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Abstract

We introduce a quantitative approach to the analysis of distributed systems which relies
on a linear operator based network semantics. A typical problem in a distributed setting
is how information propagates through a network, and a typical qualitative analysis is
concerned with establishing whether some information will eventually be transmitted from
one node to another node in the network. The quantitative approach we present allows to
obtain additional information such as an estimation of the probability that some data is
transmitted within a given interval of time.

We formalise situations like this using a probabilistic version of a process calculus which
is the core of KLAIM, a language for distributed and mobile computing based on interac-
tions through distributed tuple spaces. The analysis we present exploits techniques based
on Probabilistic Abstract Interpretation and is characterised by compositional aspects
which greatly simplify the inspection of the nodes interaction and the detection of the
information propagation through a computer network.

1 Introduction

With increasing faults and attacks on the Internet infrastructure and with society
moving increasingly towards reliance on “e”, there is an urgent need to develop
techniques to analyse network and service vulnerability under organised attacks or
with respect to unintentional faults. Within the last year, the world had to recover
from at least three major “e-epidemics”. One concerned the SoBig.F virus that has
led to our mailboxes being cluttered with junk (but dangerous) mail; the Economist
(30 August 2003) estimated that some 500,000 machines were infected at the peak
of the epidemic. The second one involved the Blaster worm which was intended to
mount a distributed denial of service attack on a Microsoft web page. Most recently
the Mydoom worm has been in the news. These three were just the latest in a long
line of high profile viruses/worms to infect the Internet.

In this paper we propose a framework for network (vulnerability) analysis where
static analysis techniques are used to predict the properties of a distributed system.
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These techniques are based on a formalisation of the system in a suitable program-
ming language provided with a mathematically rigorous operational semantics. A
novel aspect of this analysis is to be found in its quantitative approach. In recent
years, such an approach is gaining more prominence over the traditional qualitative
one. In particular, aspects related to the probabilistic description and analysis of
systems seem to become important to allow for a more realistic analysis. This is due
to several factors. One of these is the difficulty or impossibility to obtain an exact
description or analysis — for example because of the size or interconnectedness of
these systems — while an approximate solution to these problems looks achievable;
another reason is the need to guarantee not only functional but also non-functional
properties of systems: besides the question of whether a certain service will (even-
tually) be provided, it is practically useful to ask also for a certain performance
level, e.g. that the response time for a database enquiry is within certain limits.

Computer security is where a quantitative approach has proved to be particu-
larly well-suited. Since perfect security is often unachievable, a more realistic way
to address security problems would ask questions such as how much protection ef-
fort leads to what kind of security level, e.g. expected average damage. This leads
to a quantitative risk or vulnerability analysis rather than an absolute security
certification.

In previous work (Di Pierro et al., 2002; Di Pierro et al., 2004a; Di Pierro et al.,
2003) we have been looking into the issue of quantifying the confinement level of
concurrent systems based on a quantitative analysis of their behaviour. The aim
of this paper is to extend this approach to distributed systems by developing a
semantics based framework for the quantitative analysis of computer networks. As
an example we will look at the problem of how information is being disseminated
in distributed systems, addressing not only the problem whether some information
will eventually be transmitted from one node in a network to another one, but also
the probability that this will happen within a given number of time steps.

If one thinks of the information transmitted as of some malicious code — a com-
puter virus or worm — then this kind of quantitative analysis effectively addresses
the question of how fast a computer virus with a certain infection mechanism will
spread in a network with a given topology. The intention is that such an analysis
will allow for the identification of weaknesses of certain network topologies with
respect to some infection mechanisms.

As an illustrative example, consider the scenario described by the following net-
work (assuming that all nodes in each layer are fully connected to each other):
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Obviously, if the three nodes in the middle layer are virus-resistant then the
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infection will never spread from the top network to the lower network. If one node
in the middle layer can be infected, then it is a matter of time until the infection
spreads to the lower part. The question is how long it will take in the average. If
there are two un-protected nodes in the middle layer then it should go faster, etc.
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This scenario reflects quite closely, although in a simplified way, one of the main
problems with the structure of today’s worldwide network. As reported in (Albert
et al., 2000), a study has shown that the Internet’s reliance on a few key nodes
makes it especially vulnerable to organised attacks by hackers and terrorists. The
rate at which the virus spreads is essential in a real world situation as it might
determine the time given to system managers to react and to put counter-measures
in place.

In order to answer quantitative questions such as the one in the above example
we will use static analysis techniques based on Probabilistic Abstract Interpretation
(PAI) (Di Pierro & Wiklicky, 2000). This requires that we represent the collecting
semantics of a network as a linear operator. Starting from such a concrete semantics
— usually represented by a highly complex matrix — the PAI technique allows us
to define a simplified abstract, so-called induced semantics on which we can base
our analysis with a guarantee of optimality: the abstract results we get are the
closest in quantitative terms to the concrete ones. This is guaranteed by the use of
a mathematical structure (the Moore-Penrose pseudo-inverse) which can be seen
as the analogue of a Galois connection — which is essential in the formulation of
classical Abstract Interpretation (Cousot & Cousot, 1977) — in a linear algebraic
setting. The possibility of defining a “safe” abstract semantics is particularly essen-
tial in a distributed setting where the presence of interaction and communication
mechanisms between different local semantics makes it intrinsically quite complex
to analyse the semantics of the overall network.

We will show how the use of a particular construction, namely the tensor prod-
uct, for modelling probabilistic node composition at the concrete level allows for a
“compositional” definition of the abstract induced semantics which greatly simpli-
fies the analysis: Each single node can be analysed individually, while the properties
of the tensor product and of the PAI technique ensure that we can get a correct ab-
stract analysis of the overall network by simply composing the abstract individual
analysis of each node.

The paper is organised as follows. We start with a formal description of a net-
work of active nodes. Rather than invent a new language for this purpose we have
adopted KLAIM (Kernel Language for Agents Interaction and Mobility) (De Nicola
et al., 1998). This is an experimental language that was designed for programming
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distributed systems. We identify a simple core language and propose a probabilis-
tic extension to this core. The language together with its Structural Operational
Semantics is presented in the next section.

We introduce some background material and present the linear operator seman-
tics for pcKLAIM in Sections 3 and 4. Probabilistic Abstract Interpretation is intro-
duced in Section 5. The semantics of networks is expressed using tensor products;
in Section 6 we investigate how tensors and probabilistic abstract interpretation
interact and show that nodes can be individually analysed and the results then
combined without loss of precision — this provides the basis for a compositional
approach to analysis. The final main section (Section 7) of the paper constructs an
analysis of the simple infection scenario discussed above.

2 Probabilistic Core KLAIM

We define a probabilistic version of core KLAIM (Bettini et al., 2003), a restricted
version of KLAIM (De Nicola et al., 1998), which has no higher order features and
simple parameter passing rather than the more sophisticated, Linda-like pattern
matching mechanism of the full language. A probabilistic version of the full KLAIM
language (without sub-nets) has been presented in (Di Pierro et al., 2004c).

The original KLAIM language was designed for the programming of distributed
systems. A KLAIM program is a network of located processes and data. The located
data represents a distributed tuple space. The fact that we will not consider higher
order features for the time being is part of the reason for our decision to use KLAIM
as the basis for our formalisation and not various probabilistic versions of, for
example, the π-calculus (Priami, 1995; Herescu & Palamidessi, 2000).

In our restricted model, processes can only in(put) and out(put) data and nodes
are only capable of storing a single datum. Thus each node may be considered to be
a pair consisting of a process and a store which is either empty or contains a single
“token”. In this restricted setting the data are localities, that is network references
of nodes or subnets, although in a more realistic calculus structured data might be
desirable.

We introduce probabilities in two distinct ways: firstly through the scheduler
at both the network and local level and secondly through probabilistic allocation
environments which, at the local level, map locality variables to distributions over
localities.

In order to keep things as simple as possible we will consider only a discrete
time version, i.e. at each time step only one process will be executed according to
the scheduling probability. This leads to a simple discrete Markov chain model. Al-
though this introduces some element of synchronicity, communication is still asyn-
chronous as in and out actions do not communicate directly with each other.

2.1 Syntax

The syntax of pcKLAIM networks is defined in Table 1, where the data D and
processes P are defined in Table 2 and Table 3 respectively.
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N ::= ‖m
i=1 ni composition

n ::= l ::p% P process node

| l ::p D data node

| l ::p N subnet

Table 1. pcKLAIM Network Syntax

D ::= 〈〉 empty store

| 〈l〉 located data

Table 2. pcKLAIM Data Syntax

Localities and Locality Names. We call a node simple if it is not a subnet. We use
l (possibly subscripted or primed) as a metavariable to represent localities, drawn
from L and representing network addresses. We assume that each locality l ∈ L is
used to indicate at most one physical location; in our syntax this corresponds to the
parallel composition of at most one process node and at most one data node, or to
a subnet. We allow for the omission of nodes with trivial processes or empty stores,
i.e. we avoid to explicitly introduce in a network term nodes of the form l ::p% nil and
l ::p 〈〉. Our model allows for subnetted networks, where portions of the network
share the same address. Thus, localities are either a simple network reference (as in
the original KLAIM) or a compound reference. For two-level networks, a compound
locality is of the form l.l′, where l refers to a subnet and l′ to a node in the subnet.
The form of a compound locality reflects the splitting of the host portion of an IP
address into a subnet portion and a host portion usually achieved via an address
mask. According to the syntax in Table 1 a compound locality l.l′ is the locality
associated to a node of the form:

l :: (. . . ‖ l′ ::% P ‖ . . .) or l :: (. . . ‖ l′ :: D ‖ . . .)

Analogously, for a simple node in a k-level subnetted network, the associated
compound locality is of the form l.l1.l2. · · · .lk−1, meaning that the node is in a
subnet at lk−2 which is part of a subnet at lk−3, and so on.

Locality variables, U , are ranged over by x, y, z. Locality names, N = L ∪ U ,
are represented by ` (again possibly subscripted or primed).

Scheduling Probabilities. The global scheduling probability of the nodes in a (sub-
)network, as well as the local scheduling probability of parallel processes running
at the same node, and the local probabilistic choice of the locality addressed by an
action are defined as distributions on localities, i.e. functions d : L → [0, 1] which
we denote by

d = {〈l1, p1〉 , . . . , 〈ln, pn〉}
with pi ∈ [0, 1] and

∑n
i=1 pi = 1. The probability of scheduling a node or a subnet

is specified by the superscript p in the syntax of nodes. If a process node l ::p% P
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P ::= nil null process

| delay.P delay action prefix

| out(`′)@`.P output action prefix

| in(x)@`.P input action prefix

| |ni=1 qi : Pi probabilistic parallelism

| A process call

Table 3. pcKLAIM Process Syntax

and a data node l ::p D share the same locality l then they must also have the same
probability p. For a given net N = ‖m

i=1ni the probabilities pi associated to the nodes
ni define a probability distribution on localities. We assume that

∑m
i=1 pi = 1; this

can always be achieved by (static) normalisation. We will write N [d] to denote a
network N with a prescribed distribution d on its localities.

We call D the set of all locality distributions and we denote by u the uniform
distribution. For a network N [u] we will sometimes use a shorthand notation where
we omit the superscript p in the specification of nodes.

Allocation environments % associate distributions over localities to locality vari-
ables, i.e. % : U → D. We extend % to a function on N by defining %(l) for l ∈ L as
the distribution which associates 1 to the locality l and 0 to any other locality in
L. It is useful to introduce the following insert operation on distributions over N ,
which defines the composition of distributions associated to nested sub-nets. Let
% = {〈si, pi〉}i∈I and σ = 〈tj , qj〉}j∈J be two distributions over N . Then we define
σ �z % as

(σ �z %)(sk) =
{

%(sk) if k ∈ I \ {z}
%(sk)σ(tj) if k = z and j ∈ J.

This operation defines the probability associated to a compound locality l1.l2. · · · .lk
as the product of the probabilities associated to the single localities li, i = 1, 2, . . . , k.
In fact, if % is the distribution associated to a network N and σ = 〈tj , qj〉}j∈J the
distribution associated to a subnet N ′ of N located at sz, then σ �z % defines the
probability of the compound localities sz.tj , for all j ∈ J .

Processes. The syntax of pcKLAIM process terms is given in Table 3. The parame-
ter x in an input action prefix will be bound to a locality when the action succeeds,
that is when some data is present at the node associated to the selected locality
`. Symmetrically, an output action succeeds when the addressed node contains the
empty store. The parameter `′ of an out can be either a (simple or compound)
locality or any prefix of a compound locality; in this case the information sent is
a subnet reference rather than a simple node address. Alternatively, `′ in an out
might be a bound variable, that is a variable x which occurs in an action prefix
in(x)@`.P . We will also omit the target address in an out or an in process when
it refers to the same node where the process is located; thus, the notation out(x)
and in(x) will stand for out(x)@self and in(x)@self , where self is (a reference
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to) the locality of the node the process is executed at. Moreover, we will write a`

to refer to an action of the form out(`′)@` or in(x)@`.
The probabilistic parallel operator schedules the sub processes according to the

probabilities qi. We do not require that the numbers qi specify directly a distribu-
tion: normalisation procedures which we introduce later will achieve this. This al-
lows programmers to specify “relative scheduling priorities”, e.g. 1 : P1 | 2 : p2 | . . .

specifies that the scheduler will select P2 with twice the probability of P1 (pro-
vided both processes are “active”) independently of other processes which might
run in parallel with these two. The process call syntax admits the possibility of
defining named parameterless processes which may then be invoked — invocation
is essentially macro substitution.

In order to define the semantics of a pcKLAIM program, it is useful to introduce
the notion of a network in normal form. A pcKLAIM network term is in normal
form if there is no local parallelism and there are no subnets. More formally this is
defined as follows.

Definition 1
A pcKLAIM network term N = (‖m

i=1 ni)[d] is in normal form if for all i, ni is a
simple node, that is ni ≡ l ::%i

Q or ni ≡ l :: D, and processes Q are defined by the
restricted syntax

Q ::= nil | delay.Q | out(`′)@`.Q | in(x)@`.Q

In the next section we will show that every pcKLAIM network can be reduced
to a normal form.

2.2 Operational Semantics

In the following we will denote by env(n) the environment ρ at node n, and by
addr(n), data(n) and proc(n) respectively the locality, the data and the process at
node n.

We define the operational semantics of pcKLAIM by means of a structural con-
gruence ≡ and a probabilistic transition relation −→p. The first relation allows us
to identify two networks which “behave” in the same way although syntactically
different and is defined by the rules in Table 4. The second relation represents the
dynamical evolution of a pcKLAIM program and is defined by the rules in Table 5.

The congruence rules in Table 4 establish that nil is the unit for the probabilistic
parallel operator, rule C1, that process invocation is a macro substitution, rule
C2, and that the order of composition of nodes in a network is immaterial, rule
C3. Rule C4 defines the distribution resulting from nested probabilistic parallel
compositions of subnets. The last rule, C5, equates probabilistic parallelism with
the creation of a subnet whose nodes contain each a process which was an operand
of the parallel operator.

The congruence rules of Table 4 allows us to transform every pcKLAIM network
into an equivalent one in normal form.

Proposition 1
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C1 l ::p% P ≡ l ::p% (q1 : P | q2 : nil)

C2 l ::p% A ≡ l ::p% P
with the declaration A :−P

C3 ‖i∈S ni ≡ ‖i∈S nπ(i)

for any permutation π : S → S

C4 (‖i∈S\{j} ni ‖ lj :: (‖k∈T nk)[d′])[d] ≡ (‖i∈S\{j} ni‖(‖k∈T lj .lk :: nk))[d′ �j d]

C5 (‖i∈S\{j} ni ‖ lj ::p% Pj)[d] ≡ (‖i∈S\{j} ni ‖ lj ::p Nj [d
′])[d]

with Pj = |mk=1 qk : Pk and Nj = ‖m
k=1 lk ::

qk
% Pk,

lk fresh localities, and
d′(lk) = qk, for k = 1 . . . m and d′(l) = 0 otherwise

Table 4. Congruence on pcKLAIM terms

For every pcKLAIM network term N there exists a pcKLAIM network term N ′ in
normal form such that N ≡ N ′.

Proof
By using rule C5, we transform N in an equivalent network N̄ with no local par-
allelism. Then using C4 we lift each node in a subnet at level k up to the previ-
ous level k − 1. More formally, we proceed by structural induction. Suppose that
N̄ ≡ (‖m

i=1 ni)[d] and there exists j ∈ [1,m] such that nj ≡ l :: N ′′. Since by the
inductive hypothesis N ′′ is in normal form, by applying C4 iteratively to N̄ (note
that we have only finite nesting of sub-networks) we get N ′ which is also in normal
form and equivalent to N .

The normal form of a network is obviously only unique up to permutation, be-
cause of congruence C3 in Table 4. In the following we will assume a particular
normal form of a network obtained by fixing an enumeration of the localities in N ′.

Example 1
The following pcKLAIM program

l1 ::
(

1
4

: out(l1)@l2 |
3
4

: out(l2)@l2

)
‖ l2 :: 〈〉

represents a network of two nodes. Since the first node contains a parallel process
this network is not in normal form, but we can rewrite it as follows:

l1 :: (
1
4

: out(l1)@l2 |
3
4

: out(l2)@l2) ‖ l2 :: 〈〉 ≡

≡ (l1 :: (
1
4

: out(l1)@l2 |
3
4

: out(l2)@l2) ‖ l2 :: 〈〉)[u]

≡ (l1 :: (l′1 :: out(l1)@l2 ‖ l′2 :: out(l2)@l2)[d] ‖ l2 :: 〈〉)[u]

≡ (l1.l′1 :: out(l1)@l2 ‖ l1.l
′
2 :: out(l2)@l2 ‖ l2 :: 〈〉)[d′]

with distributions:

u(l1) =
1
2

and u(l2) =
1
2
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d(l′1) =
1
4

and d(l′2) =
3
4

The distribution d′ is therefore given by

d′(l1.l′1) =
1
4
· 1
2

=
1
8

d′(l1.l′2) =
3
4
· 1
2

=
3
8

d′(l2) =
1
2
.

The network reduction is described for normalised networks N with associated
distribution d by the rules in Table 5 which define the probabilistic transition
relation −→p. The probability p of a single step transition depends on both the
global scheduling d and the local probabilistic choice defined by the environment
at each node n in N . If ` is the name addressed in a out or in action a on some
node n ≡ l ::% a.P , then executing such an action leads to a new configuration of
the whole network with a probability given by the distribution d̃(l) · (%̃(`)) obtained
via a normalisation process as follows. We will write n ∈ N to denote that n is a
node in the network N , that is N = (‖m

i=1 ni)[d] and n = ni for some i ∈ [1,m].
Define the set of active nodes

ActiveN = {n ∈ N | n ≡ l ::% a`.P and Activea(%, `) 6= ∅},

where Activea(%, `) is defined for a = delay, a = out and a = in respectively by:

Activedelay(%, `) = {n ∈ N}
Activeout(%, `) = {n ∈ N | n ≡ l :: 〈〉 and %(`)(addr(n)) 6= 0}
Activein(%, `) = {n ∈ N | n ≡ l :: 〈l′〉 , l′ ∈ L and %(`)(addr(n)) 6= 0}.

Consider the probability defined by

Gprob =
∑

{d(l′) | l′ = addr(n), n ∈ ActiveN}.

Then the normalised distribution d̃ is defined as d̃(l) = d(l)
Gprob .

The normalisation of the distribution %(`) assigned to a locality name ` by a local
environment % depends on the particular action a being performed and is defined
in a similar way, namely (%̃(`))(l) = %(`)(l)

Lprob , where

Lprob =
∑

{%(`)(l′) | l′ = addr(n), n ∈ ActiveOut}

if a is of the form out(l′′)@`, and

Lprob =
∑

{%(`)(l′) | l′ = addr(n), n ∈ ActiveIn}

if a is of the form in(x)@`.
The transition relation −→p is defined on network terms in normal form. We

assume that each node may contain at most one process term and/or one data
term. We identify l ::ρ P ≡ l ::ρ P ‖ l :: 〈〉 and l :: 〈l′〉 ≡ l :: nil ‖ l :: 〈l′〉.

We now present a number of simple examples. We have omitted the allocation
environment when the process contains no locality variables.
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R1 (‖i∈S\j ni ‖ lj ::% delay.P )[d]

d̃(lj)

// (‖i∈S\j ni ‖ lj ::% P )[d]

R2 (‖i∈S\{j,s} ni ‖ lj ::% out(l′)@`.P ‖ ns)[d]

d̃(lj)(%̃(`))(ls)

// (‖i∈S\{s,j} ni ‖ lj ::% P ‖ ls :: 〈l′〉)[d]

if ns ∈ Activeout(%, `j) with addr(ns) = ls

R3 (‖i∈S\{s,j} ni ‖ lj ::% in(x)@`.P ‖ ns)[d]

d̃(lj)(%̃(`))(ls)

// (‖i∈S\{s,j} ni ‖ lj ::% P [l′/x] ‖ ls :: 〈〉)[d]

if ns ∈ Activein(%, `j), addr(ns) = ls and data(ns) = 〈l′〉

R4
N ≡ N1 N1 p

// N2 N2 ≡ N ′

N
p
// N ′

Table 5. The transition system for pcKLAIM

Example 2
Consider the normal form of the network in Example 1

N = (l1.l′1 :: out(l1)@l2 ‖ l1.l
′
2 :: out(l2)@l2 ‖ l2 :: 〈〉)[d′]

where d′ is the distribution

d′ = {
〈

l1.l
′
1,

1
8

〉
,

〈
l1.l

′
2,

3
8

〉
,

〈
l2,

1
2

〉
}.

Since ActiveOut = {l2 :: 〈〉}, we have that ActiveN = {l1.l′1 :: out(l1)@l2, l1.l
′
2 ::

out(l2)@l2}. By applying R2 the following two reductions of N are possible :

N
p1
// (l1.l′1 :: nil ‖ l1.l

′
2 :: out(l2)@l2 ‖ l2 :: 〈l1〉)[d′]

and

N
p2
// (l1.l′1 :: out(l1)@l2 ‖ l1.l

′
2 :: nil ‖ l2 :: 〈l2〉)[d′],

where p1 = 1/8
4/8 · 1 = 1

4 and p2 = 3/8
4/8 · 1 = 3

4

No further transitions are now possible as there are no active nodes.

Example 3
The following network exemplifies the use of an allocation environment:

N ≡ (l1 ::% out(l)@` ‖ l1 :: 〈l′〉 ‖ l2 :: 〈〉 ‖ l3 :: 〈〉)[u]

with %(`)(l1) = 1
4 , %(`)(l2) = 1

2 and %(`)(l3) = 1
4 .

We have that ActiveN = {l1 ::% out(l)@`} and ActiveOut = {l2 :: 〈〉 , l3 :: 〈〉}.
Thus, the possible transitions are:

N
p1
// (l1 ::% nil ‖ l2 :: 〈l〉 ‖ l3 :: 〈〉)[u]

and

N
p2
// (l1 ::% nil ‖ l2 :: 〈〉 ‖ l3 :: 〈l〉)[u],
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where p1 = 1/3
1/3 ·

1/2
3/4 = 2

3 , and p2 = 1/3
1/3 ·

1/4
3/4 = 1

3 .

Example 4
The following network illustrates communication across the network using an in-
termediate node as a “buffer”:

l1 :: out(l)@l2.P ‖ l2 :: 〈〉 ‖ l3 :: in(x)@l2.Q

It is easy to see that this network reduces in two steps to

l1 :: P ‖ l2 :: 〈〉 ‖ l3 :: Q[l/x]

with probability 1.

Example 5
Consider the following network:

l1 :: 〈l2〉 ‖ l2 :: 〈l2〉 ‖ l3 ::% in(x)@`.P

with %(`)(l1) = 1
3 and %(`)(l2) = 2

3 .
ActiveIn = {l1 :: 〈l2〉 , l2 :: 〈l2〉}, and ActiveN = {l3 ::% in(x)@`}. Thus the

network reduces to

l1 :: 〈〉 ‖ l2 :: 〈l2〉 ‖ l3 ::% P [l2/x]

with probability 1
3 , and to

l1 :: 〈l2〉 ‖ l2 :: 〈〉 ‖ l3 ::% P [l2/x]

with probability 2
3 .

3 Linear Spaces and Operators

We will define a non-standard denotational semantics for pcKLAIM which is based
on notions from linear algebra and functional analysis. We recall the required no-
tions and we refer to widely available text books and monographs on linear algebra,
functional analysis and operator theory for details.

Vector spaces play an important role in modelling systems in many scientific
and/or technological fields. In computer science they are much less popular. It
is probably futile to speculate about a reason for this, but it might be that the
theory of linear spaces and their morphisms (i.e. linear maps) provides a convenient
combination of a simple algebraic theory together with a quantitative element whilst
computer science structures are often purely qualitative.

3.1 Linear and Hilbert Spaces

A vector space V is defined algebraically as an additive group (V,+) together with
a scalar multiplication by elements in the base field K which distributes over the
vector addition. We will concentrate in this paper on real and/or complex vector
spaces, i.e. assume K = R or K = C. As R ⊆ C the distinction between real and
complex vector spaces is for many purposes not essential.

For practical computational purposes it is important that one can see vector or
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linear spaces not just as abstract algebraic structures but also as some concrete
tuple spaces, i.e. that any vector can be expressed as a linear combination of a
certain set of base vectors, or just via their coordinates (even though this represen-
tation depends on the chosen base and in general might be non-unique for infinite
dimensional spaces). Vice versa we can also take any finite or countable set X as a
vector space base and generate (algebraically) a vector space V(X).

Definition 2
The vector space V(X) over a (countable) set X is the set of formal linear combina-
tions,

∑
x∈X cxx, of elements in X with coefficients cx ∈ C which we can represent

as possibly infinite sequences in C indexed by elements in X:

V(X) = {(cx)x∈X | cx ∈ C}.

Besides its algebraic structure we also need to introduce an appropriate topolog-
ical structure for a vector space. For finite dimensional vector spaces the algebraic
structure is essentially forcing a unique topological structure: since a n-dimensional
(real or complex) vector space is isomorphic to Rn or Cn; a possible choice is
the product topology. For infinite dimensional spaces the choice of the topological
structure is essential, as this is in general not unique.

A popular way to impose a topological structure on a vector space is via a norm,
i.e. a function ‖.‖ : V → R which measures the “length of a vector”, or a inner
product, i.e. a function 〈., .〉 : V × V → C measuring the “angle” between two
vectors.

Definition 3
A Hilbert space H is a complex vector space together with an inner product 〈., .〉 :
H×H → C with (i) 〈x, y〉 = 〈y, x〉, (ii) 〈αx, y〉 = α 〈x, y〉, (iii) 〈x + z, y〉 = 〈x, y〉+
〈z, y〉, and (iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = o for all α ∈ C and x, y, z ∈ H
(where c denotes the complex conjugation in C, and o is the null vector in H) such
that the topology induced by the norm ‖x‖ =

√
〈x, x〉 is complete.

Similarly to the the situation before we can generate a Hilbert space using any
countable set X formally as base vectors. For finite sets we can simply take V(X) =
H(X), but for infinite countable sets we have to impose additional conditions to
guarantee that the topology is acceptable, i.e. we have only H(X) ⊆ V(X).

Definition 4
Let X be any countable set. The Hilbert space H(X) ⊆ V(X) over X is the set
of formal linear combinations of elements in X with coefficients cx ∈ C which are
square summable, i.e.

H(X) = {(cx)x∈X | cx ∈ C and
∑
x∈X

|cx|2 < ∞}.

It is easy to show that H(X) is indeed a vector space. This is usually referred to
as `2(X). In fact, one can also show that every separable Hilbert space is isomorphic
to the “standard” Hilbert space `2 = `2(N) with standard norm on `2 defined as
‖~x‖2 = ‖(xi)i∈N‖2 =

√∑
i∈N |xi|2 (see e.g. Corollary 2.2.13 in (Kadison & Ringrose,

1997)).
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3.2 Linear and Bounded Operators

A map T : V → W between two vector spaces is linear if it respects the algebraic
structure, i.e. T(x + y) = T(x) + T(y) and T(αx) = αT(x). One usually refers to
linear maps T : W → W as (linear) operators. The set of linear operators on a
vector space forms in a natural way itself a vector space. This is in fact a linear
algebra, as functional composition defines an algebra product of linear maps.

Linear maps are not just abstract algebraic objects. They also have a compu-
tationally useful representation with respect to a basis in the vector space(s) as a
matrix M. We will denote by M the set of all matrices, and by M(n, m) the set of
all n ×m matrices with n, m ∈ N. With this representation we can “perform” the
abstract algebraic operations on concrete objects. The application of a linear map
to a vector T(x) and the product of linear maps T · S can then be represented in
the usual way by matrix multiplication.

On a Hilbert space we can define the so called adjoint T∗ of an operator T via
the requirement:

〈T(x), y〉 = 〈x,T∗(y)〉
for all elements x, y ∈ H. The adjoint operator for bounded linear operators on a
Hilbert space always exists and is unique. For finite dimensional operators with a
matrix representation M ∈ M, the matrix representation of the adjoint is M∗ =
(M)t, i.e. the transpose complex conjugate matrix. In the case of linear maps on
Hilbert spaces we can use the notion of the “length” of vectors — i.e. the vector
norm — to describe the “expansiveness” of linear maps in order to obtain a norm
for linear maps T ∈ L(H1,H2).

Definition 5
The norm of a linear map T : H1 → H2 is defined as

‖T‖ = sup
x∈H1

‖T(x)‖
‖x‖

.

A linear map T is bounded iff ‖T‖ < ∞. We denote by B(H1,H2) ⊆ L(H1,H2)
the set of bounded linear maps on Hilbert spaces.

For finite dimensional spaces, all linear maps not only respect the algebraic struc-
ture of the underlying vector spaces but also preserve their topological structure, i.e.
are continuous. In the infinite dimensional case linearity and continuity are differ-
ent concepts. For Hilbert spaces (and other normed vector spaces) there is however
a very convenient way to characterise the set of linear and continuous maps, e.g.
Proposition 1.1 in (Conway, 1990).

Theorem 1
A linear map T : H1 → H2 is continuous if and only if it is bounded.

The theory of continuous, i.e. bounded, linear maps and operators on infinite
dimensional Hilbert spaces generalises many of the concepts from linear algebra.
Our aim is to exploit such an “operator algebraic” approach in order to define a
useful quantitative/probabilistic program semantics together with a framework for
static program analysis.
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3.3 Tensor Products

As the tensor product plays a central role in the development of our semantics
as well as our analysis, let us recall some of the important facts about the tensor
product of vectors, spaces, operators and algebras.

Let V1, V2, . . . , Vn and W be linear spaces. A map f : V1 × V2 × . . . × Vn →
W is called multilinear if f is linear in each of its arguments. We denote by
L(V1,V2, . . . ,Vn;W) the set of multilinear maps. The algebraic tensor product of
vector spaces is then defined via a universal property as follows (see e.g. Definition
1.10.1 in (Palmer, 1994)).

Definition 6
The algebraic tensor product of vector spaces V1, V2, . . . , Vn is given by a vector
space

⊗n
i=1 Vi and a map p = ⊗n

i=1 ∈ L(V1,V2, . . . ,Vn;
⊗n

i=1 Vi) such that if W
is any vector space and f ∈ L(V1,V2, . . . ,Vn;W) then there exists a unique map
h :
⊗n

i=1 Vi →W satisfying f = h ◦ p.

Again, this algebraic construction is sufficient for finite dimensional vector spaces.
It is easy to show that in the finite dimensional case we have: V(X ×X) ∼= V(X)⊗
V(X). However, in the infinite dimensional case one has to consider also topological
aspects; for example, the algebraic tensor product of Hilbert spaces does not form in
general a Hilbert space. Without going into the details — see for example (Kadison
& Ringrose, 1997), (Fillmore, 1996) or Appendix T in (Wegge-Olsen, 1993) — it is
however possible to construct from the algebraic tensor product of Hilbert spaces
H1, H2, . . . , Hn, a Hilbert space which is the tensor product

⊗n
i=1Hi.

Furthermore, we can extend the construction of the Hilbert space tensor product
to bounded linear maps. For the tensor product of bounded linear maps between
Hilbert spaces we have the following result (cf. e.g. Proposition 2.6.12 (Kadison &
Ringrose, 1997)).

Proposition 2
If H1, . . . ,Hn are Hilbert spaces and Ai ∈ B(Hi) with i = 1, . . . , n bounded linear
operators, then there exists a unique bounded linear operator A ∈ B(H1⊗ . . .⊗Hn)
such that:

A(x1 ⊗ . . .⊗ xn) = A1(x1)⊗ . . .⊗An(xn).

for all xi ∈ Hi.

This (unique) operator is called the tensor product of Ai and denoted by

A = A1 ⊗ . . .⊗An.

Proposition 3
The tensor product of bounded linear operators A1, A2, . . . , An on Hilbert spaces
is associative and has the following properties:

(i) (A1 ⊗ . . .⊗An)(B1 ⊗ . . .⊗Bn) = (A1B1 ⊗ . . .⊗AnBn)
(ii) A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗An = α(A1 ⊗ . . .⊗Ai ⊗ . . .⊗An)
(iii) A1⊗. . .⊗(Ai+Bi)⊗. . .⊗An = A1⊗. . .⊗Ai⊗. . .⊗An+A1⊗. . .⊗Bi⊗. . .⊗An
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(iv) (A1 ⊗ . . .⊗An)∗ = A∗
1 ⊗ . . .⊗A∗

n

(v) ‖A1 ⊗ . . .⊗An‖ = ‖A1‖ . . . ‖An‖

For a proof of these properties see e.g. discussions and remarks following Propo-
sition 2.6.12 in (Kadison & Ringrose, 1997).

As before we are not only interested in the abstract algebraic and topological
properties of the tensor product, but also in a more computationally useful rep-
resentation. Given the tuple representation of vectors or matrix representation of
linear maps one can compute their tensor products simply by their so called Kro-
necker product:

(x1, . . . , xn)⊗ (y1, . . . , ym) = (x1y1, . . . , x1ym, . . . , . . . , xny1, . . . , xnym) a11 . . . a1n

...
. . .

...
am1 . . . amn

⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB


This means that the tensor product of an n dimensional and an m dimensional

vector results in an nm dimensional vector; while the tensor product of an n ×m

matrix with an l × k dimensional one results in an nl ×mk dimensional matrix.

4 Linear Operator Semantics for pcKLAIM

The probabilistic transition relation −→p introduced in Section 2.2 defines the evo-
lution of a network expressed as a pcKLAIM program and can be encoded via a
linear operator on an appropriate vector space representing all the possible config-
urations of the network. In this section we will define such an encoding in terms of
a bounded operator on the Hilbert space over the set of all network configurations.

4.1 Representation of Configurations

We denote by P the set of all pcKLAIM processes in normal form (i.e. according to
the syntax in Definition 1) — thus P contains only the null process and the action
prefixed processes — and by S the set of all local data — that is S = {〈l〉 | l ∈
L} ∪ {〈〉}.

Note that the set P is countable and that assuming a countable L the same holds
for S. We assume fixed enumerations ι : P → N and κ : S → N. We will take the
Hilbert spaces H(P) and H(S) generated by P and S as the central elements in
our representation of node and network configurations. If we consider only finite
subsets of P and S we can identify V(P) ' H(P) and V(S) ' H(S).

For a process term P we denote by ~P the vector with coordinates (pi) in V(P)
or H(P) with

pi =
{

1 for i = ι(P )
0 otherwise.

Similarly we define ~D for data terms.
Our aim is to utilise these vector spaces in order to represent not only particular
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configurations but also distributions over node and network configurations. This
is necessary as the stochastic execution model we use for pcKLAIM means that
after each execution step we might be faced not with a single successor state but a
whole set of possible configurations together with the probability that a particular
configuration will be the result of this computational step.

4.1.1 Local Configurations

We recall that every node in a pcKLAIM network in normal form may contain at
most one process term and/or one data term.

Definition 7
A local configuration is a pcKLAIM term of the form:

l ::% Q ‖ l :: D

with Q and D as in Definition 1.

We denote by LC the set of local configurations. Obviously, the set of local con-
figurations LC is isomorphic to P × S. A distribution over local configurations is a
map µ : LC → [0, 1] which is non-zero only for finitely many local configurations
and such that

∑
c∈LC µ(c) = 1. Note that as long as we are interested in the con-

figurations after a finite number of steps we only have to accommodate for a finite
number of reachable configurations (as we have a finitely branching language). One
could generalise the concept of a distribution to that of a measure on C in order to
deal with infinite sets of local configurations.

We can now define the representation of a local configuration and of distributions
over configurations.

Definition 8
For a local configuration l ::% Q ‖ l :: D we define its representation as:

[[l ::% Q ‖ l :: D]] = ~Q⊗ ~D ∈ V(P)⊗ V(S).

For a distribution over local configurations µ : LC → [0, 1] we define its represen-
tation by

[[µ]] =
∑

c∈LC
µ(c)[[c]] ∈ V(P)⊗ V(S).

Note that in the finite case we have V(P × S) ' V(P)⊗ V(S).

Example 6
Consider the network of Example 1 in normal form:

(l11 :: out(l1)@l2 ‖ l12 :: out(l2)@l2 ‖ l2 :: 〈〉)[d]

with d(l11) = 1
8 , d(l12) = 3

8 and d(l2) = 1
2 .

We enumerate all possible local configurations. The relevant (reachable) local
configurations in this example are:

1. out(l1)@l2
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2. out(l2)@l2
3. nil

and the reachable stores:

1. 〈〉
2. 〈l1〉
3. 〈l2〉

Our representation of local configurations will therefore be a vector in the tensor
product of V(P) ' R3 and V(S) ' R3. In particular, we have:

[[l11 :: out(l1)@l2]] = (1, 0, 0)⊗ (1, 0, 0)

[[l12 :: out(l2)@l2]] = (0, 1, 0)⊗ (1, 0, 0)

[[l2 :: 〈〉]] = (0, 0, 1)⊗ (1, 0, 0).

4.1.2 Global Configurations

Given a network N in normal form, we construct the vector space Dom of all global
configurations of N as

Dom = (V(P)⊗ V(S))⊗m,

where m is the number of nodes in N . For finite subsets of P and S we have that
Dom ' (V(P × S))⊗m ' V((P × S)m).

Denoting by NC the set of all network configurations (with m nodes in normal
form) and defining distributions over global configurations in a similar way as for
local configurations, we can now represent networks and distributions over network
configurations.

Definition 9
For a network configuration in normal form

N ≡ (‖m
i=1 li ::ρi Qi ‖m

i=1 li :: Di)[d]

we define its representation as:

[[N ]] =
m⊗

i=1

[[li ::ρi
Qi ‖ li :: Di]] ∈ (V(P)⊗ V(S))⊗m

For a distribution over global configurations µ : NC → [0, 1] we define its repre-
sentation by

[[µ]] =
∑

N∈NC
µ(N)[[N ]] ∈ (V(P)⊗ V(S))⊗m

Note that we do not encode the global scheduling probability given by d in [[N ]]
because it is a static information which will not change during the execution of the
program.

Example 7
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For Example 1 in normal form the initial configuration

(l11 :: out(l1)@l2 ‖ l12 :: out(l2)@l2 ‖ l2 :: 〈〉)[d]

is represented by the vector

((1, 0, 0)⊗ (1, 0, 0))⊗ ((0, 1, 0)⊗ (1, 0, 0))⊗ ((0, 0, 1)⊗ (1, 0, 0)).

4.2 Basic Operators

As a first step towards the definition of a linear operator representing the opera-
tional semantics of pcKLAIM, we look at local transitions, i.e. how local configu-
rations change.

Definition 10
Given a pcKLAIM network in normal form N ≡ ‖m

i=1(li ::ρi Qi ‖ li :: Di), we define
a local transition relation as the restriction of

p
// to local configurations, i.e

(li ::ρi
Qi ‖ li :: Di) p

// (li ::ρi
Q′

i ‖ li :: D′
i)

iff N
p
// N ′ with N ′ ≡ ‖m

i=1(li ::ρi
Q′

i ‖ li :: D′
i).

In general we will be only interested in proper local transitions, that is transitions
where the local configuration of a node is indeed changing, i.e. where (li ::ρi

Qi ‖ li ::
Di) 6≡ (li ::ρi

Q′
i ‖ li :: D′

i). From the semantics in Table 5 we see that each global
transition is implemented via at most two proper local transitions.

Proposition 4
Given a pcKLAIM network in normal form N ≡ ‖m

i=1(li ::ρi Qi ‖ li :: Di) such that
N

p
// N ′ with N ′ ≡ ‖m

i=1(li ::ρi
Q′

i ‖ li :: D′
i) then there are at most two proper

local transitions associated with this transition.

Proof
Follows directly from the inspection of all rules in Table 5.

4.2.1 Operators on Processes

We can distinguish between local transitions which involve just the process com-
ponent or just the data component of a local configuration. In order to model the
transitions which involve a process term at a node by a linear operator we define
the following prefix operators.

Local delay transitions are represented by the operator W : V(P) → V(P),
whose matrix representation is given by:

WP1,P2 =
{

1 P1 ≡ delay.P2

0 otherwise

The local transition of a node performing an out action can be modelled by the
operator P : V(P) → V(P), whose matrix representation is for each l ∈ L:

P(l)P1,P2 =
{

1 P1 ≡ out(l).P2

0 otherwise
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The local transition of the process performing an in action is represented by
G : V(P) → V(P). For every locality variable x we define it as:

G(x)P1,P2 =
{

1 P1 ≡ in(x).P2

0 otherwise

Finally, we define a substitution operator S : V(P) → V(P) which models the
substitution of a variable x by a locality l ∈ L:

S(l, x)P1,P2 =
{

1 P2 ≡ P1[l/x]
0 otherwise

4.2.2 Data Operators

The following operators on V(S) implement the local transitions involving the data
component of a local transformation.

We define an adding or joining operator J : V(S) → V(S) by:

J(l)s1,s2 =
{

1 s2 = 〈l〉 ∧ s1 = 〈〉
0 otherwise

and a removal or deletion operator R : V(S) → V(S) by

R(l)s1,s2 =
{

1 s1 = 〈l〉 ∧ s2 = 〈〉
0 otherwise

Note that R(l) = J∗(l).
We defined all the basic operators on process as well as data configurations as in-

finite matrices, i.e. as linear operators on V(P) and V(S) respectively. However it is
straightforward to show that they are not only linear operators but also continuous
ones on H(P) and H(S) respectively.

Proposition 5
The linear operators defined above restricted to H(P) and H(S) respectively, i.e.

W : H(P) → H(P)

P(l) : H(P) → H(P)

G(x) : H(P) → H(P)

S(l, x) : H(P) → H(P)

as well as

J(l) : H(S) → H(S)

R(l) : H(S) → H(S)

for all l ∈ L and variables x ∈ U are bounded operators.

Proof
Obviously, all process operators W, P, G and S are “deterministic”, i.e. there is
at most one successor process to each process; for example delay.P can only make
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a move to P . The infinite matrix representing these operators thus has only one
entry in each row. From this it follows that these operators are bounded.

The same argument holds also for the data operators, i.e. J and R.

Example 8
Consider the following (deterministic) pcKLAIM network N in normal form:

l1 :: out(l)@l2.in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈〉 .

We have for N the following global transitions:

l1 :: out(l)@l2.in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈〉

1
// l1 :: in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈l〉

1
// l1 :: out(x)@l2[x/l] ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈〉

≡ l1 :: out(l)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈〉

1
// l1 :: nil ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈l〉

We enumerate the relevant (reachable) process terms as follows:

1. out(l)@l2.in(x)@l2.out(x)@l2
2. in(x)@l2.out(x)@l2
3. out(x)@l2
4. out(l)@l2
5. nil

and stores by:

1. 〈〉
2. 〈l〉

Some of the operators needed to implement the local transitions of N involving
data components are:

J(l) =
(

0 1
0 0

)
R(l) =

(
0 0
1 0

)
and involving the process component:

G(l) =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 S(x, l) =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

Considering the local transitions

l2 :: nil ‖ l2 :: 〈l〉
1
// l2 :: nil ‖ l2 :: 〈〉 ,

in the sequence of global transitions above, we can represent the data terms involved
by vectors

[[l2 :: nil ‖ l2 :: 〈l〉]] = (0, 0, 0, 0, 1)⊗ (0, 1)

[[l2 :: nil ‖ l2 :: 〈〉]] = (0, 0, 0, 0, 1)⊗ (1, 0),
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and it is easy to see that

[[l2 :: nil ‖ l2 :: 〈l〉]] · (I⊗R(l)) = [[l2 :: nil ‖ l2 :: 〈〉]].

Similarly we can represent a local transformation involving the process part like

l1 :: in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉
1
// l1 :: out(l)@l2 ‖ l1 :: 〈〉 .

The vector representation of these two nodes is given by:

[[l1 :: in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉]] = (0, 1, 0, 0, 0)⊗ (1, 0)

[[out(l)@l2 ‖ l1 :: 〈〉]] = (0, 0, 0, 1, 0)⊗ (1, 0),

and using the prefix operator G(x) and substitution operator S(x, l) we get:

[[l1 :: in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉]] · (G(x) · S(x, l)⊗ I) = [[out(l)@l2 ‖ l1 :: 〈〉]]

4.3 Net Semantics

To illustrate how in principle we can combine local transitions in order to obtain
global ones, let us consider again Example 8.

Example 9
It is easy to see that the global transition in Example 8:

l1 :: in(x)@l2.out(x)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈l〉
1
//

1
// l1 :: out(l)@l2 ‖ l1 :: 〈〉 ‖ l2 :: nil ‖ l2 :: 〈〉

is realised by the operator

(G(x) · S(x, l)⊗ I)⊗ (I⊗R(l)) =

= ((G(x) · S(x, l)⊗ I)⊗ (I⊗ I)) · ((I⊗ I)⊗ (I⊗R(l)))

as it transforms the representation of the initial global configuration

((0, 1, 0, 0, 0)⊗ (1, 0))⊗ ((0, 0, 0, 0, 1)⊗ (0, 1))

into the vector corresponding to the successor network:

((0, 0, 0, 1, 0)⊗ (1, 0))⊗ ((0, 0, 0, 0, 1)⊗ (1, 0))

Although this example is rather simple — it does not involve allocation environ-
ments, scheduling probabilities, blocked actions, etc. — it is possible to generalise
it in order to construct a linear operator representation of all possible global tran-
sitions out of the basic operators introduced above.

Given an operator M on V(P) and an operator N on V(S), we define the following
operator on Dom which expresses “localisation” of configurations:

At(i,M⊗N) = (I⊗ I)⊗(i−1) ⊗ (M⊗N)⊗ (I⊗ I)⊗(m−i)

Denoting by i = (1, . . . , 1)⊗ (1, . . . , 1) and by empty = ((1, . . . , 1)⊗ (1, 0, . . . , 0))
and by full = ((1, . . . , 1)⊗ ((0, 1, 0, . . . , 0) + (0, 0, 1, 0, . . . , 0) + . . .)), we define two
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(diagonal) test operators:

Tstempty(lj) = diag(i⊗(j−1) ⊗ empty ⊗ i⊗(m−j))

Tstfull(lj) = diag(i⊗(j−1) ⊗ full ⊗ i⊗(m−j))

which represent projection operators. Note that full could be defined equivalently
as ((1, . . . , 1)⊗ (0, 1, . . . , 1)).

We then define the operator associated with a node ni which describes the global
transitions of the network initiated by a local transition of ni:

T(ni) = Nil(ni) + Delay(ni) + Out(ni) + In(ni).

Each of the operators Nil(ni), Delay(ni), Out(ni) and In(ni) models the global
changes of the network when the process at ni is nil, delay.P , out(.).P , or in(.).P ,
respectively. Each of these operators has an effect if and only if the process at ni

is of the correct form. Note that this way all possible cases according to the syntax
of Q in Definition 1 are covered.

Concretely, the operators Nil(ni), Delay(ni), Out(ni) and In(ni) are defined as
follows.

Nil(ni) = At(i,Enil,nil ⊗ I)

In other words, at node ni there is a local transition li ::ρi nil ‖ li :: D
1
// li ::ρi

nil ‖ li :: D while all other nodes stay unchanged.

Delay(ni) = At(i,W ⊗ I)

This implements the transition li ::ρi
delay.P ‖ li :: D

1
// li ::ρi

P ‖ li :: D at

node ni and leaves all other local configurations unchanged.
While Nil(ni) and Delay(ni) are unblockable transitions, for in and out actions

we need to consider always the case that the target node is already full or empty
respectively. To model this we will need the above introduced testing operators.

Out(ni) =
∑

l,`,j=1...m

env(ni)(`)(addr(nj)) ·DoOut(i, j, l)

This expresses the idea that an out action involves the initiating node ni — where
the prefix out(l) for all possible l ∈ L is removed — and one of the other nodes
nj with j = 1 . . .m — where the data l is inserted. The actual pair of nodes
ni and nj involved in the transition depends on the given allocation environment
and in particular on the distribution env(ni)(`). The actual transformations are
implemented by:

DoOut(i, j, l) =

= Tstempty(addr(nj)) ·At(i,P(l)⊗ I) ·At(j, I⊗ J(l)) ·
+ Tstfull(addr(nj))

This operator tests if the data l can be placed at node nj , i.e. if it is empty. If this
is the case, then the prefix removal at node ni and the data insertion at node nj

are performed; otherwise the operator does nothing (note that Tstfull(addr(nj)) =
Tstfull(addr(nj)) ·At(i, I⊗ I) ·At(j, I⊗ I)).
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We define the operator representing in actions in a similar way.

In(ni) =
∑

l,`,j=1...m

env(ni)(`)(addr(nj)) ·DoIn(i, j, l, x),

with

DoIn(i, j, l, x) =

= Tstfull(addr(nj)) ·At(i,G(x) · S(data(nj), x)⊗ I) ·At(j, I⊗R(l))

+ Tstempty(addr(nj)).

Proposition 6
The operators T(ni) are bounded linear operators on (H(P)⊗H(S))⊗m.

Proof
For all i ∈ [1,m], the operator T(ni) is defined as the finite sum and finite tensor
product of the basic operators on processes and data. From Proposition 5 we know
that these operators are bounded. It follows that T(ni) is bounded too.

A single step of computation in the network is defined as:

T = N

(∑
n∈N

d(addr(n)) ·T(n)

)
,

where the normalisation operation N is defined for a matrix A by

(N (A))ij =


Aij

aj
if aj =

∑
i Aij 6= 0

1 if aj = 0 ∧ i = j

0 if aj = 0 ∧ i 6= j.

This expresses the idea that at each computational step the scheduler is choosing
one of the nodes ni which is able to initiate a global network update according to
the normalised scheduling probabilities. If a network reaches a final state, i.e. no
node can initiate any further update, the normalisation introduces a diagonal entry
1 in T which simply reproduces the final network state with certainty.

The normalisation procedure N guarantees that the operator T is stochastic, i.e.
that the entries in each row sum up to one. T therefore defines a so called discrete
time Markov chain, see e.g. (Bause & Kritzinger, 2002). Introducing transition rates
in place of transition probabilities allows us to define an analogue continuous time
version of pcKLAIM (Di Pierro et al., 2004b).

Proposition 7
The operator T is a bounded linear operator on (H(P)⊗H(S))⊗m.

Proof
As all T(n) are bounded operators it follows immediately that the finite sum T̃ =∑

n∈N d(addr(n)) · T(n) is also bounded. The normalisation is well defined as in
each row

∑
i T̃ij exists as all entries are positive and because T̃ is bounded —

actually one could show from the construction that
∑

i T̃ij ≤ 1.
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From the construction of T it should be clear that T encodes all the single
computational steps as defined by the operational semantics in Table 5, i.e. if there
is a (global) transition step N1 p

// N2 then the entry in T corresponding to the

network configurations N1 and N2 is TN1,N2 = p.
The semantics of the network is then obtained by the iterated application of T

to some initial configuration of the network. In particular, for finite computations
we can recover the final configurations and their probabilities via:

lim
i→∞

Ti[[N0]].

Note that in general this limit need not exist nor represent a distribution. This
reflects the fact that some computations might not terminate.

For real networks the semantics we have defined may result in very large matrices
whose dimensions grow exponentially with the number of nodes (because of the
tensor product operation). Although these matrices are in general very sparse, they
are not easy to deal with and calculation might result prohibitive even with the
more advanced mathematical tools available for matrix manipulation. Thus, the
definition of an abstract semantics which is simpler and more tractable is a necessary
step before analysing a network. The abstraction mechanism we will use relies on
the Probabilistic Abstract Interpretation framework which we will briefly recall in
Section 5.

4.4 Some Examples

In order to illustrate the concrete form of the linear operator semantics introduced
above we will briefly present two very simple examples.

Example 10
Consider the following pcKLAIM network consisting of just two nodes:

l1 :: out(l)@l2 ‖ l2 :: out(l)@l1

In this network each of the processes running at either location tries to out the
token l on the other location.

We use the following enumeration of the relevant process terms:

1. out(l)@l1
2. out(l)@l2
3. nil

and data terms:

1. 〈〉
2. 〈l〉

The operator specifying the linear operator semantics of network updates initi-
ated by the first node n1 is then given by:

T(n1) =

 0 0 0
0 0 0
0 0 1

⊗
(

1 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)
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+

 0 0 1
0 0 0
0 0 0

⊗
(

0 1
0 0

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

0 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)
+

 0 0 0
0 0 1
0 0 0

⊗
(

1 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

0 1
0 0

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

0 0
0 1

)

The first term in this sum describes the network changes when the process at
node l1 is the nil process, i.e. the operator Nil(n1): The process transition at l1 is
in this case nil −→ nil while the data at location l1 stays in all cases unchanged,
at location l2 the process as well as the data part remain what they are.

The remaining terms specify the operator Out(n1). The second and third term
in the above sum describe the transitions for out(l)@l1 running at l1: If there is
“space” at location l1, i.e. the data term at l1 is 〈〉, there is a transition out(l)@l1 −→
nil for the process part at l1 and a transition 〈〉 −→ 〈l〉 for the data part while
there is no changes at locations l2; if there is “no space” at l1, i.e. the data part
at l1 is 〈l〉, then no transitions happen at either location. The third and forth term
similarly describe the situation when out(l)@l2 is running at location l1.

The operator T(n2) is of a similar form:

T(n2) =

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)⊗

 0 0 0
0 0 0
0 0 1

⊗
(

1 0
0 1

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)⊗

 0 0 1
0 0 0
0 0 0

⊗
(

0 1
0 0

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

0 0
0 1

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

0 1
0 0

)⊗

 0 0 0
0 0 1
0 0 0

⊗
(

1 0
0 1

)
+

 1 0 0
0 1 0
0 0 1

⊗
(

0 0
0 1

)⊗

 1 0 0
0 1 0
0 0 1

⊗
(

1 0
0 1

)
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The linear operator semantics of the whole pcKLAIM network is then given by:

T = T(l1 :: out(l)@l2 ‖ l2 :: out(l)@l1) = N
(

1
2
·T(n1) +

1
2
·T(n2)

)
based on an implicit uniform distribution for scheduling either node.

Example 11
Consider the following pcKLAIM network consisting of two nodes:

l1 ::%1 out(l)@` ‖ l2 :: 〈〉

with the following enumeration of the relevant process terms:

1. out(l)@`

2. nil

and data terms:

1. 〈〉
2. 〈l〉

and the probabilistic allocation environments:

%1(`)(l1) =
1
3

%1(`)(l2) =
2
3
.

In other words, in this network the process at location l1 tries to out the token
l either to the same location l1 with probability 1/3 or with probability 2/3 at the
location l2.

In this case we get for the linear operator T(n1) the following representation:

T(n1) =
((

0 0
0 1

)
⊗
(

1 0
0 1

))
⊗
((

1 0
0 1

)
⊗
(

1 0
0 1

))
+

1
3
·
((

0 1
0 0

)
⊗
(

0 1
0 0

))
⊗
((

1 0
0 1

)
⊗
(

1 0
0 1

))
+

1
3
·
((

1 0
0 1

)
⊗
(

0 0
0 1

))
⊗
((

1 0
0 1

)
⊗
(

1 0
0 1

))
+

2
3
·
((

0 1
0 0

)
⊗
(

1 0
0 1

))
⊗
((

1 0
0 1

)
⊗
(

0 1
0 0

))
+

2
3
·
((

1 0
0 1

)
⊗
(

1 0
0 1

))
⊗
((

1 0
0 1

)
⊗
(

0 0
0 1

))
This operator has essentially the same structure as the operators in the previous

example except for the fact that the second and third term are weighted with
probability 1/3 indicating the fact that the location variable ` will be referring to
location l1 with this probability, and that terms four and five are weighted with
the corresponding probability 2/3. In each case we have again one term for the
successful and the blocked execution of out(l)@`.
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5 Probabilistic Abstract Interpretation

Classical abstract interpretation provides general techniques for the analysis of
programs which are based on the construction of safe approximations of the concrete
semantics of programs via the notion of a Galois connection (Cousot & Cousot,
1992; Nielson et al., 1999).

Probabilistic abstract interpretation re-casts these techniques in a probabilistic
setting where linear spaces replace the classical order-theoretic domains, and the
notion of the so-called Moore-Penrose pseudo-inverse of a linear operator replaces
the classical notion of a Galois connection. The abstractions we get this way are
close approximations of the concrete semantics. Thus, closeness is a quantitative
replacement for classical safety which does not require any approximation ordering.

The definition of a probabilistic abstract interpretation is given in terms of prob-
abilistic domains. A probabilistic domain is essentially a space which represents
the distributions Dist(S) on a state space S, i.e. in our setting the Hilbert space
H(S) = `2(S) (or in the finite dimensional case simply V(S)).

Definition 11
Let C an D be two probabilistic domains. A probabilistic abstract interpretation
is a pair of bounded linear operators A : C → D and G : D → C, between (the
concrete domain) C and (the abstract domain) D, such that G is the Moore-Penrose
pseudo-inverse of A, and vice versa.

In this paper we will use the probabilistic analogue of a classical abstract inter-
pretation technique which allows for the definition of an induced abstract semantics
starting from the abstraction function and the concrete semantics. In the classical
framework, this corresponds to the best correct approximation for the given concrete
semantics, that is the most precise among all correct approximations (the relative
precision being left unquantified). In the probabilistic abstract interpretation frame-
work, this technique consists in the following. Given a linear operator Φ on some
Hilbert space V expressing the probabilistic semantics of a concrete system, and a
linear abstraction function A : V 7→ W from the concrete domain into an abstract
domain W, we compute the Moore-Penrose pseudo-inverse G = A† of A. Then,
the abstract semantics defined as the linear operator on the abstract domain W

Ψ = A ◦ Φ ◦G,

is the closest one to the concrete semantics. This “closeness” property expresses
both the “safety” of the approximation and its optimality, the latter being guar-
anteed by a minimality property of the Moore-Penrose pseudo-inverse relative to
the problem of finding solutions to inconsistent linear equations (Deutsch, 2001;
Ben-Israel & Greville, 2003). More precisely, given a linear equation xA = y an
(exact) solution x∗ is a vector for which ‖x∗A − y‖ = 0; in the case that no such
solution vector x∗ exists (the equation is inconsistent), an approximate solution is
the so-called “least-squares solution” defined as a vector minimising the Euclidean
norm of the residual vector y−xA. Among all the least-squares solutions of xA = y

the one constructed using the Moore-Penrose pseudo-inverse, i.e. x0 = yA† is the
one of minimal norm (Corollary 3 pag 39 (Ben-Israel & Greville, 2003)).
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In our program analysis setting, this result can be rephrased as follows. We can
apply a concrete semantics Φ to a concrete vector x and abstract the result giving
xΦA or we can apply the abstract operator to an abstract vector giving xAA†ΦA.
Ideally, we would like these to be equal. If A is invertible then its Moore-Penrose
pseudo-inverse is identical to the inverse and we are done. In program analysis
A is never a square matrix and thus AA† in xAA†ΦA will lead to some loss of
precision. The Moore-Penrose pseudo-inverse is as close as possible to an inverse if
the matrix is not invertible and thus for the particular choice of A, A†ΦA is the
best approximation of Φ that we can have. Moreover, by choosing an appropriate
notion of distance we can measure this closeness to get a quantitative estimate of
the information lost in the abstraction.

We will now introduce in some more details the central notion of Moore-Penrose
pseudo-inverse.

5.1 Moore-Penrose Pseudo-Inverse

We can define the notion of a Moore-Penrose pseudo-inverse of a bounded linear
operator A ∈ B(H) on a Hilbert space H purely algebraically (cf. Section 4.7 of
(Böttcher & Silbermann, 1999), Definition 1.1.1 of (Campbell & Meyer, 1979) and
Section 8.43 of (Deutsch, 2001)). This is sufficient for the finite-dimensional setting,
while for dealing with the infinite-dimensional case we will need some topological
considerations which we will use for a more concrete definition.

Definition 12
An element A ∈ B(H) is said to be Moore-Penrose invertible if there exists an
element B ∈ B(H) such that:

(i) ABA = A,
(ii) BAB = B,
(iii) (AB)∗ = AB,
(iv) (BA)∗ = BA.

If an element A ∈ B(H) is Moore-Penrose invertible then there exists a unique
element B = A†, the Moore-Penrose pseudo-inverse of A, which fulfils the above
conditions (Proposition 4.20 of (Böttcher & Silbermann, 1999)).

An alternative but equivalent definition is given in Section 8.43 of (Deutsch, 2001)
(see also Definition 1.1.2 of (Campbell & Meyer, 1979)).

Definition 13
Let C and D be two Hilbert spaces and A : C 7→ D a bounded linear map between
them. A bounded linear map A† = G : D 7→ C is the Moore-Penrose pseudo-inverse
of A iff

(i) A ◦G = PA, and
(ii) G ◦A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.
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For finite-dimensional matrix algebras M(n) every operator is Moore-Penrose
pseudo-invertible (Beutler, 1965; Campbell & Meyer, 1979; Böttcher & Silbermann,
1999; Deutsch, 2001).

For infinite dimensional operators — i.e. operator algebras over infinite dimen-
sional Hilbert spaces — there exist results which guarantee the existence of the
Moore-Penrose pseudo-inverse. We mention here the one in (Böttcher & Silber-
mann, 1999) (Theorem 4.24) which also states how one can “construct” the Moore-
Penrose Pseudo-Inverse.

Proposition 8

An operator A ∈ B(H) is Moore-Penrose invertible if and only if it is normally
solvable, i.e. the range {Ax | x ∈ H} is closed.

In this case A∗A + P — with P the orthogonal projection of H onto the kernel
of A, i.e. onto {x ∈ H | Ax = o} — is invertible and

A† = (A∗A + P)−1A∗.

It is easy to see that if the range of an operator is finite dimensional then it is
normally solvable.

For the finite dimensional case, various algorithms are known for the construc-
tion of the Moore-Penrose pseudo-inverse (Campbell & Meyer, 1979) or (Ben-Israel
& Greville, 2003). A general technique for computing the Moore-Penrose pseudo-
inverse of infinite operators is to approximate them by a sequence of finite dimen-
sional operators.

Given an operator A ∈ B(`2) and a sequence of (orthogonal) projections πn :
`2 → `2 onto the first n coordinates of `2 with π2

n = πn = π∗n, we call An = πnAπn

a finite section of A. It corresponds effectively to taking the n × n sub-matrix
in the upper left corner of the matrix representing A. The sequence (An)n is an
approximating sequence for A in the sense that A is the strong limit of this sequence
(Section 2.1 of (Böttcher & Silbermann, 1999)).

For operators A with an approximating sequence (An)n we can construct the
Moore-Penrose pseudo-inverse as established by the following proposition (Corol-
lary 4.34 of (Böttcher & Silbermann, 1999)).

Proposition 9

Let H be a separable Hilbert space, A ∈ B(H) and An a sequence of finite di-
mensional operators An ∈ M(n) with supn ‖A‖ < ∞ and such that An → A and
A∗

n → A∗ strongly. Then A is normally solvable and A†
n converges strongly to A†

(A†
n → A†).

In other words if we can approximate A by a sequence (An)n and the sequence
(A†

n)n of Moore-Penrose pseudo-inverse converges in the strong operator topology
then A† exists and is identical to the limit of (A†

n)n.
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6 Network Analysis

Using the PAI framework we can construct induced abstractions or approximations
of individual processes. We have followed this approach before in various papers,
e.g. (Di Pierro & Wiklicky, 2000; Di Pierro & Wiklicky, 2001).

In the current context we need a way to analyse networks of processes. This task
will be simplified thanks to the following properties of the tensor product which
allow us to de-compose a network into its individual processes and to analyse their
interaction in order to obtain an “integrated” behaviour of the network as a whole.

Proposition 10
Given two bounded linear operators A1 and A2 on a Hilbert space, then

(A1 ⊗A2)† = A†
1 ⊗A†

2.

Proof
We show that the Moore-Penrose conditions from Definition 12 hold. We use the
properties of the tensor product as stated in Proposition 3.

We denote by A = A1⊗A2 and by B = A†
1⊗A†

2, in order to show that A† = B
we have to show the the following four conditions are fulfilled:

ABA = A: Exploiting property (i) in Proposition 3 we get:

ABA =

= (A1 ⊗A2)(A
†
1 ⊗A†

2)(A1 ⊗A2)

= A1A
†
1A1 ⊗A2A

†
2A2

= A1 ⊗A2

= A.

BAB = B: Again by property (i) in Proposition 3 we see that:

BAB =

= (A†
1 ⊗A†

2)(A1 ⊗A2)(A
†
1 ⊗A†

2)

= A†
1A1A

†
1 ⊗A†

2A2A
†
1

= A†
1 ⊗A†

2

= B.

(AB)∗ = AB: Exploiting properties (i) and (iv) in Proposition 3 we obtain:

(AB)∗ =

= ((A1 ⊗A2)(A
†
1 ⊗A†

2))
∗

= (A1A
†
1 ⊗A2A

†
2)
∗

= (A1A
†
1)
∗ ⊗ (A2A

†
2)
∗

= A1A
†
1 ⊗A2A

†
2

= (A1 ⊗A2)(A
†
1 ⊗A†

2)

= AB.
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(BA)∗ = BA: Using properties (i) and (iv) in Proposition 3 it follows that:

(BA)∗ =

= ((A†
1 ⊗A†

2)(A1 ⊗A2))∗

= (A†
1A1 ⊗A†

2A2)∗

= (A†
1A1)∗ ⊗ (A†

2A2)∗

= A†
1A1 ⊗A†

2A2

= (A†
1 ⊗A†

2)(A1 ⊗A2)

= BA.

6.1 Compositional Analysis

The above result allows us to construct the Moore Penrose pseudo-inverse of an ab-
straction which is given by a tensor product in a simple compositional way. Next we
need to combine this result with the fact that the semantics of pcKLAIM networks
as we have defined it before is also a tensor product in order to obtain an effective
way to construct an abstract network semantics based on “node abstractions”.

The semantics of pcKLAIM, i.e. the transition relation given in Table 5, is rep-
resented by an infinite matrix, or more precisely by a bounded operator T on a
Hilbert space H. For practical computations — when dealing with a single network
— we can restrict this operator to one on a Hilbert space generated by just the
network configurations reachable from the initial configuration.

Given an initial configuration N0 of a pcKLAIM network we define the set of
reachable configurations by:

R(N0) = {N | N0 −→∗
p N with p > 0}

Definition 14
For a pcKLAIM network N0 we define the reachable restriction TN0 of the linear
operator semantics T by

TN0 = πN0TπN0

where πN0 is the projection onto V(R(N0)).

If we have a finite computation, i.e. if the set of reachable states is finite, we get
a finite dimensional matrix, i.e. a linear operator on some finite dimensional vector
space.

For any network N0 the restricted operator TN0 contains enough information to
serve as a replacement of the full semantics T as we have

Ti[[N0]] = T
i

N0
[[N0]]

if we embed H(R(N0)) in the obvious way in H.
An important fact for the compositional analysis of pcKLAIM program is that

we can express T and in particular T as a sum of binary communications. This
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corresponds in the operational semantics to the fact that in each step there are at
most two local configurations which change in each of the rules in Table 5.

In the following we will use I ⊗ I = I instead of the more correct notation
In⊗Im = Inm, where the subscript indicates the dimension of the identity operator,
i.e. In ∈M(n, n), Im ∈M(m,m) and Inm ∈M(nm, nm).

Proposition 11
Given an initial network N0 (with at least two nodes), the operator T = TN0 can
be written

T =
m∑

i,j=1

C(i, j),

where C(i, j) represents the interaction or communication between two nodes, and
is of the form

C(i, j) = I⊗(i−1) ⊗ (Mi ⊗Ni)⊗ I⊗(j−i−1) ⊗ (Mj ⊗Nj)⊗ I⊗(m−j−1).

Proof
This follows from the definition of the linear operator semantics. T is defined as
sum of T(ni) which in turn are defined as the sum of tensor products of operators.
It is easy to see that in all four cases the operators are of the form required for
C(i, j): For Nil(ni) we have, for example, Ni = Enil,nil and Mi = I, and we can
take any other node j and take Mj = I and Nj = I. Essentially the same argument
holds for Delay(ni). For Out(ni) and In(ni) we just have to observe that the
operators DoOut(i, j, l) and DoIn(i, j, l, x) are the product of an At(i, . . .) and an
At(j, . . .) operator. The properties of the tensor product then imply immediately
that At(i, . . .) · At(j, . . .) is of the form required for C(i, j) (if i = j we actually
return to a case similar to Nil and Delay).

Note that the probabilistic weighting, the application of test projections as well
as the normalisation operation do not change the structure of these operators. Their
effect is merely to adjust the numerical entries in the factors of the C(i, j).

This means that in order to construct T or T we have only to consider interactions
between two nodes, i.e. operators of the form:

(Mi ⊗Ni)⊗ (Mj ⊗Nj)

Suppose we have an abstraction operator A for single nodes, i.e. a map A :
V(P)⊗V(D) → A, where A is vector space representing some abstract property of
nodes. For example, the abstraction A could be an operator which marks nodes as
infected/sick or not infected/health, with A = V({s, h}). We can then construct a
global abstraction and concretisation for a whole network:

m⊗
i=1

A = A⊗m and

(
m⊗

i=1

A

)†
=

m⊗
i=1

A† = (A†)⊗m.

Such a compositional abstraction of a whole network induces the following ab-
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stract semantics:(
m⊗

i=1

A†

)
T

(
m⊗

i=1

A

)
=

=

(
m⊗

i=1

A†

)
m∑

i,j=1

C(i, j)

(
m⊗

i=1

A

)

=
m∑

i,j=1

(
m⊗

i=1

A†

)
C(i, j)

(
m⊗

i=1

A

)

=
m∑

i,j=1

(A†)⊗m(I⊗(i−1) ⊗ (Mi ⊗Ni)⊗ I⊗(j−i−1) ⊗ (Mj ⊗Nj)⊗ I⊗(m−j−1))A⊗m

=
m∑

i,j=1

I⊗(i−1) ⊗ (A†(Mi ⊗Ni)A)⊗ I⊗(j−i−1) ⊗ (A†(Mj ⊗Nj)A)⊗ I⊗(m−j−1)

=
m∑

i,j=1

C#(i, j)

if we denote by C#(i, j) : A⊗m → A⊗m the abstraction of the basic communication
operators C(ij) defined by:

C#(i, j) =

= (A†)⊗m · (C(i, j)) ·A⊗m

= I⊗(i−1) ⊗ (A†(Mi ⊗Ni)A)⊗ I⊗(j−i−1) ⊗ (A†(Mj ⊗Nj)A)⊗ I⊗(m−j−1).

In other words, the abstraction T
#

: A⊗m → A⊗m of the reachable operator
semantics T given by T =

∑m
i,j=1 C(i, j) induced by a node abstraction A is given

by

T
#

=
m∑

i,j=1

C#(i, j).

This means that in order to understand what the abstraction is doing we need
to study essentially only the operator

(A†(Mi ⊗Ni)A)⊗ (A†(Mj ⊗Nj)A) =

= (A⊗A)†((Mi ⊗Ni)⊗ (Mj ⊗Nj))(A⊗A)

= (A† ⊗A†)((Mi ⊗Ni)⊗ (Mj ⊗Nj))(A⊗A).

6.2 Interaction Matrices

A particular case of a node abstraction is a one dimensional abstraction A : V(P)⊗
V(D) → R. This is useful if the aim is to assign to a node a single property. This
can be as usual a property the node might have or not (a qualitative property) or
as in our quantitative setting the “strength” of this property or the probability that
the node exhibits the property in question.
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The fact that for one dimensional spaces A we have
m⊗

i=1

A = A⊗m ' Am,

and in particular that we can describe the tensor product representing C#(i, j) by
a m × m matrix allows us to present the interaction between several nodes by a
communication or interaction matrix.

Example 12
In order to illustrate the construction and use of such a simple abstraction of the
network interactions we depart from pcKLAIM and consider a more abstract situ-
ation.

Assume that we have three nodes n1, n2, and n3 which can be in just two states
s ∈ S which we refer to as:

1. healthy
2. sick

We can represent the state of each node by a vector in V(S) ' R2 and the overall
state of the three node network by a vector in V(S)⊗V(S)⊗V(S) ' (R2)⊗3 = R8.
For example

(1, 0)⊗ (0, 1)⊗ (1, 0)

represents a network where the first and third node are healthy while the middle
one is sick.

The aim is now to describe a (concrete) dynamics of this network under the
assumption that sick nodes make their neighbours sick. Of course one could also
think of more complicated dynamics as in the Conway’s Game of Life or other
cellular automata (Toffoli & Margolus, 1987). Translating the pcKLAIM specific
definitions into this more general setting we can define operators T(ni)’s which
describe the overall change of the network if it is triggered by node ni. For example
we get:

T(n1) =
(

1 0
0 0

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
+

1
2
·
(

0 0
0 1

)
⊗
(

0 1
0 1

)
⊗
(

1 0
0 1

)
+

1
2
·
(

0 0
0 1

)
⊗
(

1 0
0 1

)
⊗
(

0 1
0 1

)
.

This expresses the fact that a healthy node leaves the other two unchanged, while
a sick node will infect one of its neighbours, each with a 50% chance. Note that we
assume — as with pcKLAIM’s one-by-one interactions — that each T(ni) is the
sum of some C(i, j)s describing the interaction between two nodes (one of these
is actually “degenerated”, involving only one node, as we have it in the Nil and
Delay cases).

The operators T(n2) and T(n3) are defined similarly. With this we can define a
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global update operator in which each of the three nodes gets the same chance to
trigger the update by:

T =
1
3
·T(n1) +

1
3
·T(n2) +

1
3
·T(n3).

The node abstraction operator A : R2 → R:

A =
(

0
1

)
with A† =

(
0 1

)
models the “sickness” of each node.

We can now construct abstract interaction operators C#(i, j) which describe how
a sick node can infect healthy ones. First we need a decomposition

T =
3∑

i,j=1

C(i, j).

From the definition of T(n1) above, we have for example:

C(1, 1) =
(

1 0
0 0

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
C(1, 2) =

1
2
·
(

0 0
0 1

)
⊗
(

0 1
0 1

)
⊗
(

1 0
0 1

)
C(1, 3) =

1
2
·
(

0 0
0 1

)
⊗
(

1 0
0 1

)
⊗
(

0 1
0 1

)
etc. Therefore the abstracted interaction matrices are given by

C#(1, 1) = A†
(

1 0
0 0

)
A⊗A†

(
1 0
0 1

)
A⊗A†

(
1 0
0 1

)
A

=
(

0
)
⊗
(

1
)
⊗
(

1
)

=
(

0
)

C#(1, 2) =
1
2
·A†

(
0 0
0 1

)
A⊗A†

(
0 1
0 1

)
A⊗A†

(
1 0
0 1

)
A

=
1
2
(

1
)
⊗
(

1
)
⊗
(

1
)

=
(

1
2

)
C#(1, 3) =

1
2
·A†

(
0 0
0 1

)
A⊗A†

(
1 0
0 1

)
A⊗A†

(
0 1
0 1

)
A

=
1
2
(

1
)
⊗
(

1
)
⊗
(

1
)

=
(

1
2

)
as for 1× 1 matrices the tensor (or Kronecker) product degenerates to the normal
multiplication and because we have:

A†
(

1 0
0 1

)
A =

(
1
)

and A†
(

0 1
0 1

)
A =

(
1
)

A†
(

1 0
0 0

)
A =

(
0
)

and A†
(

0 0
0 1

)
A =

(
1
)

The abstractions C#(i, j) essentially describe the chances that a sick node i
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causes an infection at node j — ignoring that i itself stays sick. We can re-arrange
the C#(i, j) to form an “infection matrix” V. In our example we get

V = (C#(i, j))ij =

 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0


The infection matrix V = (C#(i, j))ij itself is not an abstraction of the network

dynamics. It is only a convenient way to denote the risks that an infected node i

could cause an infection of a previously not infected node j. In other words, V only
describes new infections. Therefore we have, for example, a zero diagonal in V; no
infected node can cause a new infection of itself.

Despite the fact that V does not describe the full abstract network dynamics,
we can still utilise it in order to obtain some information about the dynamics of
the infection. If we start, for example, with a infected node n2 and represent this
situation by the vector (0, 1, 0) then one application of this matrix gives a vector
( 1
2 , 0, 1

2 ). This indicates the fact that the chances of each of the two other nodes
getting infected is 50% (provided they were both healthy before). Adding both
vectors, we obtain the distribution ( 1

2 , 1, 1
2 ), which gives the probabilities that in

this case after one step we find an infection in each of the three nodes.
However, as V only describes the partial ‘new infection’ dynamics, it would be

wrong to apply V directly to this vector in order to obtain the chances of an
infection after two steps. We know from the beginning that n2 is infected and it
will stay this way after two, three, etc. steps. The chances of e.g. n1 to be infected
after two steps is given by the chances that it was infected at the beginning, i.e.
zero, plus the chances of a first infection after one step, i.e. a half, and the chances of
a new infection in the second step. These chances of a new infection in the second
step are thus 1

2 , i.e. that it had been still healthy after the first step, times the
first component of the distribution we obtain when we apply V to (1

2 , 1, 1
2 ). The

same applies for n3 and we thus obtain ( 7
8 , 1, 7

8 ) describing the health status of the
network after two steps.

7 Analysis Examples

We present in this section some examples of pcKLAIM networks and show how to
analyse their properties using the techniques developed before. The aim is to illus-
trate the features of our framework, not to analyse real-world networks. However,
even in these relatively simple cases we will see that abstraction is essential to over-
come the problems associated with the exponential growth of models for distributed
systems (due to the tensor product representation). The following examples also il-
lustrate the use of pcKLAIM specifications and the probabilistic aspects captured
by the operational and linear operator semantics introduced above.
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7.1 Simple One-By-One Interaction

We will consider here simple networks similar to the ones described in Section 1,
where nodes are either open — capable of becoming infected — or closed. The worm
is represented by a recursive process that outputs a token to some locality and then
restarts:

I ≡ out(v)@`.I

We start by considering very simple networks in which open nodes just input a
value and then behave like the worm, while closed nodes silently loop:

O ≡ in(x).I
C ≡ delay.C

Given allocation environments %1(`) = {〈l2, 1〉} and %2(`) = {〈l1, 1〉} and the net-
work

No ≡ l1 ::%1 I ‖ l2 ::%2 O,

the possible transitions are:

• With probability 1, i.e. with certainty, the network can make the step No
1
// l1 ::%1

I ‖ l2 ::%2 O ‖ l2 :: 〈v〉, since O is blocked on the in action (as node l2 ::%2 O

is not active).
• With probability 1 this state makes a further transition to l1 ::%1 I ‖ l2 ::%2 I,

i.e. the open process consumes the token v and gets itself infected.
• With probability 1

2 each, this state makes a transition to l1 ::%1 I ‖ l2 ::%2

I ‖ l2 :: 〈v〉 triggered by l1 and to l1 ::%1 I ‖ l1 :: 〈v〉 ‖ l2 ::%2 I by executing
the infection process at l2.

• Finally, both these states are transformed into l1 ::%1 I ‖ l1 :: 〈v〉 ‖ l2 ::%2

I ‖ l2 :: 〈v〉.
• After that no further transitions are possible because both processes are

blocked.

If instead we consider the network

Nc ≡ l1 ::%1 I ‖ l2 ::%2 C,

with the same allocation environments %1 and %2 as before, the possible transitions
are:

• With probability 1
2 this network loops back to itself caused by a network

updated triggered by l2, i.e. a transition initiated by C.
• With probability 1

2 we have a transition form this initial state Nc to l1 ::%1

I ‖ l2 ::%2 C ‖ l2 :: 〈v〉.
• The network l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 then loops with probability

1 because the worm is now blocked and further network updates are only
caused by the process C.

• On the long run, after infinitely many updates, the network will end up in
this second configuration with probability 1 as the probability of reaching this
state in one step is 1

2 , in two steps is 1
4 , after three is 1

8 , etc.
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So we see that the open nodes eventually block and the closed nodes continue to
operate as intended (albeit with a virus token in their local store). A different choice
of allocation environment for the open node would allow the virus to propagate.

7.2 Linear Semantics of Simple Interactions

If we recast the above situation using linear operators we have to construct the
operators To = TNo and T c = TNc representing the dynamics of the two network
configurations. To allow a uniform treatment we will consider a single operator T

which is the restriction of T to all reachable configurations for both nets (further
restrictions would then result in To and Tc. Furthermore we present T not in the
original form given in Section 4 but in the way introduced in Proposition 11.

We enumerate the reachable process and date store states at each node as follows:

1. C ≡ delay.C

2. O ≡ in(x).I
3. I ≡ out(v)@`.I

1. 〈〉
2. 〈v〉

With this we can define an interaction matrices which describes the interaction of
a node i with a node j (as in Proposition 11 assuming i < j and similarly for i > j)
as:

C(i, j) = I⊗(i−1) ⊗ (Md
i ⊗Nd

i )⊗ I⊗(j−i−1) ⊗ (Md
j ⊗Nd

j )⊗ I⊗(m−j−1)

+ I⊗(i−1) ⊗ (Mo
i ⊗No

i )⊗ I⊗(j−i−1) ⊗ (Mo
j ⊗No

j)⊗ I⊗(m−j−1)

+ I⊗(i−1) ⊗ (Mi
i ⊗Ni

i)⊗ I⊗(j−i−1) ⊗ (Mi
j ⊗Ni

j)⊗ I⊗(m−j−1)

where the matrices representing a delay transition at the sources node i and the
target node are given by

Md
i =

 1 0 0
0 0 0
0 0 0

 Nd
i =

(
1 0
0 1

)
Md

j =

 1 0 0
0 1 0
0 0 1

 Nd
j =

(
1 0
0 1

)
the matrices encoding out actions are:

Mo
i =

 0 0 0
0 0 0
0 0 1

 No
i =

(
1 0
0 1

)
Mo

j =

 1 0 0
0 1 0
0 0 1

 No
j =

(
0 1
0 0

)
and the operators for the in process are defined to be:

Mi
i =

 0 0 0
0 0 1
0 0 0

 Ni
i =

(
0 0
1 0

)
Mi

j =

 1 0 0
0 1 0
0 0 1

 Ni
j =

(
1 0
0 1

)
.

With this we can construct T as a 36× 36 matrix (as 36 = (3 · 2) · (3 · 2)):

T = N
(

1
2
C(1, 2) +

1
2
C(2, 1)

)
.

This operator T encodes all possible probabilistic transitions between all the 36
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networks containing two nodes with processes C, O or I and stores 〈〉 or 〈v〉 possible.
In particular we can look at the dynamics of a vector encoding the network No. We
get as expected the following sequence of distributions over network configurations:

T
0
[[No]] = {〈l1 ::%1 I ‖ l2 ::%2 O, 1〉}

T
1
[[No]] = {〈l1 ::%1 I ‖ l2 ::%2 O ‖ l2 :: 〈v〉 , 1〉}

T
2
[[No]] = {〈l1 ::%1 I ‖ l2 ::%2 I, 1〉}

T
3
[[No]] = {〈l1 ::%1 I ‖ l1 :: 〈v〉 ‖ l2 ::%2 I,

1
2
〉, 〈l1 ::%1 I ‖ l2 ::%2 I ‖ l2 :: 〈v〉 , 1

2
〉}

T
4
[[No]] = {〈l1 ::%1 I ‖ l1 :: 〈v〉 ‖ l2 ::%2 I ‖ l2 :: 〈v〉 , 1〉}

T
5
[[No]] = {〈l1 ::%1 I ‖ l1 :: 〈v〉 ‖ l2 ::%2 I ‖ l2 :: 〈v〉 , 1〉}

. . . . . .

and for the network Nc we get:

T
0
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C, 1〉}

T
1
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C,

1
2
〉, 〈l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 , 1

2
〉}

T
2
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C,

1
4
〉, 〈l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 , 3

4
〉}

T
3
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C,

1
8
〉, 〈l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 , 7

8
〉}

T
4
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C,

1
16
〉, 〈l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 , 15

16
〉}

T
5
[[Nc]] = {〈l1 ::%1 I ‖ l2 ::%2 C,

1
32
〉, 〈l1 ::%1 I ‖ l2 ::%2 C ‖ l2 :: 〈v〉 , 31

32
〉}

. . . . . .

7.3 Network Dynamics of Simple Interactions

In order to put the simple interaction pattern of the previous example into context
let us investigate the worm propagation in a network with a similar topology to the
networks presented in Section 1. Consider the network

◦1

  B
BB

BB
BB

BB

**UUUUUUUUUUUUUUUUUUUUUUUUU ◦2

~~||
||

||
||

|

  B
BB

BB
BB

BB
◦3

~~||
||

||
||

|

ttiiiiiiiiiiiiiiiiiiiiiiiii

•4

~~||
||

||
||

|

  B
BB

BB
BB

BB

**UUUUUUUUUUUUUUUUUUUUUUUUU •5

ttiiiiiiiiiiiiiiiiiiiiiiiii

~~||
||

||
||

|

  B
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◦6 ◦7 ◦8
where we assume that the nodes in each layer are fully connected. The pcKLAIM
specification of this network is as follows:

l1 ::%1 P1 ‖ l2 ::%2 P2 ‖ l3 ::%3 P3

‖ l4 ::%4 P4 ‖ l5 ::%5 P5 ‖
l6 ::%6 P6 ‖ l7 ::%7 P7 ‖ l8 ::%8 P8
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using the allocation environments:

%1(`) = {〈l2,
1
4
〉, 〈l3,

1
4
〉, 〈l4,

1
4
〉, 〈l5,

1
4
〉}

%2(`) = {〈l1,
1
4
〉, 〈l3,

1
4
〉, 〈l4,

1
4
〉, 〈l5,

1
4
〉}

%3(`) = {〈l1,
1
4
〉, 〈l2,

1
4
〉, 〈l4,

1
4
〉, 〈l5,

1
4
〉}

%4(`) = {〈l5,
1
4
〉, 〈l6,

1
4
〉, 〈l7,

1
4
〉, 〈l8,

1
4
〉}

%5(`) = {〈l4,
1
4
〉, 〈l6,

1
4
〉, 〈l7,

1
4
〉, 〈l8,

1
4
〉}

%6(`) = {〈l7,
1
2
〉, 〈l8,

1
2
〉}

%7(`) = {〈l6,
1
2
〉, 〈l8,

1
2
〉}

%8(`) = {〈l6,
1
2
〉, 〈l7,

1
2
〉}

The processes Pi with i = 1 . . . , 8 are C, O or I. In particular, we will be interested
in networks where P1 = P2 = P3 = I and P6 = P7 = P8 = O, while P4 and P5 are
either O (indicated by ‘◦’) or C (indicated by ‘•’).

Although the number of nodes in each layer are reduced compared to the networks
in Section 1, the operator representing the concrete operator T for this 8 node
network would be a 68 × 68, i.e. a 1679616 × 1679616, matrix. Although most of
its 2821109907456 entries are zero — thus allowing us the usage of sparse matrix
techniques — the size of this operator prohibits a direct analysis of its dynamic
behaviour.

To overcome this problem we will use a probabilistic abstraction of the dynam-
ics of the individual nodes based on our PAI technique and the fact that it is
compositional with respect to the tensor product. This will allow us to obtain a
computationally feasible representation of T. Reducing the dimension of the indi-
vidual M and N matrices in the definition of interaction operators C(i, j) from
6× 6 to, for example, 3× 3 leads to reducing the dimension of T dramatically to a
mere 38 × 38 (i.e. 6561× 6561) matrix.

One idea for an abstraction would be to ignore the contents of the store and to
concentrate only on the process part. However, this kind of abstraction would lead
to considering any node with an O process as infected although its infection state
actually depends on whether its store contains the virus v or not. We thus had
to treat open nodes behind a protective wall of closed nodes as eventually infected
although the infection would be unable to reach those open nodes. We will therefore
use a different abstraction for the six possible node configurations, namely:

li ::% C ‖ li :: 〈〉 7→ healthy

li ::% C ‖ li :: 〈v〉 7→ healthy

li ::% O ‖ li :: 〈〉 7→ vulnerable
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li ::% O ‖ li :: 〈v〉 7→ sick

li ::% I ‖ li :: 〈〉 7→ sick

li ::% I ‖ li :: 〈v〉 7→ sick

Encoding this abstraction into an abstraction matrix and computing its Moore-
Penrose pseudo-inverse yields:

A =



1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1


and A† =

 1
2

1
2 0 0 0 0

0 0 1 0 0 0
0 0 0 1

3
1
3

1
3



We can now define abstract interaction matrices C#(i, j) in exactly the same way
as in the case of the concrete semantics. We only have to replace the M⊗N and I
factors in the defining tensor product by their abstract versions A†(M⊗N)A and
A†IA (which simply gives a 3× 3 identity matrix). The operator T

#
is defined as

T
#

=
∑

(i,j)∈N

C#(i, j),

where (i, j) ∈ N indicates that node i and j are connected in the network topology.
We will consider three prototypical situations: in the first one the open nodes in

the lower layer are protected by a layer of closed nodes; in the second one a middle
layer contains open and closed nodes; and the third one is when the network has only
open nodes. In order to further simplify our analysis we will consider the infection
risk of only a single node in the bottom layer, i.e. we consider the following three
networks:
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The operator T
#

representing the common abstract semantics for all three networks
is given by a ‘small’ 729 × 729 matrix. We represent the configuration of each of
the three networks by three vectors in R729.

Assuming that all nodes in the top layer are infected the chances that the bottom
node is infected after i iterations in each of the three networks Nc (closed), Nv

(vulnerable) and No (open) is depicted in the following table:
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i 0 1 2 3 4 5 6 100

No 0.0 0.0 0.0476 0.1285 0.2271 0.3310 0.4316 0.9999
Nv 0.0 0.0 0.0150 0.0414 0.0758 0.1159 0.1598 0.9998
Nc 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7.4 Probabilistic One-By-One Interaction

A more sophisticated definition for O and C is a more symmetrical one which
makes (the nodes of) O and C both vulnerable but with different (complementary)
probabilities:

O ≡ p : in(x).I | (1− p) : S

C ≡ (1− p) : in(x).I | p : S

S ≡ delay.S

When p tends towards 1, then O has a high probability of becoming infected but
also has the opportunity to behave as a local system (S), whilst the situation is
reversed in C. Consider the following two nodes network:

N ≡ l1 ::% I ‖ l2 ::% C

with %(`) = %1(`) = {〈l2, 1〉}. We first transform N in normal form1 and we get:

N ≡ (l1 ::% I ‖ l21 ::% in(x).I ‖ l22 ::% S)[d]

with d = {〈l1, 1
2 〉, 〈l21,

1−p
2 〉, 〈l22, p

2 〉}, or equivalently

N ≡ l1 ::
1
2
% I ‖ l21 ::

1−p
2

% in(x).I ‖ l22 ::
p
2
% S

with allocation environment %(`)(l1) = 0, %(`)(l21) = 1− p, and %(`)(l22) = p.
Indicating the three nodes in N by n1 ≡ l1 ::% I, n2 ≡ l21 ::% in(x).I, and

n3 ≡ l22 ::% S, we have that ActiveN = {n1, n2} with Activeout(%, `) = {n2, n3}.
Thus, the following transitions are possible.

• With probability q1 = p
1+p , the network N loops because the transition on

node n3 is chosen.
• Otherwise two transitions can occur depending on the choice of the target

node for the out at node n1, namely

N
q2=

1−p
1+p

// (n1 ‖ l21 :: 〈v〉 ‖ l21 ::% in(x).I ‖ n3)[d] ≡ N ′, and

N
q3=

p
1+p

// (n1 ‖ n2 ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d] ≡ N ′′.

• Now we have that ActiveN ′ = {n1, n2, n3} with Activeout(%, `) = {n3} and
Activein(%, `) = {n2}, while ActiveN ′′ = {n1, n2, n3} with Activeout(%, `) =
{n2} and Activein(%, `) = {n3}.

1 We use the shorthand notation l21 and l22 for l2.l1 and l2.l2 respectively.
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• Both states N ′ and N ′′ can loop with probabilities q4 = p
2 and q5 = p

2

respectively.
• A further transition from N ′ with probability q7 = 1

2 and from N ′′ with
probability q9 = 1

2 will lead to the same network

N ′′′ ≡ (n1 ‖ l21 :: 〈v〉 ‖ l21 ::% in(x).I ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d],

• Finally, N ′ with probability q6 = (1−p)
2 and N ′′ with probability q8 = (1−p)

2

lead to the same network

N ′′′′ ≡ (n1 ‖ l21 ::% I ‖ l22 ::% S)[d]

• The state N ′′′ can loop with probability q11 = p or become with probability
(1 − p) a network where the worm is present in one of the nodes n2 or n3.
More precisely:

N ′′′
q13=(1−p)2

// (n1 ‖ l21 ::% I ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d] ≡ Nf1, and

N ′′′
q15=(1−p)p

// (n1 ‖ l21 ::% I ‖ l21 :: 〈v〉 ‖ n3)[d] ≡ Nf2,

with (1− p)2 + (1− p)p = 1− p.
• The network N ′′′′ loops with probability q10 = p

2 , leads to Nf1 with proba-
bility q12 = (2−p)(1−p)

2 and Nf2 with probability q14 = (2−p)p
2 .

• The states Nf1 and Nf2 loop with probability p
2 (q16 and q17) or, with prob-

ability (2−p)
2 (q18 and q19) – which actually corresponds to the sum of the

probabilities of two transitions (see above) — becomes

Nf ≡ (l1 ::% I ‖ l21 ::% I ‖ l21 :: 〈v〉 ‖ l22 ::% S) ‖ l22 :: 〈v〉)[d].

In particular, Nf is reached both with a further transition from Nf1 with
probability

d(l1)%(l21) + d(l21)%(l21) =
1− p

2
+

1
2

= 1− p

2
,

and from Nf2 with probability

d(l1)%(l22) + d(l21)%(l22) =
1− p

2
+

1
2

= 1− p

2
.

• The final state Nf loops with probability 1 since both worms are now blocked.

The composition of the worm with the closed system gives rise to a similar transition
system, as the probabilistic versions of O and C only differ in the role of p.

7.5 Linear Semantics of Probabilistic Interactions

As with the previous definitions of O and C we only need to understand the one-
by-one interaction between I and the probabilistic versions of O and C in order
to analyse more complex networks. We therefore now consider the linear operator
semantics of these two node networks. By way of illustration, we continue to consider
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the interaction of the worm with the closed network. The semantics of a single step
is given by:

T = N
(

1
2
·T(n1) +

p

2
·T(n2) +

(1− p)
2

·T(n3)
)

where addr(n1) = l1, addr(n2) = l21, addr(n3) = l22. We will just consider the
definition of T (n1).

Using the definition of the semantics gives

T(n1) = Nil(n1) + Delay(n1) + Out(n1) + In(n1)

The definitions of Nil(n1) and Delay(n1) are standard. For the input and output
actions, we have that env(n1)(`)(addr(n2)) = 1− p, env(n1)(`)(addr(n3)) = p and
all other values are 0. Thus

Out(n1) = (1− p)(DoOut(1, 2, v)) + p(DoOut(1, 3, v))
= (1− p)(Tstempty(l21) ·At(1,P(v)⊗ I) ·At(2, I⊗ J(v))

+Tstfull(l21))
+p(Tstempty(l22) ·At(1,P(v)⊗ I) ·At(2, I⊗ J(v))
+Tstfull(l22))

The definition of In(n1) is similar.
The construction for T(n2) and T(n3) are similar. This leads to a large ten-

sor product which can then be simplified using the techniques from the preceding
section. This results in the operator T defined below. We enumerate the globally
reachable states as follows:

1. N ≡ (l1 ::% I ‖ l21 ::% in(x).I ‖ l22 ::% S)[d]
2. N ′ ≡ (l1 ::% I ‖ l21 :: 〈v〉 ‖ l21 ::% in(x).I ‖ l22 ::% S)[d]
3. N ′′ ≡ (l1 ::% I ‖ l21 ::% in(x).I ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d]
4. N ′′′ ≡ (l1 ::% I ‖ l21 :: 〈v〉 ‖ l21 ::% in(x).I ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d]
5. N ′′′′ ≡ (l1 ::% I ‖ l21 ::% I ‖ l22 ::% S)[d]
6. Nf1 ≡ (l1 ::% I ‖ l21 ::% I ‖ l22 :: 〈v〉 ‖ l22 ::% S)[d]
7. Nf2 ≡ (l1 ::% I ‖ l21 ::% I ‖ l21 :: 〈v〉 ‖ l22 ::% S)[d]
8. Nf ≡ (l1 ::% I ‖ l21 ::% I ‖ l21 :: 〈v〉 ‖ l22 ::% S) ‖ l22 :: 〈v〉)[d]

Then we have:

T =



q1 q2 q3 0 0 0 0 0
0 q4 0 q7 q6 0 0 0
0 0 q5 q9 q8 0 0 0
0 0 0 q11 0 q13 q15 0
0 0 0 0 q10 q12 q14 0
0 0 0 0 0 q16 0 q18

0 0 0 0 0 0 q17 q19

0 0 0 0 0 0 0 1


We then abstract processes as healthy or sick. A reasonable abstraction would

be to consider the first four states as healthy and the second four as infected. This
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gives rise to the probabilistic abstract interpretation (A,G), where

A =



1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1


and G = A† =

(
1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4

)

such that the abstraction of T is given by:

G ·T ·A =
( 1+p

2
1−p
2

0 1

)
Thus, if p is close to 1 and the network is healthy, it has a high probability of
staying so ( 1+p

2 ), as indicated in our earlier discussion.

8 Conclusions

Our aim in this paper has been to develop a framework for the quantitative analysis
of distributed systems. One important application of this framework is the mod-
elling of computer worms and viruses. These have become one of the major banes of
early twenty first century life. The economic cost of viruses is already incalculable
and rising. Our approach provides the basis for using semantics-based techniques
to analyse the propagation of worms and viruses.

More concretely, we have presented a probabilistic discrete time version of a
restricted KLAIM. The KLAIM language has been designed for describing dis-
tributed systems; we have based our work on extensions to a simple, but powerful,
core calculus. The extensions that we have introduced include probabilistic local
and global parallelism and probabilistic allocation environments. We presented both
the structural operational semantics of pcKLAIM and a linear operator semantics.
The latter extends our earlier work by introducing the use of tensors to model
network parallelism.

We have presented simple abstractions of worms and systems that are more
or less susceptible to attacks. The analysis of such systems uses the technique of
probabilistic abstract interpretation. Probabilistic abstract interpretation has not
previously been used in a setting involving tensor products. We have shown that,
by concentrating on the set of reachable states, we can get a tractable analysis of
virus propagation. Our analysis is currently handcrafted; an automated analysis
would probably require us to work with a superset of reachable states.

Further work should deal with a continuous time, truly asynchronous, version of
probabilistic KLAIM. For this we would have to describe not just the probability
that something happens but also specify the chance over time when something could
happen. This leads to models like Stochastic Petri Nets, e.g. (Bause & Kritzinger,
2002), and continuous time Markov chains, e.g. (Tijms, 1994; Norris, 1997), and
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would resemble approaches used in performance analysis where tensor or Kronecker
products are used for a compositional approach, e.g.(Donatelli, 1993; Buchholz &
Kemper, 2004).
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