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Abstract

Secret or private information may be leaked to an external attacker through the
timing behaviour of the system running the untrusted code. After introducing a
formalisation of this situation in terms of a confinement property, we present an
algorithm which is able to transform the system into one that is computationally
equivalent to the given system but free of timing leaks.
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1 Introduction

This paper concerns the transformation of programs to remove covert channels.
Our focus is on timing channels, which are able to signal information through
the time at which an action occurs (a command is executed).

A system is vulnerable to a timing attack if there are alternative control flow
paths of observably different duration; a common refinement of this defini-
tion would be just to focus on those alternative paths where the selection
is guarded by confidential information. We will show that the comparison of
different paths is essentially a confinement problem. We have studied confine-
ment in [1] using probabilistic bisimulation. Specifically, we showed that two
processes are probabilistically confined if and only if they share a common
(probabilistic) abstract interpretation (Proposition 39 of [1]). Our approach
to probabilistic abstract interpretation is based on Operator Algebra and thus
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abstractions are measurable by a norm; in particular, in op. cit., we showed
how to measure the difference between two processes and thus introduced the
notion of approximate confinement. In op. cit. this measure, ε, was given a
statistical interpretation which indicated how much work an attacker would
have to perform in order to differentiate the processes.

In this paper we use our previous work to identify the need for transforma-
tion. We identify the alternative paths which fail to be bisimilar. These are
then candidates for transformation. We present a transformation which es-
tablishes probabilistic bisimilarity whilst retaining input/output equivalence
with the original system. This transformation involves the introduction of new
“padded” control paths. This is similar to the approach of Agat [2]. However,
in contrast to Agat, our work is not programming language specific; instead
it is based on probabilistic transition systems which provide a very general
setting. The transformed system produced by our approach is more efficient
than that which would be produced by Agat’s algorithm. This is because our
algorithm introduces less padding steps.

In the next section, we review some background material on probabilistic tran-
sition systems and their representation as linear operators. Section 3 reviews
the pertinent results from [1] and shows how to use these results to identify po-
tential timing leaks. Section 4 and Section 6 present our algorithm for padding
and its correctness. We demonstrate the algorithm via a simple example in
Section 5, and present some comparisons to related work in Section 8.

2 Probabilistic Processes

Probabilistic process algebras extend the well-established classical techniques
for modelling and reasoning about concurrent processes with the ability of
dealing with non-functional aspects of process behaviour such as performance
and reliability, or in general the quantitative counterpart of classical properties
representing the functional behaviour of a system.

Several models for probabilistic processes have been proposed in the litera-
ture in recent years, which differ from each other essentially in the ”amount”
of nondeterminism that is allowed in the model. Replacing nondeterministic
branching by a probabilistic one leads to either the reactive or the generative
model introduced in [3], where the probability distribution which guides the
choice may depend (reactive) or not (generative) on the action labelling the
branches (or transitions). Other models allow for both nondeterministic and
probabilistic branching and lead to a myriad of variants depending on the
interplay between the two kinds of branching (cf. [4]).
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In order to describe the operational behaviour of probabilistic processes we
consider probabilistic transition systems (PTS’s), that is probabilistic exten-
sions of the notion of labelled transition systems for classical process algebras.
Probabilistic transition systems essentially consist of a set of states and a set
of labels, and their behaviour can be informally described as follows: To a
given action of the environment the system responds by either refusing it or
making a transition to a new state according to a probability distribution. In
this paper we consider only PTS’s with a finite number of states and actions,
which reflect the generative model of probability; they effectively correspond
to a particular kind of probabilistic processes, namely finite Markov chains
[5].

2.1 Probabilistic Transition Systems

Formally, we can define a probabilistic transition system in all generality as in
[6]. We denote by Dist(X) the set of all probability distributions on the set
X, that is of all functions π : X → [0, 1], such that

∑
x∈X π(x) = 1.

Definition 1 A probabilistic transition system is a tuple (S, A,−→, π0), where:

• S is a non-empty, finite set of states,
• A is a non-empty, finite set of actions,
• −→ ⊆ S × A×Dist(S) is a transition relation, and
• π0 ∈ Dist(S) is an initial distribution on S.

For s ∈ S, α ∈ A and π ∈ Dist(S) we write s
α−→ π for (s, α, π) ∈ −→.

By s
p:α−→ t we denote the transition to individual states t with probability

p = π(t). We denote the transition probability from a state s1 to a state s2

with label α by p(s1, α, s2). For a set of states C we write the accumulated
transition probability from s1 to C as: p(s1, α, C) =

∑
s∈C p(s1, α, s).

In the generative model the transition relation of a PTS (S, A,−→, π0) is a
partial function −→: S ↪→ Dist(S ×A); this means that the same probability
distribution is used to govern both the choice of the action and the (internal)
state transition. Looking at a PTS as a Markov chain, we can identify it with
the tree of the outcomes of the associated stochastic process; this can be seen
as an experiment which takes place in stages. At each stage the probability
for each possible outcome is known when the outcomes of all previous stages
are known, and the number of the possible outcomes at each stage is finite.
We can define the tree associated to a PTS inductively as follows.

Definition 2 Let S be a non-empty, finite set of states, and let A be a non-
empty finite set of actions. Then
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• ({s}, A, ∅, {〈s, 1〉}) is a tree-PTS with root s ∈ S;
• if Ti = (Si, A,−→i, {〈si, 1〉}), i = 1, . . . , m, m < ∞ are tree-PTS’s with

roots si ∈ Si, Si ⊆ S for all i = 1, . . . , m, Si ∩ Sj = ∅ for i 6= j, s ∈
S \ ⋃

i Si, and {〈(si, αi), pi〉 | si ∈ Si, αi ∈ A, i = 1, . . . , m} is a probability

distribution, then the PTS constructed as ({s}∪⋃
i Si, A, {s pi:αi−→ si}∪

⋃ −→i

, {〈s, 1〉}) is a tree-PTS with root s. We call Ti the sub-trees of T .

When the transition probabilities form a sub-probability distribution, that is
a function π : S × A → [0, 1] with

∑
s∈S π(s) ≤ 1, then we call the PTS a

subPTS (tree-subPTS).

2.2 Linear Representation of Probabilistic Transition Systems

As in previous work – e.g. [7,1] – we recast the common relational presenta-
tion of PTS’s in terms of linear maps and operators in order to provide an
appropriate mathematical framework for the quantitative study of probabilis-
tic processes.

Definition 3 Given a (sub)PTS T = (S, A,−→, π0) and a fixed α ∈ A then
the matrix representing the probabilistic transition relation

α−→ ⊆ S×[0, 1]×S
corresponding to α is given by

(M α
−→

)st =






p iff s
p:α−→ t

0 otherwise

where s, t ∈ S, and (M)st denotes the entry in column s and row t in the
matrix M. We define the matrix representation M(T ) of the (sub)PTS P as
the direct sum of the matrix representations of the transition relations

α−→ for
each α ∈ A:

M(T ) =
⊕

α∈A

M α
−→

.

We recall that for a set {Mi}ki=1 of ni ×mi matrices, the direct sum of these
matrices is defined by the (

∑k
i=1 ni)× (

∑k
i=1 mi) “diagonal” matrix:

M =
⊕

i

Mi = diag(M1,M2, . . . ,Mk)

Given k square, n× n matrices Mi and an m × n matrix K then we use the
shorthand notation K(

⊕k
i=1 Mi) for the matrix (

⊕k
i=1 K)(

⊕k
i=1 Mi), where we

apply K to each of the factors Mi.
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For probabilistic (sub-probabilistic) relations we obtain a so-called stochastic
(sub-stochastic) matrix, i.e. a positive matrix where the entries in each row
sum up to one (are less than or equal to one).

Matrices are not just schemes for writing down probabilities but also a way to
specify linear maps or operators between/on vector spaces. In our case, PTS’s
are represented as operators on the vector space V(S) = { (vs)s∈S | vx ∈ R},
i.e. the set of formal linear combinations of elements in S with real coefficients.
This space contains all distributions of the state space Dist(S) ⊂ V(S).

3 Process Equivalences and Confinement

The problem of preventing a system from leaking private information to unau-
thorised users is essentially the problem of guaranteeing the confinement [8] of
the system against some specific attacks. Typically, after the introduction of
the notion of noninterference [9,10], most of the work on confinement has been
based on models which ultimately depend on some notion of process equiv-
alence by identifying the absence of information flow between two processes
via the indistinguishability of their behaviours [11].

In [1] it is shown how various process equivalences can be approximated, and
how probabilities can be used as numerical information for quantifying such
an approximation. This provides us with a quantitative measure of the indis-
tinguishability of the process behaviour (according to the given semantics),
that is in a security setting a measure of their propensity to leak informa-
tion. In particular, a notion of confinement can be obtained by stating that
two processes p and q are probabilistically confined iff they are probabilistic
bisimilar.

The central aim of this paper is to present a transformation algorithm for
PTS’s which constructs bisimilar PTS’s while preserving the computational
effects of the original systems. This section is devoted to a formal definition of
the two notions of process equivalence for PTS’s at the base of our treatment,
namely probabilistic bisimulation and probabilistic observables.

3.1 Probabilistic Bisimulation

Probabilistic bisimilarity is the standard generalisation of process bisimilarity
to probabilistic transition systems and is due to [12].

Definition 4 A probabilistic bisimulation is an equivalence relation ∼b on
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the states of a probabilistic transition system satisfying for all α ∈ A:

p ∼b q and p
α−→ π ⇒ q

α−→ % and π ∼b %.

Note that in the case of generative systems considered in this paper, π and %
are sub-probability distributions.

The notion of probabilistic bisimulation on PTS corresponds to the notion of
lumped process for finite Markov chains [5]. This can be seen by noting that a
probabilistic bisimulation equivalence ∼ on a PTS T = (S, A,→, π0) defines
a probabilistic abstract interpretation of T [1]. In fact, we have shown that
it is always possible to define a linear operator K from the space V(S) to
the space V(S/∼) which represents ∼. This so-called classification operator is
represented by the n×m-matrix:

(K)ij =






1 if si ∈ Cj

0 otherwise

with S/∼ = {C1, C2, . . . Cm} and n the cardinality of S. If M(T ) is the oper-
ator representation of T then K†M(T )K is the abstract operator induced by
K where K† is the so-called Moore-Penrose pseudo-inverse of K. For classifi-
cation operators K we can construct K† as the row-normalised transpose of
K. Intuitively, K†M(T )K is an operator which abstracts the original system
T by encoding only the transitions between equivalence classes instead of the
ones between single states. K determines a partition on the state space of T
which is exactly the lumping of the states of T . This can be formally deduced
from the following theorem in [5].

Theorem 5 A necessary and sufficient condition for a Markov chain to be
lumpable with respect to a partition {C1, C2, . . . Cm} is that for every pair of
sets Ci and Cj, the probability pkCj

=
∑

t∈Cj
pit of moving in one step from

state sk into set Cj have the same value for every sk ∈ Ci. These common
values {p̃ij} form the transition matrix for the lumped chain.

We can re-formulate the probabilistic bisimilarity of two processes A and B
in terms of linear operators as follows, cf [1]:

Proposition 6 Given the operator representation M(A) and M(B) of two
probabilistic processes A and B, then A and B are probabilistic bisimilar, that
is A ∼b B, iff there exist classification matrices KA and KB such that

K
†
AM(A)KA = K

†
BM(B)KB.
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Probabilistic bisimilarity of A and B can be expressed in terms of Markov
chains lumpability as follows:

Proposition 7 Given the operator representation M(A) and M(B) of two
probabilistic processes A and B, then A and B are probabilistic bisimilar iff
there exists a lumping K of the process M(A)⊕M(B) of the form

K =




KA

KB




for some classification operators KA and KB for A and B such that KA and
KB are fully column-ranked.

For tree-PTS the above result essentially means that an equivalence relation on
the union of the states of two processes A and B is a probabilistic bisimulation
for A and B iff their roots belong to the same equivalence class.

Probabilistic bisimulation is the finest of all process equivalences as it identi-
fies processes whose step-wise behaviour is exactly the same. From an external
viewpoint other behaviours can be observed in order to distinguish two pro-
cesses. In particular, a potential attacker may be able to obtain experimentally
two kinds of information about a process by observing what final outcomes the
process produces, and by measuring how long the process is running. Both the
input/output behaviour and the timing behaviour of a process correspond to
some suitable abstractions of the concrete behaviour of the process in question.
In this paper we will concentrate on these observables and show how we can
transform a process (PTS) in a way that its input/output behaviour is pre-
served, while its timing behaviour changes so as to become indistinguishable
from another given process.

3.2 Probabilistic Observables

In our PTS model, any execution of a process leads to a single trace, i.e. a
single execution path. Each time there is a probabilistic choice, one of the
possible branches is chosen with some probability. The combined effect of all
the choices made defines the probability of a particular path as the product of
probabilities along this computational path. For finite processes we only have
to consider finitely many paths of finite length and thus only need a basic
probability model. This is based on a finite set of events Ω, i.e. all possible
traces, such that all sets of traces have a well-defined probability attached, i.e.
are measurable, and the probability function P : P(Ω)→ [0, 1] can be defined
via a distribution, i.e. a function π : Ω→ [0, 1] such that P(X) =

∑
x∈X π(x)
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for all X ⊆ Ω.

The notion of observables we will consider is based on a trace semantics for
probabilistic processes whose intuition and formal definition are given below.

3.2.1 Trace Semantics

Formally, the trace semantics of a process T is defined via the notion of prob-
abilistic result of a computational path.

Definition 8 For a computational path π = s0
p1:α1−→ s1

p2:α2−→ . . .
pn:αn−→ sn, we

define its probabilistic result R(π) as the pair 〈α1α2 . . . αn, prob(π)〉, where
prob(π) =

∏
i pi. The trace associated to π is t(π) = α1α2 . . . αn.

Since different computational paths may have the same associated trace (cf.
Example 9), we need to sum up the probabilities associated to each such
computational path in order to appropriately define a probabilistic result.
Formally, this can be done by defining for a process T and trace t the set

[π]T,t = {π | π a computational path for T and t(π) = t},

which collects all the computational paths with trace t. Then we define for each
trace t the computational result R([π]T,t) as the pair

〈
t,

∑
π∈[π]T,t

prob(π)
〉
.

We can now define the trace semantics of T as the set

S(T ) = {R([π]T,t) | t = t(π) and π is a computational path for T}.

Example 9 Consider the following simple processes with action A = {a, b, e}:

T1 •
1:a

��•
1

2
:b

}}||
||

||
|| 1

2
:b

��
@@

@@
@@

@

• •

T2 •
1

2
:a

��~~
~~

~~
~~ 1

2
:a

��
>>

>>
>>

>>

•
1:b
��

•
1:b

��• •

T3 •
1:a

��•
1

2
:b

}}||
||

||
|| 1

2
:e

��
@@

@@
@@

@

•
1:e
��

•
1:b

��• •

T4 •
1

2
:a

��~~
~~

~~
~~ 1

2
:a

��
>>

>>
>>

>>

•
1:e
��

•
1:b

��•
1:b
��

•

•

It is easy to see that the possible traces for the first two processes are given by
the sequence ab while for process T3 we have the traces abe and aeb and for
process T4 we have aeb and ab.

We can thus describe the trace semantics of these four processes by:
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S(T1) = {〈ab, 1〉}
S(T2) = {〈ab, 1〉}
S(T3) = {〈abe, 0.5〉 , 〈aeb, 0.5〉}
S(T4) = {〈aeb, 0.5〉 , 〈ab, 0.5〉}

3.2.2 I/O Observables

The notion of input/output observables, which we will refer to as I/O observ-
ables from now on, correspond to the most abstract observation of a process
behaviour as it just considers the final result of an execution. In our setting,
these final results are identified with probability distributions over the set of all
possible abstract traces. Abstract traces are defined in terms of a function [[.]]
which allows us to avoid specifying a concrete semantics for the labels, thus
keeping our approach as general as possible. In fact, in a PTS we can think
of labels as some kind of “instructions” which are performed by the process,
e.g. a = “x := x-1”, b = “x := 2*x”, etc. The final result of an execution is
thus the accumulated effect of executing these instructions. Depending on the
specific application, the function [[.]] will be defined so as to abstract from the
appropriate computational details of the concrete traces.

For our purposes, we can leave the actual nature of [[.]] unspecified and only
assume that there is a neutral instruction e, i.e. a label which represents some-
thing like a skip statement, such that for any trace t1t2 . . . tn we have:

[[t1t2 . . . tn]] ≡ [[t1t2 . . . tieti+1tn]]

i.e. putting e anywhere in the execution (including at the end or the beginning)
does not change the computational result. We will identify traces if the only
difference between them are some occurrences of this neutral label e; this
introduces an equivalence relation ≡ on the set of all traces.

Clearly, different concrete traces might be identified by [[.]]; for example, if a =
“x := x+1” and b = “x := x-1” one would usually have [[ab]] = [[e]] = [[ba]].

Definition 10 Given a tree-PTS T , we define its I/O observables as

O(T ) = {R([π]T,[[t]]) | π is a computational path for T}.

Proposition 11 For any tree-PTS T , its I/O observables O(T ) define a prob-
ability distribution on the set of states S.
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PROOF. By induction on the tree structure of T .

• If T = ({s}, A, ∅, {〈s, 1〉}) then O(T ) is obviously a probability distribution
on S.
• If T = ({s} ∪ ⋃

i Si, A, {s pi:αi−→ si} ∪
⋃ −→i, {〈s, 1〉}), then by the inductive

hypothesis we have for all i = 1, . . . , m that O(Ti) is a probability distribu-
tion on Si. Therefore, O(T ) =

∑m
i=1 pi · O(Ti) is a probability distribution

on
⋃

i Si. 2

Based on this notion of I/O observables we can now define when two processes
are I/O equivalent.

Definition 12 Two tree-PTS’s A and B are I/O equivalent, denoted by A ∼io

B, if they define the same probability distribution on the set of the equivalence
classes of abstract traces, i.e. iff O(A) = O(B).

Example 13 If we consider again the four processes from Example 9, we get
the following I/O observables:

O(T1)= {〈[[ab]], 1〉}
O(T2)= {〈[[ab]], 1〉}
O(T3)= {〈[[abe]], 0.5〉 , 〈[[aeb]], 0.5〉} = {〈[[ab]], 1〉}
O(T4)= {〈[[aeb]], 0.5〉 , 〈[[ab]], 0.5〉} = {〈[[ab]], 1〉}

i.e. all four processes are I/O equivalent.

3.3 Timing Behaviour

An external observer may have the ability to measure the time a process needs
to perform a given task. In order to do so she just needs to observe “execution
times”, while the concrete nature of the performed instruction is irrelevant for
her purposes. In our model, the timing behaviour of a process can therefore
be defined by abstracting from labels (instructions) and assuming that there
is a function |.| from labels to real numbers which measures the time it takes
to execute the instruction represented by the label.

One can think of various choices for the timing function. For example, one can
assume (as in [13]) that there is only one special label t with |t| = 1 which
indicates time progress, while all other labels take no execution time; in this
case the time flow is measured by the number of these special labels occurring
in a trace. Alternatively, one can assign a different duration to each label.

10



In our model we assume that all labels need a strictly positive time to be
executed, i.e. |α| > 0 for all labels, and that the execution time of all labels is
the same. In particular, while in general one could have various neutral labels
e with different executions time, e.g. |e0| = 0, |e1| = 1, . . . , we will assume
that there is only one neutral element, denoted by

√
, which consumes exactly

one time unit.

Formally we define the time semantics of our processes in terms of the notion
of time bisimulation, that is a bisimulation relation on PTS’s where transitions
are labelled only by action

√
.

Definition 14 Given a tree-PTS T = (S, A,−→, π0), we define its depleted
or ticked version T̂ , as the PTS (S ′, A′,−→′, π′

0) with S ′ = S, A′ = {√},
π′

0 = π0, and −→′ defined by

(s,
√

, π) ∈−→′ iff (s, α, π) ∈−→ for some α ∈ A.

Time bisimilarity is defined as a probabilistic bisimilarity (cf. Definition 4) for
depleted versions of PTS.

Definition 15 Given two PTS’s A and B, we say that A and B are time
bisimilar, denoted by A ∼tb B, iff there is a probabilistic bisimulation on the
states of the ticked versions of A and B.

Example 16 The following two processes P1 and P2 are not probabilistic
bisimilar; they are nevertheless time bisimilar as one can easily see by consid-
ering their ticked versions P̂1 and P̂2:

P1 •
1:a

��•
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:b

}}||
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• •

P2 •
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~~
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2
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��
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>>
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>>
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1:b
��

•
1:c

��• •

P̂1 •
1:
√

��•
1

2
:
√

}}||
||

||
|| 1

2
:
√

��
@@

@@
@@

@

• •

P̂2 •
1

2
:
√

����
��

��
�� 1

2
:
√

��
<<

<<
<<

<<

•
1:
√

��

•
1:
√

��• •

On the other hand it is easy to see that two deterministic processes, i.e. pro-
cesses which correspond to a single trace, are time bisimilar if and only if they
have the same length, as the following example illustrates:

Q1 •
1:a

��•
1:b
��•

Q2 •
1:a

��•

Q̂1 •
1:
√

��•
1:
√

��•

Q̂2 •
1:
√

��•
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3.4 Timing Leaks

Our model for timing leaks essentially follows the noninterference based ap-
proach to confinement recalled at the beginning of this section. In particular,
we define timing attacks in terms of the ability of distinguishing the timing
behaviour of two processes expressed via the notion of time bisimilarity.

In [1] we have used the same idea to model probabilistic covert channels. The
notion of process equivalence used in that paper is an approximate version of
probabilistic bisimilarity as the purpose there is to provide an an estimate of
the confinement of the system, rather than just checking whether it is confined
or not. We aim to extending this current work toward a similar direction
(cf. Section 8). To this purpose, the linear representation of PTS, i.e. their
correspondence with processes which are Markov chains, is essential; in fact,
as shown in [1], it provides the necessary quantitative framework for defining
numerical estimates.

Definition 17 We say that two processes T1 and T2 are confined against tim-
ing attacks or time confined iff their associated PTS are time bisimilar.

We can re-formulate this definition of timing leaks in terms of lumping as
done in Proposition 6 for probabilistic bisimilarity. This will be the base for
the definition of the transformation technique we will present in Section 4.

Definition 18 Given the operator representation M(T ) =
⊕

α∈A Mα(T ) of a
probabilistic process T then the linear representation of its ticked version is
given by:

M̂(T ) =
∑

α∈A

Mα(T )

Definition 19 We say that A and B are time bisimilar, A ∼tb B, iff there
exist classification matrices KA and KB, such that

K
†
AM̂(A)KA = K

†
BM̂(B)KB.

In the following we present a technique for closing possible covert timing chan-
nels by transforming the system into an equivalent one which is free from
timing leaks. The transformation algorithm we present is applicable to finite
tree-PTS’s. It uses ideas from the optimal lumping algorithm in [14] and the
padding techniques from [2].

Intuitively, given a system formed by processes A and B, the algorithm is
based on the construction of a lumping for the Markov chain formed by the
direct sum of the two Markov chains representing A and B. By Proposition 7,

12



the resulting lumped process will be a probabilistic bisimulation for A and B iff
the root nodes of A and B belong to the same class (or they are essentially the
same state in the lumped process). In this case no transformation is needed as
the two processes are confined against timing attacks; otherwise the algorithm
produces two new processes A′ and B′ which exhibit the same I/O behaviour
as A and B but are also time confined. The following diagram shows the effect
of the transformation.

A
6∼tb

∼io

B

∼io

A′
∼tb B′

4 Transforming Probabilistic Transition Systems

Checking whether two systems are bisimilar or not, aka the bisimulation prob-
lem in the literature, is important not only in concurrency theory but also in
many other fields such as verification and model checking, where bisimulation
is used to minimise the states space, but also in computer security where many
non-interference properties can be specified in terms of bisimulation equiva-
lence [15,1]. Various algorithms have been proposed which solve this problem
in linear time, the most important one being the algorithm proposed by Paige
and Tarjan in [16]. This algorithm has been adapted in [14] for probabilistic
processes; in particular, the Derisavi et al. algorithm constructs the optimal
lumping quotient of a finite Markov chain in linear time, and can then be used
to check the probabilistic bisimilarity of two PTS’s.

In this paper we take a transformational approach: we not only check whether
two probabilistic processes are bisimilar or not, but in the case where the
processes are not bisimilar then we transform them into two bisimilar ones.
The transformation we propose is inspired by the Derisavi et al. algorithm
but does not aim to construct an “optimal” partition in the sense of [16].
It rather aims to add missing states and adjust the transition probabilities
when it is needed to make two given processes bisimilar. It also preserves the
probabilistic observable of the original processes.

The algorithm we present consists in essentially two intertwined procedures:
one constructs a lumping partition for the PTS union of two tree-PTS’s; the
other “fixes” the partition constructed by the lumping procedure if some prop-
erties are violated which guarantee the partition to be a probabilistic bisim-
ulation for the given processes. Fixing corresponds to adding some missing
states (padding) and adjusting the transition probabilities in order to achieve
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bisimilarity. Moreover, the transformation is performed in a way that the
original I/O observables of the processes is preserved. The overall procedure
is repeated until a partition is constructed which effectively makes the two
processes probabilistically bisimilar.

Before embarking on a more detailed description of our algorithm, we intro-
duce some necessary notions and definitions. In the rest of this paper we focus
on finite tree-structured PTS.

For a PTS (S, A,−→, π0) we will consider partitions P = {B1, . . . , Bn} of S;
we will refer to the Bi’s as the blocks of the partition P . Given a state s ∈ S and
a partition P we define the cumulative probability of s with respect to B ∈ P
as p(s, B) =

∑{q | s q−→ t with t ∈ B}. We further define the backward image
for a block B and a probability q as preq,−→(B) = {s | ∃B′ ⊆ B : p(s, B′) = q};
this corresponds to the set of all states from which B (i.e a state in B) can be
reached with probability q. We will often omit the index −→ when it is clear
from the context.

For a tree-PTS T we will refer to Height(T ) as the maximal length of a path
in T from the root to a terminal state. The n layer cut-off of a tree-PTS T
is defined inductively as (i) the set of terminal nodes for n = 0, and (ii) for
n = i+1 the set of nodes with only direct links (paths of length one) to nodes
in the i layer cut-off. The procedure CutOff(T, n) returns the n layer cut-off
of T which we also denote by T |n. The complement of the n layer cut-off is
sometimes called the n layer top and the top nodes in the n layer cut-off form
the n layer.

Auxiliary Procedures. An important feature of the transformation of
PTS’s we present in the following is the creation of new states. These will
be copies of existing states or of a distinguished additional “dummy state”
d. We will denote copies of a given state s by s′, s′′, s′′′, . . .. For copies of the
dummy state we usually will omit the primes. For a tree-PTS T = (S, A,−→
, {〈r, 1〉}) we define its copy as the tree-PTS T ′ = (S ′, A,−→′, {〈r′, 1〉}) with

S ′ = {s′ | s ∈ S} and s′
p:α−→′

t′ iff s
p:α−→ t.

In the main algorithm we assume a routine CopyTree(T,s) which returns a
copy of the sub-tree of a tree-PTS T which is rooted in state s (where s is
a state in T ). We will also use a routine DepleteTree(T, s) which takes a
tree-PTS T and returns Ť , i.e. a copy of T where all states are replaced by
copies of the dummy state d and all transitions are labelled by

√
.

Another auxiliary procedure is Linking(T1, s, α, p, T2) whose effect is to in-
troduce a (copy) of a tree-PTS T1 into an existing tree-PTS T2 at state s; the
linking transition will be labelled by α and the associated transition proba-

14



1: procedure Lumping(T )
2: Assume: T is a tree-PTS
3: P ← {S}
4: while ¬Stable(P, T ) do

5: choose B ∈ P
6: P ← Splitting(B, P )
7: end while

8: end procedure

Algorithm 1. Lumping Algorithm

bility will be p. A related procedure called Joining(T1, s, p, T2) introduces a
(copy) of a tree-PTS T2 into an existing tree-PTS T1 at state s by identifying
the root of T1 with s and by multiplying initial transitions with probability p.

Lumping. As already mentioned, our algorithm is inspired by the Paige-
Tarjan algorithm for constructing bisimulation equivalences [16], i.e. stable
partitions, for a given transition system. The same ideas can be used for
probabilistic transition relations

p−→; in this case we say that a partition
P = {B1, . . . , Bn} of a set of states is stable with respect to

p−→ iff for all
blocks Bi and Bj in P and probability q we have that preq(Bi) ∩ Bj = ∅ or
Bj ⊆ preq(Bi).

The construction of the lumping partition is done via the refinement of an
initial partition which identifies all states in one class and proceeds as in
the algorithm Lumping (cf Algorithm 1). Starting with the initial partition
P = {S} the algorithm incrementally refines it by a splitting procedure. For a
block Bi the splitting procedure Splitting(Bi, P ) refines the current partition
P by replacing each block Bj ∈ P with prep(Bi)∩Bj 6= ∅ for some probability
p by the new blocks prep(Bi)∩Bj and Bj \ prep(Bi). The block Bi is called a
splitter. We will also assume the definition of a procedure Stable(P, T ) which
returns true iff partition P is stable for PTS T .

In order to construct a time bisimulation ∼tb for two tree-PTS’s T1 and T2

we apply a slightly modified lumping procedure (cf Algorithm 2) to the ticked
version T̂ of the union PTS T = T1⊕T2. The procedure MaxLumping(T1, T2)
takes two tree-PTS’s T1 = (S1, A,−→, {〈r1, 1〉}) and T2 = (S2, A,−→, {〈r2, 1〉})
and tries to construct a time bisimulation for T1 and T2 by lumping T .

At each step the procedure constructs a partition P = {B1, B2, . . . , Bm} of
the set S1 ∪ S2 and identifies a set of critical blocks C = {C1, . . . Ck} ⊆ P . A
critical block Cj is an equivalence class which has representatives in only one
of the two PTS’s, i.e. such that Cj ∩ S1 = ∅ or Cj ∩ S2 = ∅. The procedure
works on“layers”, i.e. at each iteration MaxLumping(T1, T2) partitions the
nodes in layer n by choosing a splitter among the blocks in the n layer cut-off;
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1: procedure MaxLumping(T1, T2)
2: Assume: T1 = (S1, A,−→, {〈r1, 1〉}) is a tree-PTS
3: Assume: T2 = (S2, A,−→, {〈r2, 1〉}) is a tree-PTS
4: n← 0 . Base Case
5: P ← {S1 ∪ S2} . Partition
6: S ← {S1 ∪ S2} . Splitters
7: while n ≤ Height(T1 ⊕ T2) do

8: TT ← CutOff(T1 ⊕ T2, n) . n layer cut off
9: P ← {B ∩ TT | B ∈ P} . Partition below current layer

10: S ← P ∪ {(S1 ∪ S2) \ TT} . Splitters (below and top)
11: while S 6= ∅ do

12: choose B ∈ S, S ← S \B . Choose a splitter
13: P ← Splitting(B, P ) . Split (current layer)
14: C ← {B ∈ P | B ∩ S1 = ∅ ∨ B ∩ S2 = ∅} . Critical class(es)
15: if C 6= ∅ then

16: return C . Found critical class(es)
17: end if

18: end while

19: n← n + 1 . Go to next level
20: end while

21: return C
22: end procedure

Algorithm 2. Maximal Lumping Algorithm

it moves on to the next layer only when all such blocks have been considered.

Padding. The padding procedure identifies the critical blocks by calling the
procedure MaxLumping(T1, T2) and then transforms the two processes T1

and T2 in order to “fix” the transitions to the critical blocks. The transfor-
mation is performed by the procedure FixIt which we will describe later. In
the special case where the critical blocks do not contain any representative
of either of the two processes, say T1, the fixing consists in padding T1 with
a depleted sub-tree formed by its root only which is a dummy state. This
is linked to the root of T1 via a ticked transition with probability 1 by the
Linking procedure. In the general (more symmetric) case where some of the
critical blocks contain only states from one process and some other critical
blocks only states from the other process the transformation is made by the
FixIt procedure.

When among the critical blocks of the current partition there is at least one
block Ck which contains only representatives of T1 and one block Cj which
contains only representatives of T2, the fixing is more elaborate and involves
both processes. In this case there must exist states s1 ∈ Ck and s2 ∈ Cj

with different probabilities of reaching some other blocks Bi of the partition.
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1: procedure Padding(T1, T2)
2: C ←MaxLumping(T1, T2) . identify critical classes
3: repeat

4: if C = {Ci}i with Ci ∩ S1 = ∅, ∀Ci then

5: D ← ({d}, {√}, ∅, {〈d, 1〉})
6: T1 ← Linking(D, d,

√
, 1, T1)

7: else if C = {Ci}i with ∀Ci : Ci ∩ S2 = ∅ then

8: D ← ({d}, {√}, ∅, {〈d, 1〉})
9: T2 ← Linking(D, d,

√
, 1, T2)

10: else if C = {Ci}i with Cj ⊆ S1 6= ∅ 6= Ck ⊆ S2 then

11: choose s1 ∈ Ck

12: choose s2 ∈ Cj

13: FixIt(T1, s1, T2, s2)
14: end if

15: C ←MaxLumping(T1, T2)
16: until C = ∅ . i.e. T1 ∼tb T2

17: return T1, T2

18: end procedure

Algorithm 3. Padding Algorithm

The FixIt procedure selects two blocks Bk and Bl in previous layer such
that the probabilities p1k, p1l of the transitions from s1 to Bk and Bl and the
probabilities p2k, p2l of the transitions from s2 to Bk and Bl are such that
p1k > p2k and p1l < p2l. This choice is always possible. In fact, the sum of all
probabilities from s1 and s2 to other classes sum up to one, i.e.

∑
i p1i = 1 =∑

i p2i where i covers all classes Bi reachable from s1 or s2. As s1 and s2 are in
different (critical) blocks the probabilities must differ for at least one class Bi,
i.e. there exists at least one index k with p1k 6= p2k; thus we have that either
p1k > p2k or p1k < p2k. Without loss of generality, let p1k > p2k, i.e. we found
the class Bk as required. We now have

∑
i6=k p1i + p1k = 1 =

∑
i6=k p2i + p2k

and thus
∑

i6=k p1i <
∑

i6=k p2i. As the summation is over the same number of
probabilities, i.e. positive numbers, there must be at least one summand in∑

i6=k p2i such that p2l > p1l.

After that, FixIt selects four states t1k ∈ Bk∩S1, t2k ∈ Bk ∩S2, t1l ∈ Bl∩S1,
and t2l ∈ Bl ∩ S2 with s1

q1k−→ t1k, s1
q1l−→ t1l, s2

q2k−→ t2k, and s2
q2l−→ t2l and

the corresponding sub-trees T1k, T1l, T2k and T2l which are rooted in t1k, t1l, t2k

and t2l. Note that since Bk and Bl are in the CutOff(n − 1) they are not
critical blocks, thus it is always possible to find such state. The probabilities
q1l and q2k stay unchanged but q1k and q2l will be decreased by the maximal
possible amount. Ideally, this decrement should be rk and rl, but if q1k and q2l

are smaller than rk and rl we only reduce q1k and q2l to zero, i.e. effectively
we remove the corresponding sub-trees.

The states s1 and s2 now have the same probabilities to reach the classes Bl and
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1: procedure FixIt(T1, s1, T2, s2)
2: for all Bi blocks do . determine all possible changes
3: Assume: s1

p1i−→ Bi and s2
p2i−→ Bi

4: p′i ← min(p1i, p2i)
5: end for

6: Assume: Bk is such that p′k = p2k

7: Assume: Bl is such that p′l = p1l

8: rk ← p1k − p′k
9: rl ← p2l − p′l

10: choose t1k ∈ Bk ∩ S1 and T1k sub-tree starting with s1
1−→ t1k

11: choose t2k ∈ Bk ∩ S2 and T2k sub-tree starting with s1
1−→ t2k

12: choose t1l ∈ Bl ∩ S1 and T1l sub-tree starting with s2
1−→ t1l

13: choose t2l ∈ Bl ∩ S2 and T2l sub-tree starting with s2
1−→ t2l

14: . make maximal possible changes of probabilities
15: Assume: s1

q1k−→ t1k, s1
q1l−→ t1l, s2

q2k−→ t2k, and s2
q2l−→ t2l

16: r1k ← min(q1k, rk)
17: q1k ← (q1k − r1k)
18: r2l ← min(q2l, rl)
19: q2l ← (q2l − r2l)
20: . construct and link up “compensating” subtrees
21: X1

kl, Y
1
kl ← Padding(T1k, T̂1l)

22: X2
kl, Y

2
kl ← Padding(T̂2k, T2l)

23: Joining(T1, s1, r1k, X
1
kl)

24: Joining(T2, s2, r2l, Y
2
kl)

25: end procedure

Algorithm 4. Fixing Algorithm

Bk, i.e. have become bisimilar. However, this transformations has two flaws:
(i) the system is no longer a PTS as the probabilities from s1 and s2 no longer
add up to one, (ii) the distribution on the terminal states reachable in T1k

and T2l are reduced. In order to fix this we have to construct “compensating
trees” which are bisimilar and which reproduce the missing probabilities for
the outputs. These two trees are constructed via calling Padding on a copy
of T1k and a depleted version of T1l, and a copy of T2l and a depleted version
of T2k respectively. Finally, these “compensating trees” are linked to s1 and
s2 with a

√
label and the missing probabilities r1k and r2l.

This way we obtain again a proper tree-PTS with normalised probability dis-
tributions for s1 and s2. Furthermore, the“compensating trees” produce ex-
actly the same output as T1k and T2l, thus the resulting PTS’s have the same
overall output as the original ones. Finally, by construction the compensating
trees are bisimilar as T1k and T2k are bisimilar; the same holds for T1l and T2l.
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5 A Simple Example

Consider two processes A and B (with p 6= q and p, q 6∈ {0, 1}) defined as:

A •1
p:a

~~~~
~~

~~
~

(1−p):b

  
@@

@@
@@

@

•2 •3
1:c
��

•4

and B •5
q:a

~~~~
~~

~~
~

(1−q):b

  
@@

@@
@@

@

•6 •7
1:c
��

•8

The aim is to construct two processes A′ and B′ such that A′ ∼tb B′ and A ∼io

A′ and B ∼io B′. Note that A and B do not have the same I/O observables, i.e.
A 6∼io B, and that we also do not require this for the transformed processes.

If we call MaxLumping(A, B) we have as first splitter the set of all states, i.e.
S1 = {1, 2, . . . , 8}. The backward image of S1, i.e. calling Splitting(S1, {S1}),
allows us to distinguish the terminal nodes from ‘internal’ nodes, i.e. we get
the partition K1 = {{2, 4, 6, 8}, {1, 3, 5, 7}}. Obviously, both processes have
representatives in each of the two blocks of this partition.

If we continue lumping using the splitter S2 = {2, 4, 6, 8}, i.e. the termi-
nal nodes, we get a refined partition K2 = {{2, 4, 6, 8}, {3, 7}, {1}, {5}}. The
probability of reaching S2 from nodes 3 and 7 is the same (namely 1) while 1
and 5 reach the terminal nodes with different probabilities (namely p and q)
and thus form two separate blocks.

The splitting K2 now is not properly balanced, i.e. the class {1} has no rep-
resentatives in B and {5} has no representatives in A. MaxLumping(A, B)
will thus report {1} and {5} as critical classes.

In order to fix the ‘imbalance’ between A and B we have to do two things:
(i) minimising/unifying the probabilities of transitions emitting from 1 and 5,
and (ii) introducing subtrees X and Y to compensate for the missing outputs
and to re-establish normalised probabilities.

• The first step thus is to transform A and B into the following form:

•1
min(p,q):a

~~~~
~~

~~
~

min(1−p,1−q):b

  
@@

@@
@@

@

•2 •3
1:c
��

•4

and •5
min(p,q):a

~~~~
~~

~~
~

min(1−p,1−q):b

  
@@

@@
@@

@

•6 •7
1:c
��

•8
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These two transformed versions of A and B are now probabilistically tick
bisimilar but unfortunately they have different outputs, i.e. they are not
I/O equivalent; moreover they fail to fulfill the normalisation condition for
PTS and Markov chains.
• To compensate for the “missing” probability r = 1 − min(p, q) − min(1 −

p, 1−q) we have to construct subtrees X and Y which reproduce the missing
output states and which are bisimilar. As we have a critical class, namely
Ck = {1} ∈ A and Cj = {5} ∈ B, in each process we have to consider the
third case (line 10) in Padding. As the critical classes are singletons we
have to take s1 = 1 and s2 = 5 in when we call FixIt(A, 1, B, 5).

There are now for each of the states s1 = 1 and s2 = 5 two blocks they can
make a move to, namely Bk = {3, 7} and Bl = {2, 4, 6, 8}, but with different
probabilities. We have now to chose in FixIt (lines 10 to 13) representative
states for these two blocks in each of the two processes A and B. In our
example these states are uniquely determined, t1k = 3, t1l = 2, t2k = 7, and
t2l = 6. Furthermore, we have to consider the following sub-trees of A and
B which are rooted in these representative states:

T1l = ◦
1:a
��

•2

T1k = ◦
1:b
��

•3
1:c
��

•4

T2l = ◦
1:a
��

•6

T2k = ◦
1:b
��

•7
1:c
��

•8

We assume w.l.o.g. p > q, i.e. min(p, q) = q and min(1− p, 1− q) = 1− p
(the other case is symmetric) and thus r1k = r2l = p− q. The compensation
tree X1

kl for A thus must fulfill X1
kl ∼io T1l and for Y 2

kl in B we have Y 2
kl ∼io

T2k and furthermore X1
kl ∼tb Y 2

kl. In order to construct X1
kl and Y 2

kl we thus
just have to call (recursively) Padding(T1k, T̂1l) and Padding(T̂2k, T2l).

We therefore have to compare twice two trees in order to obtain a padded
version (calling Padding recursively):

◦
1:a
��

•2′

and ◦
1:
√

��

•3′

1:
√

��

•4′

give X1
kl = ◦

1:
√

��

•3′

1:a
��

•4′

◦
1:
√

��

•6′

and ◦
1:b
��

•7′

1:c
��

•8′

give Y 2
kl = ◦

1:b
��

•7′

1:c
��

•8′

A dotted transition denotes a ticked or depleted transition: it means that
no computation takes place during this transition (i.e. the state does not
change) only time passes. Empty nodes ◦ denote copies of the dummy state:
they can be seen as place-holders that inherit the state from the previous
node. Obviously these two sub-trees X1

kl and Y 2
kl fulfill the needed require-

ments regarding bisimilarity and I/O equivalence.
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• Finally we have to introduce these compensatory sub-trees into the trans-
formed versions of A and B to obtain (with r = 1 − min(p, q) − min(1 −
p, 1− q)):

A′ •1
min(p,q):a

~~}}
}}

}}
}}

r:
√

��

min(1−p,1−q):b

  
AA

AA
AA

AA

•2 •3′

1:a
��

•3
1:c
��

•4′ •4

and B′ •5
min(p,q):a

~~}}
}}

}}
}}

r:b
��

min(1−p,1−q):b

  
AA

AA
AA

AA

•6 •7′

1:c
��

•7
1:c
��

•8′ •8

6 Correctness of Padding

In order to show that Padding(T1, T2) indeed produces PTS’s T ′
1 and T ′

2 which
are (i) I/O-equivalent to T1 and T2 respectively, and (ii) time bisimilar, we
first describe the effect of various operations performed in Padding on the
observables and (non)bisimilar states.

Given two states s1 and s2 in two tree-subPTS’s T1 and T2 respectively and a
bisimulation relation ∼ on the union T = T1⊕T2 then we define new subPTS’s
Tmin

s1
and Tmin

s2
as a common minimisation of the transition probabilities of s1

and s2 by changing the transition probabilities from each of the two states to
any class Ck of the bisimulation relation ∼ and all labels α as follows:

p′(s1, α, Ck) =min(p(s1, α, Ck), p(s2, α, Ck))

p′(s2, α, Ck) =min(p(s1, α, Ck), p(s2, α, Ck))

p′(si, α, sj) = p(si, α, sj) for i 6∈ {1, 2}

where p(·) denotes the probabilities in T and p′(·) the probabilities in Tmin
sj

,
j = 1, 2.

Note that, since it is possible to change the accumulated probabilities p(s, α, C)
from states to classes in various ways by adjusting the state-to-state proba-
bilities p(s, α, s′), the common minimisation is not unique.

Lemma 20 Given a state s1 in T1 and a state s2 in T2 and a bisimulation
relation ∼ on T = T1⊕T2, then the common minimisation Tmin

s1
and Tmin

s2
are

such that s1 ∼ s2.

PROOF. This follows directly from the definition of p′(·). 2
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Consider two tree-subPTS’s, T and S, and a state t in T . The insertion of S
into T at t with probability q and label λ is the tree-subPTS T C

t
q:λ S with

p′(ti, α, tj) = p(ti, α, tj) for ti, tj ∈ T and all labels α

p′(sk, α, sl) = p(sk, α, sl) for si, sj ∈ S and all labels α

p′(t, λ, s0) = q

where s0 is the root of S, p(·) denotes the probabilities in T and S, and p′(·)
the probabilities in T C

t
q:α S.

A special case of insertion is the extension of a tree with a dummy state r,
which is used in the padding algorithm to deal with the case of a critical block
whose intersection with one of the two tree-PTS’s is empty. In this case, T2 is
the degenerated tree with the new state r as the only state, and the label on
the transition from r to S2 is λ = e. The resulting tree-PTS, r C

t0
1:e S, where

t0 is the root of S, is in this case time bisimilar (but in general not bisimilar)
to T1 C

t1
q:λ S1.

The insertion of sub-trees changes the observables as follows.

Lemma 21 Given two tree-subPTS’s, T and S, and a state t in T , let O(T )
and O(S) be the observables of T and S and π0 be the (unique) path from the
root of T to t. Then the observables of the insertion of S into T with probability
p on action α has the following observables:

O(T C
t
p:α S) = O(T ) + p (π0α · O(S)),

i.e. the observables O(T ) of T plus the “p-weighted” paths in π0α · O(S).

As a special case, for the extension of a tree with a dummy state O(r C
t0
1:e S),

we have:

O(r C
t0
1:e S) = O(r) + 1 (e · O(S)) = O(S),

i.e. the original observables are not changed.

Let T be a tree-subPTS and let S be a sub-tree-subPTS of T . Then the partial
deletion of S in T , denoted by T 6

p
p′ S, is the tree-subPTS on the states of T

obtained by changing the entry probability into S from T , i.e. the probability
with which the root of S can be reached from T \ S, from p to p′. For p′ = 0,
this operation corresponds to the deletion of S in T .

The (partial) deletion of a sub-tree changes the observables as follows.
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Lemma 22 Given a tree-subPTS T and a sub-tree-subPTS S of T with ob-
servables O(T ) and O(S) respectively, and a (unique) path π0 from the root
of T to the root of S, then the observables of T 6

p
p′ S are given by:

O(T 6
p
p′ S) = O(T )− (p− p′)(π0 · O(S)).

PROOF. Each path reaching a leaf through S is not completely removed
but only its impact on the observables is reduced. In T the probability is a
product of the form

∏
k pk · p ·

∏
l pl where the pk indicate the computational

steps in π0, the probability p is the original entry probability into S, and pl

are the probabilities in S. In T 6
p
p′ S the probability of this path is changed

to:
∏

k pk · p′ ·
∏

l pl. If we therefore remove the contribution of these paths
in the original observables and add the contribution in the new subPTS we
obtain the desired result: O(T 6

p
p′ S) = O(T ) − pπ0 · O(S) + p′π0 · O(S) =

O(T )−(p−p′)π0·O(S). If p′ = 0 then the subtree S is effectively eliminated and
so are all the paths through S to the leaves. As the observables are distributions
over paths we simply have to eliminate the contribution of these paths through
S from the observables of T . The contribution of these paths is not just their
“S-stage” but has to be prefixed by the contribution until S, i.e. its root, is
reached, this is given by the unique path π0. 2

We can now show the main theorem establishing that the padding is correct.

Theorem 23 Given two tree-PTS’s T1 and T2 then Padding(T1, T2) returns
the tree-PTS’s T ′

1 and T ′
2 such that T ′

1 ∼tb T ′
2, T ′

1 ∼io T1, and T ′
2 ∼io T2.

PROOF.

The proof is by induction on the layers in the union T1⊕T2. We assume that k
is the number of layers, i.e. k = max{Height(T1),Height(T2)}. We will use
the notation T n

i , i = 1, 2, to indicate the n-stage transformation of Ti: this is
the tree-PTS formed by the n layer top of Ti and the n layer cut-off of T ′

i , that
is an intermediate version of Ti and T ′

i where the n bottom layers are already
padded but the top still needs to be fixed. Thus, T ′

1 = T k
1 and T ′

2 = T k
2 . We

will also use the notation s4 T to indicate that the state s has a transition
to some classes of the partition T on some action with some probability.

The algorithm Padding progresses through the trees T1 and T2 layer by
layer starting from the terminal states or leaves (base case). The sub-routine
MaxLumping tries to identify non-bisimilar states in T1 and T2. When the
procedure enters the layer n + 1 then the n-cutoffs are time bisimilar, i.e.
T1|n ∼tb T2|n (induction hypothesis). Moreover, we will show that at each
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layer n, T n
1 ∼io T1, and T n

2 ∼io T2, which implies the second part of the
theorem’s claim.

Calling the sub-routine MaxLumping has three possible outcomes: (i) no
mismatches (i.e. critical blocks) are found, (ii) there is only one mismatch
state on level n + 1, i.e. one of the two trees is higher, or (iii) there are two
states s1 and s2 in T1 and T2 respectively which are not bisimilar. If case (i)
holds, then T1 and T2 are already bisimilar and the algorithm terminates. So
we prove the correctness of the algorithm in the other two cases.

k = 0 Since all states at layer 0 are leaves (there are no outgoing transitions),
clearly, we have that T1|0 ∼tb T2|0, and T 0

1 ∼io T1, and T 0
2 ∼io T2.

k → k + 1 In the general case (iii) the procedure FixIt() is called which pro-
ceeds in two phases: In the first phase the procedure constructs a common
minimisation Tmin

s1
and Tmin

s2
of s14 T1|n and s24 T2|n with respect to two

non bisimilar states s1 and s2 at level n + 1. In the bisimulation relation
constructed by calling MaxLumping, the partition of the states in s14T1|n
and s2 4 T2|n is such that s1 6∼tb s2. However, by Lemma 20 we have that
after the common minimisation s1 and s2 are now bisimilar. As a result, the
number of non-bisimilar states at layer n+1 is strictly reduced. We observe
that case (ii) is the special case of (iii) in which either s1 or s2 is a dummy
state d and the transition to the n layer cut-off is labelled by e. In phase
two FixIt() inserts subtrees S1 and S2 in Tmin

s1
and Tmin

s2
respectively. Since

these subtrees are constructed via the padding procedure on copies and de-
pleted versions of subtrees S ′

1 and S ′
2 of T1 and T2 of height smaller than n,

by the induction hypothesis they are time bisimilar. This guarantees that
we still have T ′

1|n ∼tb T ′
2|n, where T ′

j |n, j = 1, 2, is the n layer cut-off after
the insertion of subtrees S1 and S2. Moreover, by Lemma 22 and Lemma 21
we have

O(T n+1
1 )=O(Tmin

s1
C

s1

p1−min(p1,p2)
S1)

=O(T1)− (p1 −min(p1, p2)) · O(S1) + (p1 −min(p1, p2) · O(S1))

=O(T1).

and similarly for T n+1
2 .

As we have only finitely many states in a layer we will eventually reach the
situation where there are no non-bisimilar states in layer n+1 or more generally
in the n+1 cut-off. The algorithm therefore terminates in each layer and as we
also have only finitely many layers the algorithm terminates with T ′

1 ∼tb T ′
2,

T ′
1 ∼io T1, and T ′

2 ∼io T2. 2
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7 Comparisons and Related Work

7.1 Comparison with Agat’s transformation

In [2] Agat proposes a transformation technique in the context of a type system
with security types. The type system, besides detecting illegal information
flow, transforms conditional statements that branch on high-security data into
new statements where both conditional branches have been made bisimilar,
thus making the new statement immune to timing attacks and the associated
high-security data safe. The conditional statement is transformed by adding
a ‘dummy copy’ of each branch to its counterpart such that, when the new
branches are compared against each other, the original code is matched against
its dummy copy. If we adapt this technique to PTS’s and apply it to the
processes A and B considered before, we get the transformed processes shown
below:

•1
p:a

~~~~
~~

~~
~

(1−p):b

  
@@

@@
@@

@

•2
q:
√

��

(1−q):
√

��

•3
1:c
��

◦ ◦
1:
√

��

•4
q:
√

~~

(1−q):
√

��◦ ◦ ◦
1:
√

��◦

and ◦
p:
√

}}

(1−p):
√

!!•5
q:a

��~~
~~

~~
~

(1−q):b

��

◦
1:
√

��

•6 •7
1:c
��

•5′
q:a

~~}}
}}

}}
}}

(1−q):b
��

•8 •6′ •7′

1:c
��

•8′

According to Agat’s transformation, a ’dummy execution’ of B should follow
A and a ’dummy execution’ of A should precede B. Given that A has two
final states, two dummy copies of B are appended to process A. Similarly,
a dummy copy of A is put before B. However, in order to preserve the tree
structure of the process, a new copy of B is made so it can be joined to one
of the final states of the dummy copy of A.

Clearly the two transformed trees are time bisimilar and the new processes
are I/O-equivalent to their original versions. It is also clear that this transfor-
mation not only creates a greater number of states than our proposed solution
but, more importantly, generates processes with longer execution time.

25



7.2 Related Literature

The work by Agat [2] is certainly the most closely related to ours; in fact we
are not aware of other approaches to closing timing leaks which exploit pro-
gram transformation techniques. Apart from the basic differences between our
transformation algorithm and the Agat transformation type system explained
in the previous section, our approach is in some sense more abstract than [2] in
that it does not address a specific language; rather it is in principle adaptable
to any probabilistic language whose semantics can be expressed in terms of
our PTS model.

Timing attacks are prominently studied in security protocol analysis, and in
general in the analysis of distributed programs specifically designed to achieve
secure communication over inherently insecure shared media such as the In-
ternet. In this setting, timing channels represent a serious threat as shown for
example in [17] where a timing attack is mounted on RSA encryption, and in
[18] where it is shown how by measuring the time required by certain oper-
ation a web site can learn information about the user’s past activities; or in
[19] where an attack is described over Abadi’s private authentication protocol
[20].

The various approaches which have been proposed in the literature for the time
analysis of security and cryptographic protocols mainly exploit languages and
tools based on formal methods (timed automata, model checkers and pro-
cess algebra). For example, [21] develop formal models and a timed automata
based analysis for the Felten and Schneider’s web privacy attack mentioned
above. A process algebraic approach is adopted in [13] and [22] where the
problem of timing information leakage is modelled as non-interference prop-
erty capturing some time-dependent information flows. A different approach
is the one adopted in [23] where static analysis techniques are used to verify
communication protocols against timing attacks.

8 Conclusion and Further Work

In this paper we have investigated possible countermeasures against timing at-
tacks in a process algebraic setting. The aim is to transform systems such that
their timing behaviour becomes indistinguishable – i.e. they become bisimi-
lar – while preserving their computational content – i.e. I/O behaviour. Our
particular focus in this work was on finite, tree-like, probabilistic systems and
probabilistic bisimulation.

Simple obfuscation methods have been considered before, e.g. by Agat [2],
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which may lead to a substantial increase of the (average) running time of the
transformed processes. Our approach attempts to minimise this additional
running time overhead introduced by the transformation. The padding algo-
rithm achieves this aim by patching time leaks ‘on demand’ whenever the
lumping algorithm which aims to establish the bisimilarity of two processes
encounters a critical situation. Further work will be directed towards improv-
ing the padding algorithm further. At various stages of the algorithm we make
non-deterministic choices (of certain states or classes); it will be important to
investigate strategies to achieve optimal choices.

We also plan to investigate probabilistic and conditional padding. The current
algorithm introduces time leak fixes whenever they appear to be necessary. The
resulting processes are therefore perfectly bisimilar. However, one could also
think of applying patches randomly or only if the expected time leak exceeds a
certain threshold. One would then obtain approximate or ε-bisimilar systems
– in the sense of our previous work [7,1] – but could expect a smaller increase
of the (average) running time and/or the size of the system or program consid-
ered. Optimising the trade-off between vulnerability against timing attacks –
measured quantitatively by ε – and the additional costs – running time, system
size etc. – requires a better understanding of the relation between these differ-
ent factors. To this aim we believe we can exploit well established techniques
and results from the fields of decision theory and non-linear optimisation.
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