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Hilbert Spaces



Definition Complex Inner Product Space). A complex inner product space is a vector space # on the field C equipped
with a function (-, -) : # x J — C that satisfies the following properties:

1.{p, ¥) = (&, 9)%;

2. (Y, Yr) is a non-negative real number;

3.if (Y, ) = 0theny = 0;

4. (c1¢1 + 202, V) = ¢ (D1, ¥) + 5 (P2, V),
5. (@, C1¥1 + C2Yr2) = C1(P, Y1) + C2(P, ¥2).

The function (-, -) is the inner product of # and induces a norm || - ||s defined by ||¢|| = v/ (¢, ¢).

Definition Completeness). Given the metricd(y, ¢) = ||y — ¢|| s, an inner product space # is complete if any Cauchy
sequence’ (@,)n<,, IS cONvergent.

cauchy-sequence Ve > 0.AN > 0.Vn, m > N.d(¢,, om) < €.



Definition An Hilbert space H is a complex inner product space that is complete
with respect to the distance induced by the inner product.

Proposition Any finite dimensional inner product space is a Hilbert space

Definition Let H’, H” be Hilbert space, and let U : H> — H” be a linear surjection map.
If for all ¢,y , U, Up)w = (P, Y>u» we say that U is an unitary operator.

(REMARK: each unitary operator is injective and therefore invertible)

The inverse of an unitary operator is denoted with UT and is called Adjoint of U

Definition (finite dimensional spaces). Let H be a finite dimensional Hilbert space, and
let U : H — H be a linear surjection map. The adjoint of U is the unique linear transform

UT: H — H such that for all ¢,y U@, ) =<{¢p, UT ).

If UTU is the identity, we say that U is a unitary operator.



Definition  (Hilbert Basis). Let B a maximal orthonormal set in a Hilbert space H (whose
existence is consequence of Zorn’s lemma). B is said to be an Hilbert basis of H.

Definition (Hamel Basis). Let B a maximal linearly independent set in a Hilbert space H
(whose existence 1s consequence of Zorn’s lemma). B 1s said to be an Hamel basis of H.

Please note that the concept of a Hilbert basis 1s different from the concept of vector space basis
(a maximal linearly independent set of vectors), the so-called Hamel basis. In fact it is possible
to exhibit a space H with Hilbert basis M s.t. H 1s not finitely generated by M and therefore M
1s not a maximal linearly independent set of vectors. An orthonormal Hamel basis is usually
called orthonormal basis.

In the finite dimensional case, the two concepts of a Hamel basis and a Hilbert basis coincide.

This fails for the infinite dimensional cases [21].

Definition (Span). Let H be an inner-product space and let S € H, the span of S is
the inner product subspace of H defined by

span(S)= {3 c¢jsijlcieC,siES, nEN}
<n

Even if H i1s an Hilbert space, span(S) is not necessarily an Hilbert space



Let 8 a set such that |§]| < 8, and let #2 (8) be the set

A
v

$ldp:8—>C Y [p(©)) < oo

sed
equipped with:

(i) aninner sum + : /%(8) x f%(8) — (%(8) defined by (¢ + V) (s) = ¢(s) + Y (5);
(ii) a multiplication by a scalar - : C x ¢2(8) — 62(5) defined by (c - ¢)(s) = ¢ - (¢(5));
(iii) an inner product? (-, -) : £2(8) x £?(8) — C defined by (¢, V) = Y s P Y (S);

It is quite easy to show that (2 (4) is an Hilbert space.
We call quantum register any normalized vector in ¢2(38).
The set B(8) = {|s) : s € 8}, where |s) : § — C is defined by:

bo=l) iz

is a Hilbert basis of ¢2(8), usually called the computational basis in the literature.



It is now interesting to distinguish two cases:

(1) 4 is finite: in this case B(4) is also an orthonormal (Hamel) basis of 2 (8) and consequently span(B(8)) = ¢ (8). % (8)
is isomorphic to C*!. With a little abuse of language, we can also say that /2 (8) is “generated” or “spanned” by 3.

(2) 4 is denumerable: in this case it is easy to show that B(8) is a Hilbert basis of (? (4), but it is not a Hamel basis. In fact
let us consider the subspace span(8(4)). We see immediately that span(8B(48)) C ¢2(8)° is an inner-product infinite
dimensional space with 8(4) as the Hamel basis, but span(8(48)) is not a Hilbert space because it is not complete

The careful reader immediately recognizes that ¢2 (8) is the well known fundamental Hilbert space £2(8). There
are strong relationships between span(B($)) and £2(8), in fact it is possible to show (this is a standard result for £?)
that span(B(4)) is a dense subspace of ¢2(8), and that ¢2(8) is the (unique!) completion of span(B(4)). This fact is
important because in the main literature on quantum Turing machines, unitary transforms are usually defined on spaces
like span(8B(38)), but this could be problematic because span(8B(48)) is not a Hilbert space. Anyway, this is not a real
problem: it is possible to show that each unitary operator U in span(B($)) has a standard extension in #2 (5)



Quantum Turing Machines



In the following we will assume to deal with a finite alphabet Y with
two distinguished symbols 1, 0, where O represents the blank symbol and
1 is needed to represent integers. With «, 3, eventually indexed, we will
represent strings in X* (A denotes the empty string). The finite set @ is
called set of states, and contains two distinguished states qp (the initial
state) and ¢ (the final state). Let n € N, with m we denote the string 171,

Definition (configurations) The notion of configuration is standard,
namely a configuration is a triple ¢ = (o, q, B) € X* x @ x X* where:

e ¢ is the current state;

o « represents the tape content at the left of the pointer, i.e. the longest
string in X* on the tape starting with a symbol different from O, such
that the last symbol in o 1s in the cell predecessor of the current cell;

o 3 s the tape content at the right of the pointer, i.e. the longest string
i X¥ on the tape ending with a symbol different from O such that the

first symbol in 3 is the content of the current cell (if 3 = A the current
cell contains O);

e an initial configuration has the shape (A, qo,T);

e o final configuration has the shape (o, qs, 3); the string oo+ 3 is called
output;

e given a configuration ¢ = (a, q, 3), with val|c] we denote the number n
if ¢ = (X, qo,n) (the n is the input) and the number of '1" in af if ¢ is
not initial.



With Cx. o we denote the set of possible configurations (we will omit the
subscripts when the choice of Q and X is clear from the context). Elements
of Cs.q are denoted by C, D eventually indexed.

Definition (Hilbert space of configurations) Given a setCs g of con-

figurations, with 82((32,@) we will denote the infinite dimensional Hilbert
space defined as follow.

The set of vectors in (*(Cx ) is the set

( )

$16:Cso—C S SO <ooy

L CECE,Q

N\

/

and equipped with:

1. An inner sum + : £2(Cs,g) X £*(Cx ) — *(Cxz o)
defined by (¢ +9)(C) = ¢(C) +P(C);

2. A multiplication by a scalar -:C X iz (Cs.g) — 52(62,62)
defined by (a- ¢)(C) =a - (¢(C));

8. An inner product' < - - >:(*(Csg) x £*(Cy,g) — C
defined by < 6, >= Y eoy, , B H(O);

4. The Euclidian norm is defined as || ¢ ||[=< ¢, ¢ >.

in order the inner product definition make sense, we must prove that the sum

> cec P(C)*Y(C) converges.




Definition 3 (computational basis) The set of functions CBcy, , = {|C) :
Celsg, | :Csg— C} such that for each C

co= {3 1638

is called computational basis of £*(Cs. ).

Theorem 4 The set CBey, , s an Hilbert basis of %(Cs.0)-

Please note that the inner product space span(CBcE, Q) defined by:

span(CBey, ,) = {Z cisi | ¢; € C,s; € CBey ,1 € N} .
i=1

is a proper inner product subspace of £*(Cx. ), but it is not an Hilbert Space
(this means that CBg, , is not an Hamel basis of £%(Cs,q)).

The completion of span(CBcy, ,) (denoted by c—span(CBcy, ,)) is a space
isomorphic to £?(Cs.q).



Theorem 1. span(CBcE’Q) is a dense subspace of KQ(CE,Q);

2. 1%(Cx,q) is the (unique! up to isomorphism) completion of span(CBey, ).

This fact is important because in the main literature on quantum Turing
machines, unitary operators are defined by linearity on span(CBcE,Q) not

directly on ¢*(Csx; ). This is not a real problem, since it is possible to show
that:

Theorem  Each unitary operator U in spcm(CBcE’Q) has an unique ex-
tension in £*(Cs, o)

Definition 7 (computable numbers) A real number x is called computable
of there exists a deterministic Turing machine that on input 1™ computes a
binary representation of an integer m € Z such that |55 — x| < 2%

Let us call @, the computable complex number, the set of compler num-
bers such that the real and imaginary parts are computable.



Definition (quantum configurations). An elements ¢ € £*(Cx ) is called
quantum configuration (g-configuration) if > qcc |#(C)|* = 1. A g-configuration
C is computable (c—configuration) if ¢(Cs.q) C C.

The set of g-configurations is denoted by qCx, ¢; the set of c—configurations
is denoted by qéE,Q. The elements of ¢CxQ) are denoted by |p), |v) possibly
indexed; the elements of ¢Cs g are denoted by ||¢), ||¢) possibly indexed.

Definition . [pre-Quantum Turing Machine/ Given a set Q) of states and

the alphabet %, a pre-Quantum Turing Machine is a triple M = (3,Q,6)
where

5:QxY— (ExQx{L,R}) — C)
satisfies, for any a € X:
ZbEE,q’GQ,mE{L,R} ‘5(% a’)<b7 qla m)|2 — 17'
0 1s the quantum transition function.




Definition (time evolution operator). Let M = (3,Q,0) be a pre-
Quantum Turing machine , and let us consider the linear operator Wy
CBey, o, = CBey, defined on the Hilbert basis CBey, , in the following way.
If C ={a,q,ap) then

WM(‘C» — Z 5(Q7a)(b7 qlvm)‘cb,q’,m>
beX,g'eQ,me{L,R}

where each Cy gy m 15 classically defined, i.e. it is the new configuration
obtained by replacing in C' the current symbol a with b, changing the current
state from q to ¢' and moving the control in direction m (the technical details
are standard, see [?]).

The unique extension Uy : 2(Cxq) — (*(Cs.q) of Wy is called time
evolution operator of M.

Definition (Quantum Turing Machine). A pre-Quantum Turing Ma-
chine is a Quantum Turing Machine i (QTM) iff the time evolution operator
Upnr 1s unitary.




Theorem [local conditions for unitariety/ Let M = (3, Q,9) be a QTM,
the time evolution operator Ups is unitary iff:

(1) Vg€ Q,a € X

> 6(q,a,b,p,d)|* =1

peQ,beS,de{L,R}
(2) Y(q,a),(¢,a") € Q x ¥ with (g,a) # (¢',d’)

> o(q'ya’,b,p,d)*0(q,a,b,p,d) =0
peQ,beS,de{L,R}

(3) v(‘]a a, b)7 (qla CL,, b,) = Q X 20X 2

> 6(d,d Y, p, L) 5(q, a,b,p, R) =0

peQ



Theorem Let M = (3,Q),0) be a pre—quantum TM; if Uy is an isom-
etry in (*(Cx.g) then it is also unitary.

The previous result is important, since for an infinite dimensional Hilbert
space H (e.g. (*(Cx)), we have that U : H — H is unitary iff Va,y €
H,({Uzx,Uy) = (x,y) (it is an isometry) and moreover U(H) = H (it is
surjective). The condition of surjectivity is not necessary in the case of
finite dimensional Hilbert spaces, since in this case each isometry is also
surjective.



Definition A q—configuration |¢) = > e;|C) is called initial if all the
C; are initial, and 1s called final if all the C; are final.

Definition (computation). Let M be a QTM and let Uy be the as-
sociated time evolution operator. Given an a initial g—configuration |¢), a
computation for M is a denumerable sequence {|pi) }icw -t

(1) [¢0) = |);
(2) |éi) = Upr(19))-

Theretfore, given a QTM M, each computation is univocally determined
by its initial g—configuration.

We denote a computation of a QTM M with initial g—configuration |¢)
with K% If Kﬂf = {|¢i) }ien we denote with (K |¢>) the g—configuration
).

It is important to observe that, strictly speaking, QTM-s does not have
finite computations.



Definition (denumerable multiset). Given a set A, a multiset on A is
a function ma : A — N (which gives the multiplicity of an element). Let
a = |m (N —{0})|, ma is finite (denumerable) if & < Rg (o = Vo). With
2m4 we denote the set of all, at most denumerable, multisets on A.

As usual we will use freely the usual set—theoretic operation on multisets.
In particular, given a set A, () denotes the constant-0 multiplicity function
ma(i) = 0.

Definition (the sets M and My). Let us consider the following sets:

M={ WV Nsm2 S (W@ <1y
\ i€N,deC )
Mi=S W) )N m2S ST (ME@)ldP® =17
1€N,deC J

\
The element of M (M) are called quasi—register (register).

A (quasi-)register |v) is called computable if |[v)(N) C m2%; (computable)
registers are denoted with (||v)), |[w)...) |v),|w)...).




Definition (numerical evaluation of quantum configurations). The nu-
merical evaluation of quantum configurations val : ¢Csx, g — M is defined in
the following way:

(vallg))(k)(d) = |{C | val|C] = k,d = |$)(C)}|

Let {|®i) }icw be a computation, with val({|®i) }icw) we denote the sequence
{val|¢i) }icw tn M.

Definition (probabilities).

(1) Let |p) = > e;|Ci) be a q—configuration, we associate to |¢) a real
number in Ry 17 denoted with Pr@ in the following way: (i) if each

Ci is not final, Pl = 0 otherwise P, = quECk,val[Ck]:n lex]?.
2) Moreover let KM = {16\ Vicw), with P[KM n] we denote the number
[

sup1Py, Fien-
(3) Let us denote with P, the number >aec(V)(n)(d))|d]* € Ry 11



How to read the result of a computation?



The approach of Bernstein and Vazirani

Definition When the g-configuration Iy = YeilC;)) 1s observed or measured,
configuration C; 1s seen with probability leil”
updated to ’= IC)

. Moreover, the superposition of M 1is

What it happens if we make a measurement of a NON final gq-configuration?

lP) = e1|Cr+e2|Coy+e3|C3) with C;,C; not final and Cs final
meas(|P))
V l Z\Gﬂz‘
le2|
|C 1C2) 1C3)

t 4

we have destroyed the quantum computation



In order to supersede the problem Bernstein and Vazirani propose in [?] to consider only
QTM where all the computations in superposition have the same length. More precisely:

”A final configuration of a QTM is any configuration in state qf . If when QTM M
is run with input x, at time T the superposition contains only final configurations,
and at any time less than T the superposition contains no final configuration, then
M halts with running time T on input x.”

Even their choice i1s well motivated by the use of QTM in order to solve classical
decision problems, it 1s highly unsatisfactory in order to develop a truly quantum theory
of computable function.

It 1s in fact quite easy to observe that the QTM of Bernstein and Vazirani ar not robust
enough to admit quantum inputs but only classical ones.



The approach of Deutsch.

Deutsch assumes to enrich the quantum Turing machines with a termination bit T. At the
beginning of a computation the bit T is set to 0 and during the computation the termination
bit T is set to 1 when the machine enters in a final configuration. Following this approach
the form of a generic g—configuration is:

9) =IT=0)® ) elCh+[T=1)o) &[C).

not final final



The observer periodically measures T (in a non destructive way):

(1) if the result of the measurement of T' gives the value 0 the compu-
tation continues with the new (collapsed) g—configuration

- T=0 0% elq)
> leil?
(2) if the result of the measurement of T' gives the value 0, then |psi)
collapses (with probability > |e;|?) to
T=1)® > d;|C)
> 1d;]? |
Immediately after the collapse the observer makes a further mea-

d;|C/
surement of the component % |J CL,|J2> in order to read-back the result.
J

[9") =

Even if this approach gives correct observational results, each observation changes
the superpositions during a computation.



