concrete probabilistic concurrent
language, namely Probabilistic Concurrent Constraint Programming (PCCP)
[19,22].

2 Preliminaries

Basic concepts in functional analysis and operator theory can be found in [46],
[39], [6], [25]. To simplify our treatment we consider here only complex vector
spaces and algebras, i.e. we assume that the base field is C. We denote by .
the complex conjugation in C, i.e. x + iy = x− iy.

An algebra is a vector space A together with a map A×A → A denoted
by (a, b) 7→ a · b = ab, which is bi-linear — i.e. a(αb) = αab, (αa)b = αab for
α ∈ C, and (a+b)c = ac+bc, a(b+c) = ab+ac — such that a(bc) = (ab)c. An
algebra with a norm which is also sub-multiplicative, i.e. ‖ab‖ ≤ ‖a‖‖b‖, is
called a normed algebra. A normed algebra which is complete — with respect
to the metric topology induced by the norm d(x, y) = ‖x − y‖ — is called a
Banach algebra. An involutive algebra or a *-algebra is an algebra A together
with a conjugate-linear — i.e. (αa)∗ = αa∗ for α ∈ C, and (a+b)∗ = a∗+b∗ —
mapA → A denoted by a 7→ a∗, such that a∗∗ = a and (ab)∗ = b∗a∗. A Banach

2

Di Pierro, Wiklicky

*-algebra is a complete normed involutive algebra such that ‖a∗‖ = ‖a‖.

Definition 2.1 A C∗-algebra is a Banach *-algebra such that: ‖a∗a‖ = ‖a‖2.

A norm (seminorm) which fulfills the condition ‖a∗a‖ = ‖a‖2 is called a
C∗-norm (C∗-seminorm).

A simple example of a C∗-algebra is the set Mn of finite dimensional n×n
complex matrices. The scalar multiplication, addition and algebra product
are the usual ones for matrices. The C∗-norm of a ∈ Mn is given by the
square root of the spectral radius ρ — i.e. the largest eigenvalue — of a∗a:
‖a‖2 = ρ(a∗a).

Other examples of C∗-algebras include the complex numbers, C, the al-
gebra of complex-valued continuous functions on a compact space X with
pointwise operations, C(X), and the algebra B(H) of bounded linear opera-
tors on a Hilbert spaceH. A linear operator T on a Hilbert spaceH is bounded
if its operator norm is bounded, i.e. if we have ‖T‖ = sup‖x‖=1 ‖T(x)‖ < ∞,
where the supremum is over all x ∈ H with norm 1. It can be shown that a
linear operator T on H is continuous if and only if it is bounded [6, Prop 1.1].
The involution on the C∗-algebra B(H) is the adjoint operation on B(H);
given an operator T there exists a unique element T∗ ∈ B(H) such that
〈T∗x, y〉 = 〈x,Ty〉, with x, y ∈ H and 〈·, ·〉 is the inner product in H [34,
Thm 2.4.2]. T∗ is called the adjoint of T.

C∗-algebras are particularly well behaved operator algebras from a topo-
logical viewpoint; in fact they are all isomorphic to a sub-algebra of B(H) (e.g.
[25, Thm 2.2.1 & 5.4.1]).

Proposition 2.2 (Gelfand-Naimark) Any C∗-algebra is isometrically *-
isomorphic to a C∗-subalgebra of some B(H). If the C∗-algebra is separable
then H can be taken to be separable.

A topological space is separable if it contains a countable dense subset,
that is a set with a countable number of elements whose closure is the entire
space. For normed spaces A such as C∗-algebras and Hilbert spaces separa-
bility means in particular that there exists a countable set S ⊆ A such that
for all ε > 0 and all a ∈ A, there exists b ∈ S such that ‖a− b‖ < ε.

All infinite dimensional separable C∗-algebras can therefore be represented
as C∗-subalgebras of B(`2) since every separable Hilbert space is isomorphic
to the “standard” Hilbert space (see e.g. [34, Cor 2.2.13]) of infinite vectors:

`2 = `2(N) = {(xi)i∈N | xi ∈ C :
∑
i∈N

|xi|2 < ∞},

with standard norm defined as ‖x‖2 = ‖(xi)i∈N‖2 =
√∑

i∈N |xi|2.
It is common to distinguish between abstract C∗-algebras which we denote

by A, B, etc. with elements a, b, . . . ∈ A and concrete C∗-algebras, i.e. C∗-
algebras which are given as C∗-subalgebras of some B(H) and whose elements
are linear bounded operators denoted by A,B, . . . ∈ B(H).

3

Di Pierro, Wiklicky

Apart from the norm topology there are several other important topolo-
gies on the concrete C∗-algebra B(`2) [9, Sect I.6]). In the norm topology a
sequence of operators (An)n in B(`2) converges uniformly if there exists an
operator A ∈ B(`2) such that limn→∞ ‖An −A‖ = 0. In the strong operator
topology a sequence of operators (An)n converges strongly if there exists an
A ∈ B(`2) such that for all x ∈ `2: limn→∞ ‖Anx−Ax‖ = 0. The strong op-
erator topology is weaker than the uniform or norm topology, i.e. convergence
in the norm implies convergence in the strong topology but not vice versa.
We write limAn for the uniform limit and s-limAn for the strong limit. We
denote by As

the strong closure of A, i.e. the smallest strongly closed set
containing A, see e.g. [9, Section I.6].

Given an operator M ∈ B(`2), consider a sequence of (orthogonal) pro-
jections Pn : `2 → `2 onto the first n coordinates of `2, that is operators
such that P2

n = Pn = P∗
n. We call Mn = PnMPn a finite section of M. It

corresponds effectively to taking the n × n sub-matrix in the upper left cor-
ner of the matrix representing M. The sequence (Mn)n is an approximating
sequence for M in the sense that M is the strong limit of this sequence, i.e.
M = s-limMn = s-limn→∞ PnMPn (see e.g. [2, Sect 2.1]. This so called finite
section method can be utilised in the analysis of infinite dimensional operators
via finite approximations.

A special class of C∗-Algebras are the Almost Finite C∗-Algebras or AF al-
gebras, first introduced by Bratteli [3]. AF algebra are separable C∗-algebras
constructed as the inductive limit of a sequence of finite dimensional C∗-
algebras. By Theorem III.1.1 in [9], every finite dimensional C∗-algebra is
a unital C∗-algebra. A unital C∗-algebra is a C∗-algebra with a unit, i.e. an
element e such that a · e = e · a = a for all a ∈ A. It is always possible
to embed a non-unital C∗-algebra in a unital one by considering the vector
space A+ = A⊕C and defining: (i) the algebra product by (a1, λ1)(a2, λ2) =
(a1a2 + λ1a2 + λ2a1, λ1λ2), (ii) the involution by: (a, λ)∗ = (a∗, λ), and (iii)
a C∗-norm ‖(a, λ)‖ = sup‖b‖≤1 ‖ab + λb‖. The unit for A ⊕ C is given by
e = (o, 1), where o is the neutral element of the addition in A. The alge-
bra A+ is referred to as the unitisation of A. The map A → A+ defined by
a 7→ (a, 0) is an injective homomorphism which identifies A as an ideal of A+

[39, Sec 1.2].

The construction of the inductive limit of C∗-algebras is given for example
in [25, Sect 3.10] or [45, Appendix I]. Consider a sequence of finite dimensional
C∗-algebras {An}n∈N and unital *-homomorphisms ϕij : Aj → Ai such that
ϕik ◦ϕkj = ϕij for j < k < i. Then, ignoring the topological structure of each
An in the sequence and considering them as simple *-algebras, there exists a
universal algebraic object A∞ = lim

−→
An of the same type as all An’s, called the

algebraic inductive limit of this sequence of algebras, and canonical morphisms

4

Di Pierro, Wiklicky

ϕi : Ai → A∞ such that the following diagram commutes whenever i < i:

Ai
ϕi //

ϕji

��

A∞

Aj

ϕj

=={{{{{{{{

and A∞ =
⋃
n∈N ϕn(An). This object is universal in the category of *-algebras.

A concrete construction of the algebraic inductive limit A∞ can be done
as follows:

• construct A∞ as the set of all sequences of operators (ai)i where (i) ai ∈ Ai,
(ii) there exists an i0 such that for all i > i0 we have ai = ϕi0i(ai0), i.e. the
sequence eventually stabilises,

• define the *-algebra operations on this set as follows: α(ai)i = (αai)i, (ai)i+
(bi)i = (ai + bi)i, (ai)i · (bi)i = (ai · bi)i, and (ai)

∗
i = (a∗i)i.

We can now turn this *-algebra into a C∗-algebra by defining an appropriate
C∗-norm. In general there is no immediate norm on A∞, but we can define a
C∗-seminorm as follows:

‖(ai)i‖ = lim
i
‖ai‖.

The existence of this limit is guaranteed by the fact that *-homomorphisms
between C∗-algebras are norm-decreasing hence continuous (cf. e.g. Corol-
lary 2.1.5 in [25]). A C∗-algebra can be now constructed in two steps:

• Consider the set N = {(ai)i | ‖(ai)i‖ = 0}, and construct the quotient
*-algebra A∞/N . On this quotient the above C∗-seminorm defines a C∗-
norm.

• construct the completion of A∞/N with respect to this C∗-norm.

In other words, an AF algebra is the completion of an algebra of sequences
of elements in finite dimensional algebras. The inductive limit lim

−→
Ai is some-

times also denoted by
⋃
iAi, or by A1 →ϕ12 A2 →ϕ23 A3 →ϕ34 . . .

Example 2.3 The compact operators or completely continuous operators K =
K(`2) on the Hilbert space `2 form a non-unital C∗-algebra. The unitisation
K+ = K ⊕ C of K results in an AF algebra.

As in [9, Ex III.2.3] this can be constructed as the direct limit, lim
−→

(Mn⊕
C), of the algebras Mn ⊕ C where the connecting unital *-homomorphisms
ϕn+1,n : Mn ⊕ C →Mn+1 ⊕ C are given by:

ϕn+1,n(a⊕ λ) =

 a 0

0 λ

⊕ λ =


a 0 0

0 λ 0

0 0 λ

 .

5

Di Pierro, Wiklicky

3 Linear Representations of Transition Relations

A transition relation is a binary relation → ⊆ S × S on the set S of the
program states, aka configurations. This notion is at the base of the definition
of the operational semantics of programming languages, e.g. Plotkin’s SOS
semantics [40]. We will concentrate on probabilistic transition relations which
are used in the context of probabilistic programming languages.

In general, a probabilistic relation on a set X is a subset R ⊂ X× [0, 1]×X
such that pr(x) = 1 for all x ∈ X, where pr(x) =

∑
{p | (x, p, y) ∈ R and y ∈

X}. We will assume that X is a countable set. The normalisation condition
above makes a probabilistic transition relation closely related to the transition
matrix of a discrete time Markov chain [44]. A generalisation of this notion
to uncountable state spaces requires a measure-theoretical treatment as done
in [24,11].

Probabilistic transition relations on a set X can be characterised in terms
of linear operators as follows. We first have to lift X to a vector space.

Definition 3.1 The vector space V(X) over a set X is the set of formal linear
combinations,

∑
x∈X cxx, of elements in X with coefficients cx ∈ C which we

can represent as possibly infinite sequences in C indexed by elements in X:

V(X) = {(cx)x∈X | cx ∈ C} .

We can interpret a probabilistic relation R on X, as a function R : X×X →
[0, 1] by adding all the weights associated to the same pair (x, y) ∈ X × X,
i.e. R(x, y) =

∑
(x,p,y)∈R p.

The matrix representing a probabilistic relation R ⊆ X × [0, 1] × X is
defined by:

(MR)xy =

 p iff R(x, y) = p

0 otherwise

This is a stochastic matrix, that is a positive matrix where the entries in
each row sum up to one.

For finite sets X of cardinality n, the representation of a probabilistic rela-
tion as a linear operator on V(X) is a n×n matrix. Since V(X) is isomorphic
to the n-dimensional complex vector space Cn, the topological structure of
the space of n × n matrices is unique [26, 1.22] and every linear operator is
automatically continuous.

For infinite (countable) sets, however, the algebra of infinite matrices which
we obtain this way is topologically “unstable” [30]. The algebra of infinite
matrices has no universal topological structure and the notions of linearity
and continuity do not coincide. It is therefore difficult to define the limit of a
sequence of infinite matrices in a general way. To overcome this problem, we
will restrict our attention to relations which can be represented as elements
of a C∗-algebra.

6

Di Pierro, Wiklicky

By the Gelfand-Naimark theorem (cf. Theorem 2.2), we can consider con-
crete bounded operators on the standard Hilbert space `2(X) ⊆ V(X). The
algebraic structure of a C∗-algebra allows for exactly one norm topology [39,
Cor. 2.1.2], and thus offers the same advantages as the linear algebra of finite
dimensional matrices.

Our aim is to identify probabilistic relations which can be represented not
just as linear operators but also as continuous linear operators in B(`2(X)),
since continuity is a usual requirement for a semantics.

Given a set X and a probabilistic relation R ⊆ X × [0, 1] ×X on X, the
range or orbit of an element x ∈ X is the set, R(x) = {y | ∃n ∈ N : (x, p, y) ∈
Rn with p > 0}, of elements which are related to x via R, R2, R3, etc. By Ri,
with i ∈ N we denote the i-th iterative application of R. This is defined by

R1 = {(x, 1, x) | x ∈ X},
Ri = Ri−1 ·R,

where ‘·’ is the composition of two probabilistic relations; this is defined for
all relations R and Q on X by:

R ·Q = {(x, p, y) | ∃ z ∈ X,∃ q1, q2 ∈ [0, 1] such that

(x, q1, z) ∈ Q and (z, q2, y) ∈ R and p = q1q2}.
In terms of the operational semantics Ri corresponds to all those states which
are reachable in exactly i steps. Thus R(x) encodes the elements y ∈ X which
are in the reflexive transitive closure of R — i.e. are reachable from x via a
path of any length in the transition system R. The orbit restriction, R(x),
of R to the range of x is given by R(x) = R|R(x) = {(u, p, v) | u, v ∈ R(x)}.
If R is a transition relation, then the sub-relation R(x) encodes the possible
transitions starting with x — i.e. the execution tree of x.

Proposition 3.2 Given a countable set X and a probabilistic relation R ⊆
X × [0, 1] × X, then we can construct an AF algebra A(R) such that the
operator representations MR|Y of R restricted to any finite subset Y of X are
elements in A(R).

Proof. In order to construct the algebra A(R), we can follow the general
construction of AF algebras as inductive limit of finite dimensional C∗-algebras
(cf. Section 2). In fact, the following construction corresponds exactly to the
construction of the algebra of the compact operators K shown in Example 2.3.

The algebra A(R) is defined using single step operators, represented by
matrix units Exy in the space of the n×n matrices Mn defined by: (Exy)st = 1
iff s = x and t = y, and (Exy)st = 0 otherwise.

• Consider an enumeration ι of X and define Xn = {x ∈ X | ι(x) ≤ n}.
• Define the C∗-algebra, An ⊆ Mn, generated by the set: {Exy | (x, p, y) ∈

R|Xn for some p > 0}.
• Transform An in the unital C∗-algebra A+

n ⊆Mn ⊕ C.

7

Di Pierro, Wiklicky

• Construct the standard unital *-homomorphisms ϕn+1,n : A+
n → A+

n+1 as

ϕn+1,n : a⊕ λ 7→

 a 0

0 λ

⊕ λ.

• Define A(R) as the inductive limit of these finite dimensional algebras

A(R) = lim
−→

A+
n .

As any finite subset Y of X is contained in some Xn, we have that

MR|Y =
∑
x,y∈Y

pxy · Exy,

with 〈x, pxy, y〉 ∈ R. Finally, we note that MR|Y ∈ An as all the Exy’s are in
An. 2

Corollary 3.3 Given a countable set X and a probabilistic relation R ⊆ X×
[0, 1]×X, then A(R) is a C∗-subalgebra of K+ = K ⊕ C.

Proof. Since by [9, Ex III.2.3] lim
−→
M+

n = K ⊕ C, and by Proposition 3.2 we

have that

A(R) = lim
−→

A+
n ⊆ lim

−→
M+

n = K ⊕ C.

2

The construction of A(R) depends on a particular enumeration ι of X and
we could obtain different algebras A(R) if we used a different enumeration.
However, we can show that the construction of A(R) is independent of the
enumeration. There is a criterion to decide if two sequences generate the
same AF algebra (cf. [3, Thm 2.7], [9, Thm III.3.5], [41, Ex 6.8]). Given two
AF algebras

A ' A1
ϕ21 //A2

ϕ32 //A3
ϕ43 // . . .

B ' B1
ψ21 //B2

ψ32 //B3
ψ43 // . . .

if there exist *-homomorphisms αmi,ni
: Ani

→ Bmi
and βni+1,mi

: Bni
→ Ami+1

such that the diagram

An1

ϕ //

α

!!C
CC

CC
CC

CC
CC

CC
C An2

ϕ //

α

!!C
CC

CC
CC

CC
CC

CC
C An3

ϕ //

α

!!C
CC

CC
CC

CC
CC

CC
C An4

ϕ //

α

 B
BB

BB
BB

BB
BB

BB
BB

. . .

Bm1

ψ //

β

OO

Bm2

ψ //

β

OO

Bm3

ψ //

β

OO

. . .

commutes, then A ' B. For a probabilistic transition relation on a countable
set we can always construct these *-homomorphisms.

Proposition 3.4 Given a countable set X and a probabilistic relation R ⊆
X × [0, 1]×X on X, the AF algebra A(R) is unique (up to *-isomorphism).

8

Di Pierro, Wiklicky

In other words, the AF algebra A(R) characterises the relation R. The
AF algebra obtained this way also allows us to describe the expressiveness of
programming languages (preliminary ideas on this were presented in [5]).

Under certain conditions, we can represent all orbit restrictions R(x) of a
probabilistic transition relation R (including the infinite ones) by operators

in the strong closure, A(R)
s
, of A(R). In order to show this formally in

Theorem 3.6 we need some preliminary definitions and results which we state
in the following.

For a state x ∈ X in a probabilistic transition relation R on a countable set
X we denote by out-deg(x) the number of successors of x, i.e. the cardinality
of the set:

{y | (x, p, y) ∈ R with p > 0},
and by in-deg(x) the number of predecessors of x, i.e. the cardinality of the
set:

{y | (y, p, x) ∈ R with p > 0}.
A probabilistic transition relation R with finite out-deg(x) for all x ∈ X is
usually called a finitely branching probabilistic transition relation. We will
require that a transition systems satisfy a stronger property, namely that
supy∈X in-deg(y) < ∞. We will call such systems strongly finitely branching.

Proposition 3.5 Let X be a countable set and let R be a probabilistic transi-
tion relation on X such that supy∈X in-deg(y) < ∞ and supy∈X out-deg(y) <
∞. Then the operator representation MR of R defines a bounded linear oper-
ator, i.e. we have MR ∈ B(`2(X)).

Proof. In the following we will use the shortcut M for MR. We show that
for all v = (vs)s∈X ∈ `2(X)) such that ‖v‖2 = 1, we have ‖M(v)‖2 < ∞. We
have that

‖M(v)‖2
2 =

∞∑
j=1

(
∞∑
i=1

Mijvi)
2.

Let m = sups∈X in-deg(s) and n = sups∈X out-deg(s). This means that in
each column i of M there are at most m(i) ≤ m non-zero entries Mf1(i)i,
Mf2(i)i, . . .Mfm(i)i. The functions f1, . . . , fm are functions picking out the
non-zero entries in each column i in decreasing order, i.e. we assume that
vf1(i) ≥ vf2(i) ≥ . . . ≥ vfm(i)(i). Since Mij ≤ 1 for all i, j, we get:

‖M(v)‖2
2 =

∞∑
j=1

(

m(j)∑
i=1

Mfi(j)jvfi(j))
2 ≤

∞∑
j=1

(

m(j)∑
i=1

vfi(j))
2 ≤

∞∑
j=1

(mvf1(j))
2

Since sups∈X out-deg = n < ∞, we have that for every row k the number
of i’s such that f1(i) = k cannot be greater than n. We therefore have:

‖M(v)‖2
2 ≤ m2

∞∑
j=1

v2
f1(j) ≤ m2n

∞∑
k=1

v2
k = nm2‖v‖2

2.

9

Di Pierro, Wiklicky

Therefore, ‖M‖2 = sup‖v‖2=1 ‖M(v)‖2 ≤ nm2 < ∞. 2

Theorem 3.6 Given a countable set X and a strongly finitely branching prob-
abilistic transition relation R ⊆ X×[0, 1]×X such that supy∈X in-deg(y) < ∞,
let A(R) be the AF algebra associated to R. Then the operator representations
MR(x) of all orbit restrictions R(x) of R, for x ∈ X are elements in the strong

closure A(R)
s

of A(R).

Proof. By Proposition 3.5, MR(x) is bounded. Therefore, by applying the
finite section method we can construct MR(x) as the strong limit of its finite
sections (MR(x))n. Since each finite section is of the form MR|Y for some finite
set subset Y of X, by Proposition 3.2 we have that (MR(x))n ∈ A(R) for all

n, and therefore MR(x) = s-lim(MR(x))n ∈ A(R)
s
. 2

This result introduces a new way to look at the semantics of program-
ming languages which lends itself to a more “quantitative” approach towards
program analysis and reasoning about programs. Current work has already
shown this view to be particularly appropriate in many areas such as concur-
rency and security analysis. For example, the use of a linear operator based
operational semantics allows us to provide quantitative estimations of the re-
sult of process equivalences and program properties as well as of the result of
a given static analysis [17,15,13,14,18].

This general method of defining an algebra of operators for expressing the
meaning of a program can be instantiated to any particular programming
language or process calculus whose operational semantics can be defined via a
transition system (e.g. in the Plotkin SOS style). Adequacy results can then
be established showing the relationship with the original standard operational
semantics. We will illustrate this in the next section where we consider as an
example a declarative constraint-based programming language.

4 A Probabilistic Language and its Operator-algebraic
Semantics

We apply the approach described in the previous section to the definition
of an operator semantics for a simple probabilistic language. The language
we consider is Probabilistic Concurrent Constraint Programming (PCCP),
which was introduced in [19,22] as a probabilistic version of the Concurrent
Constraint Programming (CCP) paradigm [42]. This language can be seen as
a kind of “process algebra” enhanced with a notion of “computational state”,
referred to as “store”. These states are ordered by an entailment relation `
(also denoted by w), and all computations lead to sequences of stores which
are monotone with respect to `. Other systems for probabilistic constraint
programming can be found in the literature, e.g. [28,29], for which a linear
operator semantics can be defined in a similar way as for PCCP.

The syntax and the basic execution model of PCCP are based on the

10

Di Pierro, Wiklicky

central notion of a generic constraint system C. Following [43], a constraint
system is modelled as a complete algebraic lattice in which the ordering v is
the reverse of the the entailment relation (c v d means that d contains “more
information” than c). The top element false represents inconsistency, the bot-
tom element true is the empty constraint, and the least upper bound (lub)
t represents the join of information, i.e. the logical and. In order to model
hiding of local variables and parameter passing in constraint programming,
in [43] the notion of constraint system is enriched with cylindrification oper-
ators and diagonal elements, concepts borrowed from the theory of cylindric
algebras [31] (see [42,10] for more details). The combined use of the cylindri-
fication operators and diagonal elements allow us to model variable renaming
by representing φ[y/x] as the formula ∃x(δxy tφ). In fact, if cylindrification is
interpreted as the first-order existential operator, and δxy as equality between
x and y, then ∃x(δxy t φ) has precisely the meaning of the formula derived
from φ by replacing all the free occurrences of x by y.

The syntax of a PCCP agent is given by the following grammar, where c
and ci are finite constraints in C, and pi and qi are real numbers representing
probabilities:

A ::= stop | tell(c) | n
i=1 ask(ci) → pi : Ai | ‖ni=1 qi : Ai | ∃xA | p(x).

The two probabilistic operators of PCCP are represented by the probabilis-
tic choice construct and a form of probabilistic parallelism, which replaces the
pure nondeterministic scheduler by a probabilistic one in the interleaving se-
mantics of CCP. The language also provides a construct, ∃xA, for expressing
locality.

4.1 Operational semantics

The operational model of PCCP can be intuitively described as follows: All
processes share a common store consisting of the least upper bound, denoted
by t, (with respect to the inverse v of the entailment relation) of all the
constraints established up to that moment by means of tell actions. These
actions allow for communication. Synchronisation is achieved via an ask guard
which tests whether the store entails a given constraint. The probabilistic
choice construct allows for a random selection of one of the different possible
synchronisations making the program similar to a stochastic process like a
random walk [27].

The operational semantics of PCCP is defined in terms of a probabilistic
transition system, (Conf,−→p), where Conf is the set of configurations 〈A, d〉
representing the state of the system at a certain moment and the transition
relation −→p is defined in Table 1. The state of the system is described by the
agent A which has still to be executed, and the common store d. The index
p in the transition relation indicates the probability of the transition to take
place. The rules in Table 1 are closely related to the ones for nondeterministic
CCP [10], and we refer to [22] for a more detailed description. The rules R2

11

Di Pierro, Wiklicky

and R3 for probabilistic choice and prioritised parallelism involve a normal-
isation process needed to re-distribute the probabilities among those agents
Ai which can actually be chosen for execution. Such agents must be enabled
(i.e. the corresponding guards ask(ci) succeed) or active (i.e. able to make
a transition). We will consider the agent stop to be not active, although in
our operational model we will define it as an agent looping on itself (see Sec-
tion 4.2). The probability after normalisation is denoted by p̃j and is defined
by

p̃j =
pj∑
i pi

,

where the sum
∑

pi
is over all enabled agents (i.e. those for which cj is entailed

by the store d) for R2, while for R3 it is over all the active ones (i.e. those
which can make a transition and are not the stop agent. There might occur
the situation where all enabled/active agents have probability zero; in this
case the normalisation will consist in the assignment of a uniform distribution
to the enabled/active agents (see [22] for further details). The meaning of rule
R4 is intuitively explained by saying that the agent ∃dxA behaves “almost” like
A, with the difference that the variable x which is possibly present in A must
be considered local, and that the information present in d has to be taken
into account. The semantics of a procedure call p(x), modelled by Rule R5,
consists in the execution of the agent A defining p(x) with a parameter passing
mechanism similar to call-by-reference: the formal parameter x is linked to the
actual parameter y in such a way that y inherits the constraints established on
x and vice-versa. This is realised in a way to avoid clashes between the formal
parameter and occurrences of y in the agent via the operator ∆x

y defined by:

∆x
yA = ∃dxy

y A if x 6= y and ∆x
yA = A if x = y.

4.2 Observables

The operational semantics introduced above allows us to define various notions
of observables. We will consider observables which correspond to the I/O
behaviour of a program. More precisely, we will consider for an agent A, the
results of all finite and infinite computations starting with configuration 〈A, d〉
(typically 〈A, true〉, where true is the constraint representing the empty store)
with their associated probability. Formally, these results can be represented
as pairs 〈c, p〉, where c is the “final” store (i.e. the least upper bound of the
partial constraints established at each step of the computation) and p is the
product of the single step probabilities. If there is more than one computation
leading to the same constraint, then we have to sum up all the probabilities
coming from each such computation.

We will treat finite and infinite computations in a uniform way by defin-
ing a finite computation as an infinite one where there is a loop on the last
configuration 〈stop, cn〉 −→1 〈stop, cn〉, for some n < ∞.

Definition 4.1 Let A be a PCCP agent. A computational path π for A in

12

Di Pierro, Wiklicky

R1 〈tell(c), d〉 −→1 〈stop, c t d〉

R2
〈 n

i=1 ask(ci) → pi : Ai, d
〉
−→p̃j

〈Aj, d〉 j ∈ [1, n] and d ` cj

R3
〈Aj, c〉 −→p

〈
A′
j, c

′〉
〈‖ni=1 pi : Ai, c〉 −→p·p̃j

〈
‖nj 6=i=1 pi : Ai ‖ pj : A′

j, c
′〉 j ∈ [1, n]

R4
〈A, d t ∃xc〉 −→p 〈A′, d′〉〈

∃dxA, c
〉
−→p

〈
∃d′x A′, c t ∃xd′

〉
R5 〈p(y), c〉 −→1

〈
∆x
yA, c

〉
with p(x) : −A ∈ P

Table 1
The Transition System for PCCP

store d is defined by π ≡ 〈A0, c0〉 −→p0 〈A1, c1〉 −→p1 . . . −→pi−1
〈Ai, ci〉 −→

. . . ,where A0 = A, c0 = d. A path π is finite if for some n < ∞, we have that
Aj = stop and cj = cn for all j ≥ n.

We denote by πn the n-step prefix of a path π and by Comp(A, d) the set
of all computational paths for A in the initial store d.

Definition 4.2 Given an agent A and an initial store d, we define the n-step
partial results Resn(A, d) of A in store d as the multiset:

〈
n⊔
i=0

ci,
n∏
i=0

pi

〉∣∣∣∣∣∣ there exists π ∈ Comp(A, d) such that:

πn = 〈A, d〉 −→p0 〈A1, c1〉 . . . −→pn−1 〈An, cn〉

 .

The n-step observables for A in d are then defined as the aggregated n-step
partial results:

On(A, d) = {〈c, p〉 | c ∈ C and p =
∑

〈c,pj〉∈Resn(A,d)

pj}.

Since PCCP programs evolve monotonically, for finite computations
⊔n
i=0 ci

corresponds exactly to the final constraint cn. For infinite computation we are
interested in observing the behaviour of programs which do not terminate
and yet compute more and more refined approximations to a (infinite) limit
constraint. This is captured by the definition of a notion of operational ob-
servables in terms of the limit of finite approximations in the norm topology
of the Hilbert space on the constraint system.

Lemma 4.3 Each On(A, d) is a vector in the Hilbert space `2(C) on the con-
straint system.

13

Di Pierro, Wiklicky

Proof. By definition a vector in `2(C) must satisfy
∑

c∈C p2
c < ∞. since every

On has only finitely many non-zero probabilities, the sum of the squares of
these probabilities is therefore finite. 2

Definition 4.4 Given an agent A and an initial store d, we define the ob-
servables of A in store d as the partial function O : Conf → `2(C)

O(A, d) = lim
n→∞

On(A, d),

where lim is the limit in the Hilbert space `2(C) i.e. the vector which satisfies
limn→∞‖On(A, d)−O(A, d)‖ = 0.

Note that there are programs for which this limit does not exist, that is
programs whose infinite behaviour does not represent the gradual construction
of an infinite object. Typical examples are infinite deterministic programs
(see Example 4.5). Note also that this notion of observables does not in
general correspond to the pointwise limit of the distributions On(A, d). For
finite computations — i.e. results obtained by finite observation — `2 and
pointwise convergence always coincide; however, in the infinite case we obtain
two different notions of infinite observables.

Example 4.5 Consider the following PCCP program:

p(x) : − 1 : ∃y(tell(x = s(y)) ‖ 0 : p(x)).

We have that for all n ∈ N, On(p(x), true) = {〈∪ni=1∃yi
(x = s(yi)), 1〉}, and

it is easy to check that the sequence (On(p(x), true))n∈N does not converge in
the `2 norm topology, while its pointwise limit is the zero vector (0, 0, 0, . . .).

4.3 Linear Representation

The probabilistic transition relation −→p on the countable set of configura-
tions Conf corresponds to an AF algebra A(−→p) which we can construct in
the way described in Section 3. From Proposition 3.2 we see immediately that
the execution tree of a terminating program can be represented by an operator
in A(−→p). For infinite programs we can construct an operator in the strong
closure of A(−→p) by Proposition 3.6, provided that the conditions of finite
supy∈X in-deg(y) and supy∈X out-deg(y) are satisfied.

We have to distinguish the construction of F ∈ lim
−→

Ai = A(−→p) repre-

senting the full SOS semantics of PCCP, i.e. the relation −→p, and F〈A,d〉 ∈
lim
−→

A〈A,d〉
i representing only the transition tree for A executed in d, or in other

words, the restriction of −→p to the orbit of 〈A, d〉 (i.e. configurations reach-
able from 〈A, d〉).

Each A〈A,d〉
i is the algebra generated by the matrix units representing the

transitions occurring in the computational tree for 〈A, d〉 including only the
configurations with index j ≤ i in a fixed enumeration of configurations. The
restriction of −→p to configurations reachable from 〈A, d〉 and with index

14

Di Pierro, Wiklicky

j ≤ i is represented by the operator F
〈A,d〉
i ∈ A〈A,d〉

i . Each such operator

can be represented by an i × i matrix and implements a linear map F
〈A,d〉
i :

`2(Ci) → `2(Ci) with Ci = {c ∈ C | ι(〈A′, c〉) ≤ i, 〈A′, c〉 ∈ Conf}. Note that
`2(Ci) ' V(Ci) as |Ci| is finite and by Corollary 2.2.13 in [34] all Hilbert spaces
with finite dimension n are isomorphic to Cn. By choosing an enumeration ι
we can show the following:

Proposition 4.6 Let π ∈ Comp(A, d) be a computational path for 〈A, d〉,
i.e. π = 〈A, d〉 −→p1 〈A1, c1〉 −→p2 . . . −→pi

〈Ai, ci〉 −→pi+1
. . ., and let

F
(A,d)
i ∈ A(A,d)

i . Then for all i, we have:

P〈Ai,ci〉(F
〈A,d〉
i (̂〈Ai−1, ci−1〉)) = pi,

where 〈̂A, c〉 represents the vector in `2(Conf) with all coefficients zero except
an entry one for the 〈A, c〉-th coefficient and P〈A,c〉 : `2(Conf) → C extracts
the ι(〈A, c〉)-th coordinate of a vector in `2(Conf).

Intuitively this means that we can reconstruct every path in Comp(A, d)

from the sequence of the F
〈A,d〉
i .

We denote by Vc : `2(Conf) → `2(C) the map extracting the constraint
part of configurations, i.e. Vc : (〈〈Ak, ck〉 , pk〉)k → (

〈
cl,

∑
ck=cl

pk
〉
)l. It fol-

lows that the i-th front of the execution of A in d is given by Oi 〈A, d〉 =

Vc((F
〈A,d〉
i)i 〈A, d〉). Therefore, we have the following result.

Theorem 4.7 (Correspondence) For all agents A and initial stores d:

O(A, d) = lim
n→∞

Vc(F(A,d))n(〈̂A, d〉)).

We illustrate these constructions in the following example.

Example 4.8 [Infinite computations] Consider the following program:

nat(x) : − true → 1
2

: tell(x = 0)

true → 1
2

: ∃y(1
2

: tell(x = s(y)) ‖ 1
2

: nat(y)).

We will use the following shorthand notation for the constraints involved
x = 0 ≡ 0, x = s(0) ≡ 1, x = s(s(0)) ≡ 2, . . .∃yx = s(y) ≡ ∗, and
we enumerate the relevant configurations as follows: ι(〈nat(x), true〉) = 1,
ι(〈nat(yn), ∗〉) = 2n + 1 for n ≥ 1, and ι(〈stop, n〉) = 2n + 2 for n ≥ 0 (with
yn denoting the n-th local y, so that y0 ≡ x).

To construct an operator representing the operational semantics starting
from the initial configuration 〈nat(x), true〉 we consider the following sequence

15

Di Pierro, Wiklicky

of n× n matrices Fn, n ≥ 1:

(
0
)

,

 0 1
2

0 1

 ,


0 1

2
1
2

0 1 0

0 0 0

 ,


0 1

2
1
2

0

0 1 0 0

0 0 0 1
2

0 0 0 1

 ,



0 1
2

1
2

0 0

0 1 0 0 0

0 0 0 1
2

1
2

0 0 0 1 0

0 0 0 0 0


,



0 1
2

1
2

0 0 0

0 1 0 0 0 0

0 0 0 1
2

1
2

0

0 0 0 1 0 0

0 0 0 0 0 1
2

0 0 0 0 0 1


, . . .

In general we have:

(Fn)i,j =


1
2

for i = 2k + 1 ∧ (j = 2k + 2 ∨ j = 2k + 3) with 0 ≤ k ≤ n/2

1 for i = 2k = j with 0 ≤ k ≤ n/2

0 otherwise

This corresponds to an iterative expansion of the infinite derivation tree:

•1

•2 •3

•4 •5

•6 . . .

•1

1
2 ��
•2

1

22 •3

•4 •5

•6 . . .

•1

1
2 ��

1
2

 @
@@

@@
@

•2

1

22 •3

•4 •5

•6 . . .

•1

1
2 ��

1
2

 @
@@

@@
@

•2

1

22 •3

1
2 ��
•4

1

22 •5

•6 . . .

•1

1
2 ��

1
2

 @
@@

@@
@

•2

1

22 •3

1
2 ��

1
2

 @
@@

@@
@

•4

1

22 •5

•6 . . .

•1

1
2 ��

1
2

 @
@@

@@
@

•2

1

22 •3

1
2 ��

1
2

 @
@@

@@
@

•4

1

22 •5

1
2 ��
•6

1

22 . . .

We construct for each of these matrices the corresponding finite dimen-
sional unital C∗-algebras A〈nat,true〉+

i ' A〈nat,true〉
i ' Mi. The inductive limit

is given by:

A〈nat,true〉 = lim
−→

A〈nat,true〉+
i = lim

−→
Mi = K.

Importantly, the sequence (Fi)i does not eventually stabilise, i.e. the se-

quence (Fi)i is not itself an element in the algebraic direct limit A〈nat,true〉
∞ .

The sequence (Fi)i also does not converge in the uniform topology. This se-
quence thus does not represent (i.e. converge to) an operator in the (norm)

closure A〈nat,true〉
∞ = A〈nat,true〉.

16

Di Pierro, Wiklicky

However, the sequence (Fi)i converges in the strong topology, i.e. there
exists an operator F ∈ B(`2(Conf)) such that for all vectors ~x ∈ `2(Conf)
we have: limi→∞ ‖F(~x) − Fi(~x)‖2 = 0. The operator F in B(`2(Conf)) is
represented by the infinite matrix:

(F)i,j =


1
2

for i = 2k + 1 ∧ (j = 2k + 2 ∨ j = 2k + 3) with k = 0, 1, 2, . . .

1 for i = 2k = j with k = 0, 1, 2, . . .

0 otherwise

In other words, the operational semantics of 〈nat, true〉 is represented by the
strong limit:

s- lim
i→∞

Fi = F ∈ A〈nat,true〉s.

The initial configuration 〈nat, true〉 is represented by ~x0 = (1, 0, 0, 0, . . .) ∈
`2(Conf). The iterations of F give us the following sequence of vectors:

F1(~x0) = (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, . . .)

F2(~x0) = (0, 1/2, 0, 1/4, 1/4, 0, 0, 0, . . .)

F3(~x0) = (0, 1/2, 0, 1/4, 0, 1/8, 1/8, 0, . . .)

.

It is easy to see that this sequence converges in the norm topology on `2(Conf);
in fact, we have that limi→∞ Fi(~x0) = ~x = (xi)i

with x2k = 1
2k and x2k+1 = 0 for all k = 1, 2, From this vector ~x in

`2(Conf) we can obtain a vector Vc(~x) ∈ `2(C) which represents exactly the
operational observables:

O(nat, true) = {〈0, 1/2〉 , 〈1, 1/4〉 , 〈2, 1/8〉 , . . .}.

Example 4.9 Consider the program p(x) of Example 4.5. By fixing an
enumeration of the constraint system C in which constraints {∪ni=1∃yi

(x =
s(yi))}n∈N get successive numbers, the linear operator associated to p(x) is
the unital shift on N whose matrix representation is given by:

Sij =

 1 if j = i + 1

0 otherwise.

It is easy to check that ‖S‖ = 1, as we have for all vectors ~x ∈ `2(Conf),
‖S(~x)‖ = ‖~x‖, and thus S ∈ B(`2). By Proposition 3.6, we have therefore
that S is in the strong closure of A(−→p).

However, the sequence obtained by iteratively applying S does not converge
in the `2 norm. In fact, starting for example from vector ~x0 = (1, 0, 0, 0, 0, . . .),

17

Di Pierro, Wiklicky

representing constraint true, we get the following sequence of vectors:

S0(~x0) = (1, 0, 0, 0, 0, . . .) = ~x0

S1(~x0) = (0, 1, 0, 0, 0, . . .) = ~x1

S2(~x0) = (0, 0, 1, 0, 0, . . .) = ~x2

S3(~x0) = (0, 0, 0, 1, 0, . . .) = ~x3

.

i.e. (~xi)j =

 1 if i = j

0 otherwise

This sequence does not form a Cauchy sequence, as ‖~xi−~xk‖2 =
√

2 whenever
i 6= j, that is there is no vector ~x ∈ `2 such that lim ‖~x−~xi‖2 = 0. This reflects
the fact that, as shown in Example 4.5, p(x) does not have infinite observables
as O(p(x), true) is not defined.

5 Conclusions and Related Work

We presented a characterisation of probabilistic transition relations in terms
of linear operators. We identified AF algebras as suitable domains for repre-
senting relations when the state spaces are countably infinite. The framework
presented here allows for the application of novel techniques and methods
— borrowed from diverse areas like symbolic dynamics [37], algebraic graph
theory [1] and in particular (topological) Markov Chains [8] — in order to
understand and analyse the semantics of probabilistic languages. This frame-
work constitutes a base for the application of operator algebraic techniques to
language semantics and program analysis.

Our work on linear structures in semantics has originally been motivated
by an attempt to develop a quantitative version of static program analysis ex-
tending the classical Cousot & Cousot approach of Abstract Interpretation [7].
The resulting framework, Probabilistic Abstract Interpretation (PAI,[21,23]),
is based on the notion of the so called Moore-Penrose pseudo inverse which
replaces the order theoretic concept of a Galois connection. In particular,
within the PAI setting we are able to analyse the precision of an abstraction
in quantitative terms [23]. The PAI framework allowed us to relate probabilis-
tic bisimulation with probabilistic abstractions [17] and to recast it in a way
which closely resembles the original notion of “lumpability” for Markov chains
[35]. While the original formulation of PAI had been given in terms of finite
dimensional vector spaces and matrices, it is the C∗-algebra setting presented
here which provides a convenient setting for PAI in infinite dimensions [2].

Our linear operator approach proved useful in the area of security where we
were able to introduce approximate notions of confinement based on various
notions of observations [18,13].

One can argue that C∗-algebras constitute a much too large mathematical
structure than actually needed, in particular because of the use of complex
numbers as a base field. Even for probabilistic languages one obviously needs
only real numbers as weights to indicate transition probabilities; thus the
infinitely many non-selfadjoint operators in a complex C∗-algebra do not cor-

18

Di Pierro, Wiklicky

respond in any way to probabilistic programs. Furthermore, in effect only
weights in the interval [0, 1] are of relevance and we have to consider only
stochastic operators.

However, our aim in this paper has been the identification of a “working”
infinite dimensional generalisation of finite dimensional matrix algebras in
order to provide a mathematical framework for quantitative reasoning about
general, i.e. recursive, programs. Arguably, complex C∗-algebras constitute
the most extensively studied class of such operator algebras. Furthermore,
their theory is commonly considered to be much simper than that of their
real counterparts; this is essentially due to the “algebraic closedness” of C
established by the fundamental theorem of algebra: every complex polynomial
of degree n has exactly n (not necessarily different) complex roots.

It would of course be possible to look for minimal (C∗-algebraic) structures,
for example, by considering so-called real C∗-algebras, or by allowing just
rational numbers as the base field, as suggested in [38], where the authors
investigated such a kind of “commutative C∗-algebras”. Nevertheless, all these
structures are naturally embedded in general complex C∗-algebras. Complex
C∗-algebras are even general enough to accommodate quantum computational
models, i.e. complex “probability amplitudes”. We leave it to future work to
identify smaller and more specialised C∗-models needed.

The linear operator approach outlined here is intended as a quantitative
alternative to order or domain theoretic approaches commonly considered in
semantics and program analysis. Our aim was to establish a relatively simple
mathematical model for computational processes in probabilistic languages.
As our focus was on the operational and not on the denotational semantics
of probabilistic programs, we did not consider C∗-algebras as probabilistic
domains in the sense of, for example, [32] and [33]. However, it might be worth
noting that strongly closed C∗-algebras, i.e. von Neumann or W∗-algebras,
also carry an interesting order theoretic structure (cf. [4, Thm 2.4.21]), which
we aim to investigate as a future work. We are confident that this study
will clarify the relation between classical domain theory and our operator
algebraic setting. In particular, it provides a base for a comparison with
recent approaches applying domain theoretic concepts to Labelled Markov
Processes, e.g. [12,11].

We also aim to investigate in future how to formulate a compositional se-
mantics in an AF algebraic setting. Furthermore, we would like to shed more
light on the problem of how a Hilbert space setting, i.e. `2(S), is related to
a Banach space setting, i.e. `1(S) — which a priori might seem to provide
a more appropriate structure for investigating probabilistic languages [36,20].
An important feature of the `2(S) framework is the fact that it is self-dual
(reflexive), which means that we can investigate observables and computa-
tional states as elements of the same space; in the `1 approach observables are
naturally located in the dual space `∞. One would expect that the differences
between the two approaches will become important only when it comes to

19

Di Pierro, Wiklicky

infinite observables given that, contrary to the infinite case, we have a unique
topology for finite dimensional vector spaces.

References

[1] Biggs, N., “Algebraic Graph Theory,” Cambridge University Press, 1993.

[2] Böttcher, A. and B. Silbermann, “Introduction to Large Truncated Toeplitz
Matrices,” Springer Verlag, 1999.

[3] Bratteli, O., Inductive limits of finite dimensional C∗-algebras, Transactions of
the AMS 171 (1972), pp. 195–234.

[4] Bratteli, O. and D. Robinson, “Operator Algebras and Quantum Statistical
Mechanics,” Springer Verlag, 1979.

[5] Brogi, A., A. Di Pierro and H. Wiklicky, Linear embedding for a quantitative
comparison of language expressiveness, in: Proceedings of QAPL’01, ENTCS
59:3 (2002).

[6] Conway, J., “A Course in Functional Analysis,” Springer Verlag, 1990.

[7] Cousot, P. and R. Cousot, Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints, in:
Proceedings of POPL’77, 1977, pp. 238–252.

[8] Cuntz, J. and W. Krieger, A class of C∗-algebras and topological Markov chains,
Inventiones Mathematicae 56 (1980), pp. 251–268.

[9] Davidson, K., “C*-Algebras by Example,” AMS, 1996.

[10] de Boer, F., A. Di Pierro and C. Palamidessi, Nondeterminism and Infinite
Computations in Constraint Programming, Theoretical Computer Science 151
(1995), pp. 37–78.

[11] Desharnais, J., A. Edalat and P. Panangaden, Bisimulation for labelled markov
processes, Information and Computation 179 (2002), pp. 163–193.

[12] Desharnais, J., R. Jagadeesan, V. Gupta and P.Panangaden, The metric
analogue of weak bisimulation for probabilistic processes, in: Proceedings of
LICS’02, 2002, pp. 413–422.

[13] Di Pierro, A., C. Hankin and H. Wiklicky, Measuring the confinement of
probabilistic systems, Theoretical Computer Science To appear.

[14] Di Pierro, A., C. Hankin and H. Wiklicky, Quantitative static analysis of
distributed systems, Journal of Functional Programming To appear.

[15] Di Pierro, A., C. Hankin and H. Wiklicky, Approximate confinement under
uniform attacks, in: Proceedings of SAS’02, LNCS 2477 (2002), pp. 310–325.

20

Di Pierro, Wiklicky

[16] Di Pierro, A., C. Hankin and H. Wiklicky, Measuring the confinement of
concurrent probabilistic systems, in: Proceedings of WITS’03, IFIP WG 1.7,
2003.

[17] Di Pierro, A., C. Hankin and H. Wiklicky, Quantitative relations and
approximate process equivalences, in: Proceedings of CONCUR’03, LNCS 2761
(2003), pp. 508–522.

[18] Di Pierro, A., C. Hankin and H. Wiklicky, Approximate Non-Interference,
Journal of Computer Security 12 (2004), pp. 37–81.

[19] Di Pierro, A. and H. Wiklicky, An operational semantics for Probabilistic
Concurrent Constraint Programming, in: ICCL’98 (1998), pp. 174–183.

[20] Di Pierro, A. and H. Wiklicky, Probabilistic Concurrent Constraint
Programming: Towards a fully abstract model, in: Proceedings of MFCS’98,
LNCS 1450 (1998), pp. 446–455.

[21] Di Pierro, A. and H. Wiklicky, Concurrent Constraint Programming: Towards
Probabilistic Abstract Interpretation, in: Proceedings of PPDP’00, 2000, pp.
127–138.

[22] Di Pierro, A. and H. Wiklicky, Quantitative observables and averages
in Probabilistic Concurrent Constraint Programming, in: New Trends in
Constraints, LNCS 1865 (2000), pp. 212–236.

[23] Di Pierro, A. and H. Wiklicky, Measuring the precision of abstract
interpretations, in: Proceedings of LOPSTR’00, LNCS 2042 (2001), pp. 147–
164.

[24] Doberkat, E.-E., The converse of a stochastic relation., J. Log. Algebr. Program.
62 (2005), pp. 133–154.

[25] Fillmore, P., “A User’s Guide to Operator Algebras,” John Wiley & Sons, 1996.

[26] Greub, W., “Linear Algebra,” Springer Verlag, 1967, third edition.

[27] Grinstead, C. and J. Snell, “Introduction to Probability,” AMS, 1997.

[28] Gupta, V., R. Jagadeesan and P. Panangaden, Stochastic processes as
concurrent constraint programs, in: Proceedings of POPL’99, 1999, pp. 189–202.

[29] Gupta, V., R. Jagadeesan and V. Saraswat, Probabilistic concurrent constraint
programming, in: Proceedings of CONCUR ’97, LNCS 1243 (1997), pp. 243–
257.

[30] Halmos, P., “A Hilbert Space Problem Book,” Springer Verlag, 1982.

[31] Henkin, L., J. Monk and A. Tarski, “Cylindric Algebras (Part I),” North-
Holland, 1971.

[32] Jones, C. and G. Plotkin, A probabilistic powerdomain of evaluations, in:
Proceedings of LICS’89, 1989, pp. 186–195.

21

Di Pierro, Wiklicky

[33] Jung, A. and R. Tix, The troublesome probabilistic powerdomain, in: Third
Workshop on Computation and Approximation, ENTCS 13 (1998), p. 23.

[34] Kadison, R. and J. Ringrose, “Fundamentals of the Theory of Operator
Algebras: Volume I – Elementary Theory,” AMS, 1997.

[35] Kemeny, J. G. and J. L. Snell, “Finite Markov Chains,” D. Van Nostrand, 1960.

[36] Kozen, D., Semantics for probabilistic programs, Journal of Computer and
System Sciences 22 (1981), pp. 328–350.

[37] Lind, D. and B. Marcus, “An Introduction to Symbolic Dynamics and Coding,”
Cambridge University Press, 1995.

[38] Mislove, M., J. Ouaknine, D. Pavlovic and J. B. Worrell, Duality for labelled
Markov processes, in: Proceedings of FOSSACS’04, LNCS 2987 (2004), pp.
393–407.

[39] Murphy, G., “C∗-Algebras and Operator Theory,” Academic Press, 1990.

[40] Plotkin, G., A structured approach to operational semantics, Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University (1981).

[41] Rørdam, M., F. Larsen and N. Lausten, “An Introduction to K-Theory for
C∗-algebras,” LMS Student Texts 49, Cambridge University Press, 2000.

[42] Saraswat, V., M. Rinard and P. Panangaden, Semantics foundations of
concurrent constraint programming, in: Proceedings of POPL’91, 1991, pp. 333–
353.

[43] Saraswat, V. A. and M. Rinard, Concurrent constraint programming, in:
Proceedings of POPL (1990), pp. 232–245.

[44] Seneta, E., “Non-negative Matrices and Markov Chains,” Springer Verlag, 1981.

[45] Wegge-Olsen, N., “K-Theory and C∗-Algebras,” Oxford University Press, 1993.

[46] Yosida, K., “Functional Analysis,” Springer Verlag, 1980.

22

	Introduction
	Preliminaries
	Linear Representations of Transition Relations
	A Probabilistic Language and its Operator-algebraic Semantics
	Operational semantics
	Observables
	Linear Representation

	Conclusions and Related Work
	References

