
A Systematic Approach to
Probabilistic Pointer Analysis

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 University of Verona, Ca’ Vignal 2 - Strada le Grazie 15 I-37134 Verona, Italy
2 Imperial College London, 180 Queen’s Gate London SW7 2AZ, UK

Abstract. We present a formal framework for syntax directed proba-
bilistic program analysis. Our focus is on probabilistic pointer analysis.
We show how to obtain probabilistic points-to matrices and their rela-
tional counterparts in a systematic way via Probabilistic Abstract In-
terpretation (PAI). The analysis is based on a non-standard semantics
for a simple imperative language which corresponds to a Discrete-Time
Markov Chain (DTMC). The generator of this DTMC is constructed
by composing (via tensor product) the probabilistic control flow of the
program and the data updates of the different variables at individual
program points. The dimensionality of the concrete semantics is in gen-
eral prohibitively large but abstraction (via PAI) allows for a drastic
(exponential) reduction of size.

1 Introduction

We investigate a theoretical framework for the systematic construction of a syn-
tax directed probabilistic program analysis. We will illustrate our approach based
on a simple imperative language, While, and its probabilistic extension pWhile.
Our focus is on the systematic derivation of a probabilistic pointer analysis within
a static memory model, i.e. we do not have dynamically created objects (on a
heap). These restrictions are mainly for presentational reasons and we are confi-
dent that our basic ideas also apply to other programming paradigms, e.g. object
oriented, dynamic objects on a heap, etc.

Our aim is to introduce a static analysis, which could provide an alternative
to experimental approaches like profiling. As the analysis is probabilistic we were
lead to consider a probabilistic language from the start. However, this language
subsumes the usual deterministic While and our approach thus applies as well
to deterministic as to probabilistic programs. It is important to note that even
for deterministic programs the analysis gives in general probabilistic results.

The main novel contributions of this study concern the following aspects. (i)
We present for the first time a syntax directed construction of the generator of
a Markov chain representing the concrete semantics of a pWhile program with
static pointers. This exploits a tensor product representation which has been
studied previously in areas like performance analysis. (ii) Although the concrete
semantics is well-defined and based on highly sparse matrices, the use of the ten-
sor product still leads to an exponential increase in its size, i.e. the dimension of

the generator matrices. In order to overcome this problem we apply Probabilistic
Abstract Interpretation (PAI) – presented first in [1] (see also [2]) – to construct
an abstract semantics, i.e. a static program analysis. The fact that PAI is com-
patible with the tensor product operation allows us to introduce a compositional
construction not only of the concrete but also of the abstract semantics with a
drastically reduced size. (iii) This leads to a systematic and formal analysis of
(dynamic) branching probabilities – usually obtained experimentally via profil-
ing or based on various heuristics (see e.g. [3, 4] and references therein) – on the
basis of abstracted test operators. (iv) Within our framework, we are also able
to construct so-called points-to matrices which are commonly employed in prob-
abilistic pointer analysis. Furthermore, we will discuss the alternative concept of
a points-to tensor which provides more precise relational information.

A possible application area of this type of program/pointer analysis could
be speculative optimisation which recently is gaining importance – not least in
modern multi-core environments. The idea here is (i) to execute code “specula-
tively” based on some guess; (ii) then to test at a later stage whether the guess
was correct; (iii) if it was correct the computation continues, otherwise some re-
pair code is executed. This guarantees that the computation is always correctly
performed. The only issue concerns the (average) costs of “repairs”. If the guess
is correct sufficiently often, the execution of the repair code for the cases where it
is wrong is amortised. Thus, in the speculative approach the compiler can take
advantage of statistical (rather than only definite) information when choosing
whether to perform an optimisation. The analysis we present would allow for a
better exploitation of the ‘maybe’ case than with classical conservative compiler
optimisation, replacing a possibilistic analysis by a probabilistic one.

2 Probabilistic While

We extend the probabilistic While language in [5, 6] with pointer expressions.
In order to keep our treatment simple we allow only for pointers to (existing)
variables, i.e. we will not deal with dynamically created objects on a heap.

A program P is made up from a possibly empty list of variable declarations
D followed by a statement S. Formally, P ::= D; S | S with D ::= d; D | d.
A declaration d fixes the types of the program’s variables. Variables can be either
basic Boolean or integer variables or pointers of any order r = 0, 1, . . ., i.e.:

d ::= x : t t ::= int | bool | ∗r t

(where we identify ∗0t with t).
The syntax of statements is as follows:

S ::= skip | stop | p← e | S1; S2 | choose p1 : S1 or p2 : S2

| if b then S1 else S2 end if | while b do S end while

In the choose statement we allow only for constant probabilities pi and assume
w.l.o.g. that they are normalised, i.e. add up to 1. A pointer expression is a

variable prefixed with r dereferencing ∗’s:

p ::= ∗rx with x ∈ Var.

We allow for higher order pointers, i.e. for pointers to pointers to Expressions
e are of different types, namely arithmetic expressions a, Boolean expressions b
and locality expressions (or addresses) l. Formally: e ::= a | b | l. Arithmetic
expressions are of the form a ::= n | p | a1� a2 with n ∈ Z, p a pointer to an
integer, and ‘�’ representing one of the usual arithmetic operations ‘+’, ‘−’, or
‘×’. Boolean expressions are defined by b ::= true | false | p | ¬b | b1 ∨
b2 | b1 ∧ b2 | a1 <> a2, where p is a pointer to a Boolean variable. The symbol
‘<>’ denotes one of the standard comparison operators for arithmetic expressions,
i.e. <,≤,=, 6=,≥, >. Addresses or locality expressions are: l ::= nil | &p | p.

The semantics of pWhile with pointers follows essentially the standard one
for While as presented, e.g., in [7]. The only two differences concern (i) the
probabilistic choice and (ii) the pointer expressions used in assignments. The
operational semantics is given as usual via a transition system on configurations
〈S, σ〉, i.e. pairs of statements and states. To allow for probabilistic choices we
label these transitions with probabilities. Except for the choose construct these
probabilities will always be 1 as all other statements in pWhile are deterministic.

A state σ ∈ State describes how variables in Var are associated to values
in Value = Z + B + L (with ‘+’ denoting the disjoint union). The value of a
variable can be either an integer or a Boolean constant or the address/reference
to a(nother) variable, i.e. State = Var→ Z + B + L.

In the assignments we allow for general pointer expressions (not just basic
variables) on the left as well as the right hand side. In order to give a semantics to
assignments we therefore need to identify the actual variable a pointer expression
on the left hand side of an assignment is referring to. This is achieved via the
function [[.]] from Pointer × State into Var, where Pointer = {∗rx | x ∈
Var, r = 0, 1, . . .} denotes the set of all pointer expressions, defined as follows:

[[x]]σ = x [[∗rx]]σ = [[∗r−1y]]σ if σ(x) = &y.

In other words, if we want to find out what variable a pointer expression refers
to we either could have the case that p = x – in which case the reference is
immediately to this variable – or p = ∗rx – in which case we have to dereference
the pointer to determine the variable y it points to in the current state σ (via
σ(x)). If further dereferencing is needed we continue until we end up with a
basic variable. The variable we finally reach this way might still be a pointer,
i.e. contain a location rather than a constant, but we only dereference as often
as required, i.e. r times. We also do not check whether further dereferencing is
possible, i.e. whether x had been declared a pointer variable of a higher order
than r – we assume that either a simple type system rejects malformed programs
at compile time, or that the run-time environment raises an exception if there
is a violation.

The expressions a, b, and l (on the right hand side of assignments or as tests
in if and while statements) evaluate to values of type Z, B and L in the usual

way. The only extension to the standard semantics is caused again when pointers
p are part of the expressions. In order to treat this case correctly, we need to
determine first the actual variable a pointer refers to and then obtain the value
this variable contains in the current state σ. Again, we do not cover here any type
checking, i.e. whether the variable contains ultimately a value of the correct type.
If we denote by Expr the set of all expressions e then the evaluation function
E(.). is a function from Expr×State into Z+B+L. The semantics of arithmetic
and Boolean expressions is standard. A new kind of expressions return locations
in L, either the constant nil or the address contained in a variable a pointer p
refers to, or the address of a variable which a pointer refers to. For these new
expressions we define E(.). as follows:

E(nil)σ = nil E(p)σ = σ([[p]]σ) E(&p)σ = &([[p]]σ).

Based on the functions [[.]]. and E(.). the semantics of an assignment is given by

〈p← e, σ〉−→1〈stop, σ[[[p]]σ 7→ E(e)σ]〉.

The state σ stays unchanged except for the variable the pointer p is referring
to (we obtain this information via [[.]].). The value of this variable is changed
so that it now contains the value represented by the expression e. The rest of
the SOS semantics of pWhile is quite standard and we will omit here a formal
presentation.

3 Linear Operator Semantics

In order to study the semantic properties of a pWhile program we will in-
vestigate the stochastic process which corresponds to the program’s executions.
More precisely, we will construct the generator of a Discrete Time Markov Chain
(DTMC) which represents the operational semantics of the program in question.

3.1 Probabilistic Control Flow

We base our construction on a probabilistic version of the control flow [7] or
abstract syntax [8] of pWhile programs. The flow F(P) of a program P is based
on a labelled version of P . Labelled programs follow the syntax:

S ::= [skip]` | [stop]` | [p← e]` | S1; S2 | [choose]` p1 : S1 or p2 : S2

| if [b]` then S1 else S2 end if | while [b]` do S end while.

The flow F is a set of triples 〈`i, pij , `j〉 which record the fact that control passes
with probability pij from block Bi to block Bj , where a block is of the form
Bi = [. . .]`i . We assume label consistency, i.e. the labels on blocks are unique.
We denote by B(P) the set of all blocks and by L(P) the set of all labels in a
program P . Except for the choose statement the probability pij is always equal
to 1. For the if statement we indicate the control step into the then branch by
underlining the target label; the same is the case for while statements.

3.2 Concrete Semantics

The generator matrix of the DTMC which we will construct for any given
pWhile program defines a linear operator – thus we refer to it as a Linear
Operator Semantics (LOS) – on a vector space based on the labelled blocks and
classical states of the program in question. In all generality, the (real) vector
space V(S,R) = V(S) over a set S is defined as the formal linear combinations
of elements in S which we can also see as tuples of real numbers xs indexed by
elements in S, i.e. V(X) = {〈xs, s〉s∈S | xs ∈ R} = {(xs)s∈S}, with the usual
(point-wise) algebraic operations, i.e. scalar multiplication and vector addition.

The probabilistic state of the computation is described via a probability
measure over the space of (classical) states Var→ Z + B + L.

In order to keep the mathematical treatment as simple as possible we will
exploit the fact that Var and thus L is finite for any given program. We fur-
thermore restrict the actual range of integer variables to a finite sub-set Z of Z.
Although such a finite restriction is somewhat unsatisfactory from a purely the-
oretical point of view, it appears to be justified in the context of static program
analysis (one could argue that any “real world” program has to be executed on
a computer with certain memory limitations). As a result, we can restrict our
consideration to probability distributions on State rather than referring to the
more general notion of probability measures. While in discrete, i.e. finite, prob-
ability spaces every measure can be defined via a distribution, the same does
not hold any more for infinite state spaces, even for countable ones; it is, for
example, impossible to define on the set of rationals in the interval [0, 1] a kind
of “uniform distribution” which would correspond to the Lebesgue measure.

State Space. As we consider only finitely many variables, v = |Var|, we can
represent the space of all possible states Var → Z + B + L as the Cartesian
product (Z + B + L)v, i.e. for every variable xi ∈ Var we specify its associated
value in (a separate copy of) Z + B + L.

As the declarations of variables fix their types, in effect their possible range,
we can exploit this information by presenting the (classical) state in a slightly
more effective way: State = Value1 ×Value2 . . . ×Valuev with Valuei = Z,
or B or L. We can go even a step further and exploit the fact that pointers have
to refer to variables which represent pointers of a level lower than themselves,
i.e. a simple first level pointer must refer to a simple variable, a second level
pointer must refer to a first level pointer, etc.; only nil can be used on all levels.
Let us denote by LZ0 the set of integer variables (plus nil), by LB0 the set of
Boolean variables (plus nil), and by LZl and LBl the pointer variables which
refer to variables in LZl−1 and LBl−1 (plus nil) respectively. Obviously, we have
L =

⋃
l LZl ∪

⋃
l LBl.

As the declarations fix the level of a pointer (and its ultimate target type)
we can represent the state in a slightly simpler way as State = Value1 ×
. . . × Valuev with Valuei = Z,B,LZl or LBl with l ≥ 1. We will use the
following conventions for the representation of states and state vectors. Given v
variables, we will enumerate them according to their pointer level, i.e. first the

basic variables, then the r1 simple pointers, then the r2 pointers to pointers, etc.
We denote by r = r1 + r2 + . . . the number of all pointer variables. The last
component of the state vector corresponds to the label `.

The distributions which describe the probabilistic state of the execution of a
program correspond to (normalised and positive) vectors in V(State). In terms
of vector spaces, the above representation of the classical states can be expressed
by means of the tensor product construction. We can construct the tensor product
of two finite dimensional matrices (or vectors, seen as 1 × n or n × 1 matrices)
via the so-called Kronecker product: Given an n×m matrix A and a k× l matrix
B then A⊗B is the nk×ml matrix with entries (A⊗B)(i1−1)·k+i2,(j1−1)·l+j2 =
(A)i1,j1 ·(B)i2,j2 . The representation of a state as a tuple in the Cartesian product
of the sets of values for each variable can be re-formulated in our vector space
setting by using the isomorphism V(State) = V(Value1 × . . . × Valuev) =
V(Value1)⊗ . . .⊗ V(Valuev).

Filtering. In order to construct the concrete semantics we need to identify those
states which satisfy certain conditions, e.g. all those states where a variable
has a value larger than 5 or where a pointer refers to a particular variable.
This is achieved by “filtering” states which fulfill some conditions via projection
operators, which are concretely represented by diagonal matrices.

Consider a variable x together with the set of its possible values Value =
{v1, v2, . . .}, and the vector space V(Value). The probabilistic state of the vari-
able x can be described by a distribution over its possible values, i.e. a vector
in V(Value). For example, if we know that x holds the value v1 or v3 with
probabilities 1

3 and 2
3 respectively (and no other values) then this situation is

represented by the vector (1
3 , 0,

2
3 , 0, . . .). As we represent distributions by row

vectors x the application of a linear map corresponds to a post-multiplication
by the corresponding matrix T, i.e. T(x) = x ·T.

We might need to apply a transformation T to the probabilistic state of
the variable xi only when a certain condition is fulfilled. We can express such
a condition by a predicate q on Valuei. Defining a diagonal matrix P with
(P)ii = 1 if q(vi) holds and 0 otherwise, allows us to “filter out” only those
states which fulfill the condition q, i.e. P ·T applies T only to those states.

Operators. The Linear Operator Semantics of pWhile is built using a number
of basic operators which can be represented by the (sparse) square matrices:
(E(m,n))ij = 1 if m = i ∧ n = j and 0 otherwise, and (I)ij = 1 if i = j and
0 otherwise. The matrix units E(m,n) contains only one non-zero entry, and
I is the identity operator. Using these basic building blocks we can define a
number of “filters” P as depicted in Table 1. The operator P(c) has only one
non-zero entry: the diagonal element Pcc = 1, i.e. P(c) = E(c, c). This operator
extracts the probability corresponding to the c-th coordinate of a vector, i.e. for
x = (xi)i the multiplication with P(c) results in a vector x′ = x ·P(c) with only
one non-zero coordinate, namely x′c = xc.

The operator P(σ) performs a similar test for a vector representing the prob-
abilistic state of the computation. It filters the probability that the computation

(P(c))ij =

1 if i = c = j
0 otherwise.

(U(c))ij =

1 if j = c
0 otherwise.

P(σ) =

vO
i=1

P(σ(xi)) U(xk ← c) =

k−1O
i=1

I⊗U(c)⊗
vO

i=k+1

I

P(e = c) =
X
E(e)σ=c

P(σ) U(xk ← e) =
X
c

P(e = c)U(xk ← c)

U(∗rxk ← e) =
X
xi

P(xk = &xi)U(∗r−1
xi ← e)

Table 1. Test and Update Operators for pWhile

is in a classical state σ. This is achieved by checking whether each variable xi
has the value specified by σ namely σ(xi). Finally, the operator P(e = c) filters
those states where the values of the variables xi are such that the evaluation of
the expression e results in c. The number of (diagonal) non-zero entries of this
operator is exactly the number of states σ for which E(e)σ = c.

The update operators (see Table 1) implement state changes. From an initial
probabilistic state σ, i.e. a distribution over classical states, we get a new proba-
bilistic state σ′ via σ ·U. The simple operator U(c) implements the deterministic
update of a variable xi: Whatever the value(s) of xi are, after applying U(c) to
the state vector describing xi we get a point distribution expressing the fact that
the value of xi is now certainly c. The operator U(xk ← c) puts U(c) into the
context of other variables: Most factors in the tensor product are identities, i.e.
most variables keep their previous values, only xk is deterministically updated
to its new value c using the previously defined U(c) operator. The operator
U(xk ← e) updates a variable not to a constant but to the value of an expres-
sion e. This update is realised using the filter operator P(e = c): For all possible
values c of e we select those states where e evaluates to c and then update xk to
this c. Finally, the update operator U(∗rxk ← e) is used for assignments where
we have a pointer on the left hand side. In this case we select those states where
xk points to another variable xi and then update xi accordingly. This unfolding
of references continues recursively until we end up with a basic variable where
we can use the previous update operator U(xi ← e).

Semantics. The Linear Operator Semantics of a pWhile program P is defined
as the operator T = T(P) on V(State×B(P)). This can be seen as a collecting
semantics for the program P as it is defined by

T(P) =
∑

〈i,pij ,j〉∈F(P)

pij ·T(`i, `j).

T(`1, `2) = I⊗E`1,`2 for [skip]`1

T(`1, `2) = U(p← e)⊗E`1,`2 for [p← e]`1

T(`, `t) = P(b = true)⊗E`,`t for [b]`

T(`, `f) = P(b = false)⊗E`,`f for [b]`

T(`, `k) = I⊗E`,`k for [choose]`

T(`, `) = I⊗E`,` for [stop]`

Table 2. Linear Operator Semantics for pWhile

The meaning of T(P) is to collect for every triple in the probabilistic flow F(P)
of P its effects, weighted according to the probability associated to this triple.
The operators T(`i, `j) which implement the local state updates and control
transfers from `i to `j are presented in Table 2.

Each local operator T(`i, `j) is of the form N⊗E(`i, `j) where the first factor
N represents a state update or, in the case of tests, a filter operator while the
second factor realises the transfer of control from label `i to label `j . For the
skip and stop no changes to the state happen, we only transfer control (deter-
ministically) to the next statement or loop on the current (terminal) statement
using matrix units E. Also in the case of a choose there is no change to the
state but only a transfer of control, however the probabilities pij will in general
be different from 1, unlike skip. With assignments we have both a state up-
date, implemented using U(p ← e), and a control flow step. For tests b we use
the filter operator P(b = true) to select those states which pass the test, and
P(b = false) to select those states which fail it, in order to determine which
label the control will pass to.

Note that P(b = true)+P(b = false) = I, i.e. at any test b every state will
cause exactly one (unambiguous) control transfer. We allow in pWhile only for
constant probabilities pi in the choose construct, which sum up to 1 and as with
classical While we have no “blocked” configurations (even the terminal stop
statements ‘loop’). It is therefore not necessary to re-normalise dynamically the
probabilities and it follows easily that:

Proposition 1. The operator T(P) is stochastic for any pWhile program P ,
i.e. the sum of all elements in each row add up to one.

Thus, T is indeed the generator of a DTMC. Furthermore, by the construc-
tion of T it also follows immediately that the SOS and LOS semantics are equiv-
alent in the following sense.

Proposition 2. For any pWhile program P and any classical state σ ∈ State,
we have:

〈S, σ〉 −→p 〈S′, σ′〉 iff (T(P))〈σ,`〉,〈σ′,`′〉 = p,

where ` and `′ label the first block in the statement S and S′, respectively.

4 Pointer Analysis

In principle, it is possible to construct the concrete linear operator semantics for
any pWhile program with bounded value ranges for its variables and to analyse
this way its properties. However, this remains – as in the classical case – only
a hypothetical possibility. Even when using sparse matrix representations it is
practically impossible to explicitly compute the semantics of all but very small
toy examples. This is not least due to the unavoidable involvement of the tensor
product which leads to an exponential growth in the dimension of the operator
T. Besides this, there might also be the desire to consider a semantics of a
program with unbounded values for variables, in which case we are completely
unable to explicitly construct the infinite dimensional operator T. In order to
analyse (probabilistic) properties of a program we therefore need to consider an
abstract version of T.

4.1 Probabilistic Abstract Interpretation

The general approach for constructing simplified versions of a concrete (collect-
ing) semantics via Abstract Interpretation, which was introduced by Cousot &
Cousot 30 years ago [9], is unfortunately based on order-theoretic and not on
linear structures. One can define on a given vector space a number of orderings
(lexicographic, etc.) as an additional structure. We could then use this order
to compute over- or under-approximations using classical Abstract Interpreta-
tion. Though such approximations will always be safe, they might also be quite
unrealistic, addressing a worst case scenario rather than the average case [2]. Fur-
thermore, there is no canonical order on a vector space (e.g. the lexicographic
order depends on the base). In order to provide probabilistic estimates we have
previously introduced, cf. [1, 10], a quantitative version of the Cousot & Cousot
framework, which we have called Probabilistic Abstract Interpretation (PAI).

The PAI approach is based, as in the classical case, on a concrete and abstract
domain C and D – except that C and D are now vector spaces (or in general
Hilbert spaces) instead of lattices. We assume that the pair of abstraction and
concretisation functions α : C → D and γ : D → C are again structure preserving,
i.e. in our setting they are (bounded) linear maps represented by matrices A
and G. Finally, we replace the notion of a Galois connection by the notion of a
Moore-Penrose pseudo-inverse.

Definition 1. Let C and D be two finite dimensional vector spaces (or in gen-
eral, Hilbert spaces) and A : C → D a (bounded) linear map between them. The
(bounded) linear map A† = G : D → C is the Moore-Penrose pseudo-inverse of
A iff A ◦ G = PA and G ◦ A = PG, where PA and PG denote orthogonal
projections (i.e. P∗A = PA = P2

A and P∗G = PG = P2
G where .∗ denotes the

linear adjoint [11, Ch 10]) onto the ranges of A and G.

This allows us to construct the closest (i.e. least square) approximation T# :
D → D of T : C → C as T# = G · T · A = A† · T · A = α ◦ T ◦ γ. As our

concrete semantics is constructed using tensor products it is important that the
Moore-Penrose pseudo-inverse of a tensor product can easily be computed as
follows [12, 2.1,Ex 3]: (A1 ⊗A2 ⊗ . . .⊗An)† = A†1 ⊗A†2 ⊗ . . .⊗A†n.

Example 1 (Parity). Let us consider as abstract and concrete domains C =
V({−n, . . . , n}) and D = V({even, odd}). The abstraction operator Ap and its
concretisation operator Gp = A†p corresponding to a parity analysis are repre-
sented by the following n × 2 and 2 × n matrices (assuming w.l.o.g. that n is
even):

AT
p =

(
1 0 1 0 . . . 1
0 1 0 1 . . . 0

)
A†p =

(
1

n+1 0 1
n+1 0 . . . 1

n+1

0 1
n 0 1

n . . . 0

)
,

where .T denotes the matrix transpose (AT)ij = (A)ji. The concretisation op-
erator A†p represents uniform distributions over the n + 1 even numbers in the
range −n, . . . , n (as the first row) and the n odd numbers in the same range (in
the second row).

Example 2 (Sign). With C = V({−n, . . . , 0, . . . , n}) and D = V({−, 0,+}) we
can represent the usual sign abstraction by the following matrices:

AT
s =

1 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 1

 A†s =

 1
n . . .

1
n 0 0 . . . 0

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . .
1
n

Example 3 (Forget). We can also abstract all details of the concrete semantics.
Although this is in general a rather unusual abstraction it is quite useful in the
context of a tensor product state and/or abstraction. Let the concrete domain be
the vector space over any range, i.e. C = V({n, . . . , 0, . . . ,m}), and the abstract
domain a one dimensional space D = V({?}). Then the forgetful abstraction and
concretisation can be defined by:

AT
f =

(
1 1 1 . . . 1

)
A†f =

(
1

m−n+1
1

m−n+1
1

m−n+1 . . .
1

m−n+1

)
For any matrix M operating on C = V({n, . . . , 0, . . . ,m}) the abstraction A†f ·M·
Af gives a one dimensional matrix, i.e. a single scalar µ. For stochastic matrices,
such as our T generating the DTMC representing the concrete semantics we
have: µ = 1. If we consider a tensor product M⊗N, then the abstraction Af ⊗I
extracts (essentially) N, i.e. (Af ⊗ I)† · (M⊗N) · (Af ⊗ I) = µN.

4.2 Abstract Semantics

The abstract semantics T# is constructed exactly like the concrete one, except
that we will use abstract tests and update operators. This is possible as ab-
stractions and concretisations distribute over sums and tensor products. More
precisely, we can construct T# for a program P as:

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij ·T#(`i, `j),

where the transfer operator along a computational step from label `i to `j can be
abstracted “locally”. Abstracting each variable separately and using the concrete
control flow we get the operator A = (

⊗v
i=1 Ai)⊗ I = A1 ⊗A2 ⊗ . . .⊗Av ⊗ I.

Then the abstract transfer operator T#(`i, `j) can be defined as T#(`i, `j) =
(A†1Ni1A1)⊗(A†2Ni2A2)⊗. . .⊗(A†vNivAv)⊗E(`i, `j). This operator implements
the (abstract) effect to each of the variables in the individual statement at `i
and combines it with the concrete control flow.

It is of course also possible to abstract the control flow, or to use abstractions
which abstract several variables at the same time, e.g. specifying the abstract
state via the difference of two variables.

Example 4. Consider the following short program:
if [(x > 0)]1 then [z← &x]2 else [z← &y]3 end if; [stop]4

The LOS operator of this program can be straightforwardly constructed as

T(P) = P(x > 0)⊗E(1, 2) + P(x ≤ 0)⊗E(1, 3) +
+ U(z← &x)⊗E(2, 4) + U(z← &y)⊗E(3, 4) + I⊗E(4, 4).

Here we can see nicely the powerful reduction in size due to PAI. Assuming
that x and y take, for example, values in the range −100, . . . ,+100 then the
concrete semantics requires a 201× 201× 2× 4 = 323208 dimensional space (as
z can point to two variables and there are four program points). The concrete
operator T(P) has about 1011 entries (although most of them are zero). If we
abstract the concrete value of x and y using the sign or parity operators the op-
erator T#(P) – constructed exactly in the same way as T(P) but using smaller,
abstract value spaces, requires only a matrix of dimension 3× 3× 2× 4 = 72 or
2× 2× 2× 4 = 32, respectively. We can even go one step further and completely
forget about the value of y, in which case we need simply a 24 × 24 or 16 × 16
matrix respectively to describe T#(P).

The dramatic reduction in size, i.e. dimensions, achieved via PAI and illus-
trated by the last example lets us hope that our approach could ultimately lead
to scalable analyses, despite the fact that the concrete semantics is so large as to
make its construction infeasible. However, further work in the form of practical
implementations and experiments is needed in order to decide whether this is
indeed the case.

The LOS represents the SOS via the generator of a DTMC. It describes the
stepwise evolution of the (probabilistic) state of a computation and does not
provide a fixed-point semantics. Therefore, neither in the concrete nor in the ab-
stract case can we guarantee that limn→∞(T(P))n or limn→∞(T(P)#)n always
exists. The analysis of a program P based on the abstract operator T(P)# is
considerably simpler than by considering the concrete one but still not entirely
trivial. Various properties of T(P)# can be extracted by iterative methods (e.g.
computing limn→∞(T(P)#)n or some averages). As usual in numerical compu-
tation, these methods will converge only for n → ∞ and any result obtained
after only a finite number of steps will only be an approximation. However, one

can study stopping criteria which guarantee a certain quality of this approxi-
mation. The development or adaptation of iterative methods and formulation
of appropriate stopping criteria might be seen as the numerical analog to the
widening and narrowing techniques of the classical setting.

4.3 Abstract Branching Probabilities

The abstract, like the concrete, semantics is based on two types of basic opera-
tors, namely abstract update operators U# and abstract test operators P#. As
abstract tests introduce probabilistic choices which reflect the probabilities that
a test is passed, the abstract semantics will always be probabilistic even if the
considered program is deterministic.

Example 5. Obviously, the critical element in Example 4 for computing the prob-
abilities of z pointing to x or y is given by the chances that the test x > 0 in label
1 succeeds or fails. These chances depend on the initial (distribution of possible)
values of x. In the concrete semantics we can, for example, assume that x can
take initially any value between −N and +N with the same probability, i.e.
we could start with the uniform distribution d0 = (1

2N+1 ,
1

2N+1 , . . . ,
1

2N+1) for
x – or any other distribution. The probability of z pointing to x or y is then:
P (z = &x) =

∑
i(d0 ·P(x > 0))i = N+1

2N+1 and P (z = &y) =
∑
i(d0 ·P(x ≤ 0))i =

N
2N+1 . In other words, if we increase the range, i.e. for N → ∞, the chances of
z pointing to x or y are about 50 : 50.

Even in this simple case, the involved matrices, i.e. P(x > 0), can become
rather large and one might therefore try to estimate the probabilities using PAI.
Again the critical element is the abstract test P#(x > 0) = A† ·P(x > 0) ·A.The
abstract test operator P#(x ≤ 0) can be computed in the same way or via the
fact P#(x ≤ 0) = I−P#(x > 0). For different ranges of x in {−N, . . . , N} we can
construct the abstract test operators for the parity abstraction, i.e. A = Ap in
Example 1, and the sign abstraction, i.e. A = As in Example 2. Using the octave
system [13] we get for P#

s = A†s ·P(x > 0) ·As and P#
p = A†p ·P(x > 0) ·Ap:

P#
s =

0 0 0
0 0 0
0 0 1

 ,

0 0 0
0 0 0
0 0 1

 and

0 0 0
0 0 0
0 0 1

 for N = 1, 2 and 10,

P#
p =

(
0.00 0.00
0.00 0.50

)
,

(
0.50 0.00
0.00 0.33

)
and

(
0.50 0.00
0.00 0.45

)
forN = 1, 2 and 10

These abstract test operators encode important information about the ac-
curacy of the PAI estimates. Firstly, we observe that the sign abstraction As

provides us with stable and correct estimates. As we would expect, we see that
the abstract values ‘−’ and 0 never pass the test, while ‘+’ always does, inde-
pendently of N . Secondly, we see that the parity analysis is rather pointless, for
large N the test is passed with a 50% chance for even as well as odd – this
expresses just the fact that parity has nothing to do with the sign of a variable. A
bit more interesting are the values for N = 1 and N = 2. If we only consider the

concrete values −1, 0, 1 for x then only even numbers (0 in this set) always fail
the test (thus we have a zero entry in the upper left entry) and that it succeeds
for the odd numbers, −1 and 1, with an even chance; if we consider a larger
concrete range, i.e. for N > 1, then the chances tend to become 50 : 50 but due
to 0 failing the test, there is a slightly lower chance for even numbers to succeed
compared with odd numbers.

As we can see from the example, the abstract test operators P# contain infor-
mation about the probabilities that test succeed for abstract values. This means
that the abstract semantics contains estimates of dynamic branching probabili-
ties, i.e. depending on the (abstract) state of the computation the probabilities
to follow, for example, the then or else branch will change. One could utilise
this information to distinguish between the branching probabilities in different
phase of executions; during the initialisation phase of a program the branching
probabilities could be completely different from later stages.

However, we can also obtain more conventional, i.e. static, branching prob-
abilities for the whole execution of a program. In order to do this we have to
provide an initial distribution over abstract values. Using the abstract semantics
T#, we can then compute distributions over abstract values for any program
point which in particular provide estimates of the abstract state reaching any
test. This amounts to performing a probabilistic forward analysis of the pro-
gram. Based on the probability estimates for abstract values at a test we can
then compute estimates for the branching probabilities in the same way as in
the classical case.

With respect to a higher order analysis – such as a pointer analysis – we there-
fore propose a two-phase analysis: During the first phase the abstract semantics
T# is used to provide estimates of the probability distributions over abstract
values (and thus for the branching probabilities) for every program point; phase
two then constructs the actual analysis, e.g. a probabilistic points-to matrix, for
every program point. One could interpret phase one also as a kind of program
transformation which replaces tests by probabilistic choices.

Example 6. For the program in Example 4 the corresponding probabilistic pro-
gram we have to consider after performing a parity analysis in phase one is:

[choose]1 (p> : [z← &x]2) or (p⊥ : [z← &y]3); [stop]4

where p> and p⊥ (which both depend on N) are the branching probabilities
obtained in phase one.

4.4 Probabilistic Points-to Matrix vs State

The (probabilistic) state in the concrete semantics contains a complete descrip-
tion of the values of all variables as well as the current statement. We can extract
information about where pointers (variables) point-to at a certain label by for-
getting the value of the basic variables. The same is, of course, also possible with
the abstract state. This is achieved via the abstraction Ar = A⊗(v−r)

f ⊗ I⊗r ⊗ I,
where Af is the “forgetful” abstraction in Example 3 while v and r denote the

number of all variables and of all pointer variables, respectively. If we are inter-
ested in the pointer structure at a certain program point we can also use the
following abstraction:

Ar(`) = A⊗(v−r)
f ⊗ I⊗r ⊗Af (`),

where Af (`) is represented by a column vector (i.e. a n×1 matrix) with a single
non-zero entry (Af (`))1,` = 1.

Note that Af (`)† = Af (`)T and that Af (`) ·Af (`)† = P(`) while Af (`)† ·
Af (`) = (1), i.e. the 1× 1 (identity) matrix.

Given an initial distribution d0 or d#
0 , which represent the initial concrete or

abstract values of all variables (and the initial label of the program in question),
we can compute the computational state after n computational steps simply by
iterating the concrete or abstract semantics T and T#, i.e. dn = d0·Tn and d#

n =
d#

0 ·T#n. Based on these distributions dn or d#
n we can compute also statistical

properties of a program, by averaging over a number of iterations, or the final
situation, by considering the limit n→∞.

The typical result of a probabilistic pointer analysis, e.g. [4], is a so-called
points-to matrix which records for every program point the probability that
a pointer variable refers to a particular (other) variable. Using our systematic
approach to pointer analysis we can construct such a points-to matrix, concretely
or abstractly. However, we can also show that the points-to matrix contains – to
a certain extent even in the concrete case – only partial information about the
pointer structure of a program.

Example 7. Consider the following simple example program:
if [(z0 mod 2 = 0)]1 then [x← &z1]2; [y← &z2]3

else [x← &z2]4; [y← &z1]5 end if; [stop]6

Any reasonable analysis of this program – assuming a uniform distribution
over all possible values of z0 – will result in the following probabilistic points-
to matrix at label 6, i.e. at the end of the program (we write the two rows
corresponding to x and y as a direct sum):

(0, 0, 0,
1
2
,

1
2

)⊕ (0, 0, 0,
1
2
,

1
2

).

This probabilistic points-to matrix states that x and y point with probability
1
2 to z1 and z2, but in fact there is a relational dependency between where
x and y point to. This is detected if we construct the points-to state via d0 ·
(limn→∞T#n)·Ar(6) = d0 ·limn→∞(A†pTAp)n ·Ar(6). For our example program
we get the following points-to tensor:

1
2
· (0, 0, 0, 1, 0)⊗ (0, 0, 0, 0, 1) +

1
2
· (0, 0, 0, 0, 1)⊗ (0, 0, 0, 1, 0)

which expresses exactly the fact that (i) there is a 50% chance that x points to
z1 and y points to z2, and that (ii) there is also a 50% chance that x and y point
to z2 and z1, respectively.

For every pointer variable xi we can compute the corresponding row in the
points-to matrix using instead of Ar(6) the abstraction

Ar(`, xi) = A⊗(i−1)
f ⊗ I⊗A⊗(v−i+1)

f ⊗Af (`).

However, this way we get less information than with the points-to tensor above.
By a simple dimension argument it’s easy to see that, for instance, in our example
the points-to matrix has 2× 5 = 10 entries while the points-to state is given by
a 5× 5 = 25 dimensional vector.

In fact, it is sufficient to consider the points-to matrix to describe the com-
mon state (i.e. distribution) of two pointer variables (seen as random variables)
if and only if they are (probabilistically) independent, cf e.g. [14, Sect 20]. If two
random (pointer) variables are not independent but somehow correlated, then
we need a points-to tensor to describe the situation precisely. In the classical
framework this corresponds exactly to the distinction between independent and
relational analysis. We can combine in our framework both approaches. However
– as always – it will depend on the concrete application how much precision (pro-
vided by the points-to tensor) one is willing to trade in for lower computational
complexity (the points-to matrix allows for).

5 Conclusions and Further Work

We presented a compositional semantics of a simple imperative programming
language with a probabilistic choice construct. The executions of a program in
this language correspond to a discrete time Markov chain. Important for the
syntax directed construction of the generator matrix of this DTMC is the tensor
product representation of the probabilistic state. Using a small number of basic
filter and update operators we were also able to provide the semantics of pointers
(to static variables). Probabilistic Abstract Interpretation, a quantitative gen-
eralisation of the classical Cousot & Cousot approach, provided the framework
for constructing a “simplified” abstract semantics. Linearity, distributivity and
the tensor product enabled us to construct this abstract semantics in the same
syntax directed way as the for concrete semantics. Our approach allows for a
systematic development and study of various probabilistic pointer analyses. We
could, for example, argue that the traditional points-to matrix is not sufficient
for providing relational information about the pointer structure of a program.

We used static techniques for estimating execution frequencies. A more com-
mon approach is the use of profiles which are derived by running the program
on a selection of sample inputs. Our static estimation does not require this sepa-
rate compilation and is not dependent on the choice of the representative inputs
which is a crucial and often very difficult part of the profiling process. Several
authors have argued about the advantages of static estimators or program-based
branch prediction as opposed to the time-consuming profiling process as a base
for program optimisation [15–17]. However, since estimates derived from run-
time profile information are generally regarded as the most accurate source of

information, it is necessary to measure the utility of an estimate provided by
static techniques by comparing them with the actual measurements in order to
assess their accuracy. We plan to further develop this point in future work; in
particular, we plan to exploit the metric intrinsic in the PAI framework for the
purpose of measuring the precision of our analyses and to use the mathematical
theory of testing and its well-known results (cf. [18]) in order to provide the
outcomes of our analyses with a statistical interpretation.

Further work will address various extensions of the current approach: (i) an
extension to unbounded value ranges (this will require the reformulation of our
framework based on more advanced mathematical structures like measures and
Banach/Hilbert spaces), (ii) the introduction of dynamical pointer structures
using a heap and a memory allocation function, and (iii) a practical implemen-
tation, e.g. by investigating some forms of probabilistic widening, of our analysis
in order to establish whether it scales, i.e. if it can also be applied to “real world”
programs, and provides enough useful information for speculative optimisation.

References

1. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-
abilistic Abstract Interpretation. In: PPDP’00. (2000) 127–138

2. Di Pierro, A., Hankin, C., Wiklicky, H.: Abstract interpretation for worst and
average case analysis. In: Program Analysis and Compilation, Theory and Practice.
Volume 4444 of LNCS. Springer Verlag (2007) 160–174

3. Chen, P.S., Hwang, Y.S., Ju, R.D.C., Lee, J.K.: Interprocedural probabilistic
pointer analysis. IEEE Trans. Parallel and Distributed Systems 15 (2004) 893–907

4. Da Silva, J., Steffan, J.G.: A probabilistic pointer analysis for speculative opti-
mizations. In: ASPLOS-XII, ACM Press (2006) 416–425

5. den Hartog, J., de Vink, E.: Verifying probabilistic programs using a Hoare-like
logic. International Journal of Foundations of Computer Science 13 (2002) 315–340

6. Di Pierro, A., Hankin, C., Wiklicky, H.: On probabilistic techniques for data flow
analysis. In: QAPL’07. (2007) to appear in ENTCS.

7. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Verlag, Berlin – Heidelberg (1999)

8. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: POPL’02. (2002) 178–190

9. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
POPL’77. (1977) 238–252

10. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations.
In: LOPSTR’00. Volume 2042 of LNCS., Springer Verlag (2001) 147–164

11. Roman, S.: Advanced Linear Algebra. 2nd ed. Springer Verlag (2005)
12. Ben-Israel, A., Greville, T.: Generalised Inverses. 2nd ed. Springer Verlag (2003)
13. Eaton, J.: Gnu Octave Manual. www.octave.org (2002)
14. Billingsley, P.: Probability and Measure. Wiley & Sons, New York (1978)
15. Wagner, T.A., Maverick, V., Graham, S.L., Harrison, M.A.: Accurate static esti-

mators for program optimization. SIGPLAN Not. 29(6) (1994) 85–96
16. Ramalingam, G.: Data flow frequency analysis. In: PLDI’96. (1996) 267–277
17. Ball, T., Larus, J.R.: Branch prediction for free. SIGPLAN Not. 28 (1993) 300–313
18. Ferguson, T.S.: Mathematical Statistics. Academic Press (1967)

