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10. Conclusions and further work

Wehave introducedSQ, an intrinsically polytime lambda calculus for quantumcomputation.More precisely,SQ captures
the three standard quantum complexity classes EQP, BQP and ZQP. In doing so, we have shown that the ICC paradigm can
be successfully extended to the framework of quantum computing.

We plan to extend the proposal in two different directions:

• In this paper we only consider quantum decision problems and related complexity classes (in full agreement with the
literature on quantum complexity theory). Nevertheless it should be interesting to also analyze the case of quantum
complexity classes for functions. A lot of work remains to be done in this direction, not only within ICC, but within
quantum computation theory and complexity.

• We would also like to study a typed version of SQ. In order to retain the correspondence with quantum complexity
classes, it would be probably necessary to consider polymorphic type systems.

Appendix A. Hilbert spaces

In the paper, we assumed some basic knowledge on Hilbert spaces. This section is devoted to recall the main notions. For
a full account on ideas and results about Hilbert spaces, the reader is invited to consult a good mathematical textbook such
as [21].

Definition 10 (Complex Inner Product Space). A complex inner product space is a vector space H on the field C equipped
with a function h·, ·i : H ⇥ H ! C that satisfies the following properties:

1. h�, i = h ,�i⇤;
2. h , i is a non-negative real number;
3. if h , i = 0 then  = 0;
4. hc1�1 + c2�2, i = c⇤

1 h�1, i + c⇤
2 h�2, i;

5. h�, c1 1 + c2 2i = c1h�, 1i + c2h�, 2i.
The function h·, ·i is the inner product of H and induces a norm || · ||H defined by ||�||H = ph�,�i.
Definition 11 (Completeness). Given the metric d( ,�) = || � �||H , an inner product space H is complete if any Cauchy
sequence3 (�n)n<! is convergent.

Definition 12 (Hilbert Space). An Hilbert space H is a complex inner product space that is complete with respect to the
distance induced by the inner product.

Proposition 6. Any finite dimensional inner product space is a Hilbert space.

Definition 13 (Unitary Operators). Let H be a finite dimensional Hilbert space, and let U : H ! H be a linear map. The
adjoint of U is the unique linear transform UÑ : H ! H such that for all �, hU�, i = h�,UÑ i. If UÑU is the identity,
we say that U is a unitary operator.

Definition 14 (Hilbert Basis). Let B a maximal orthonormal set in a Hilbert space H (whose existence is consequence of
Zorn’s lemma). B is said to be an Hilbert basis of H .

Please note that the concept of a Hilbert basis is different from the concept of vector space basis (a maximal linearly
independent set of vectors), the so-called Hamel basis. In fact it is possible to exhibit a space H with Hilbert basis M s.t. H is
not finitely generated by M and therefore M is not a maximal linearly independent set of vectors (see e.g. [21], page 189).
An orthonormal Hamel basis is usually called orthonormal basis.

In the finite dimensional case, the two concepts of a Hamel basis and a Hilbert basis coincide. This fails for the infinite
dimensional cases [21].

Definition 15 (Span). Let H be an inner-product space and let S ⇢ H , the span of S is the inner product subspace of H
defined by

span(S) =
(

nX

i=1

cisi | ci 2 C, si 2 S

)

.

Even if H is an Hilbert space, span(S) is not necessarily an Hilbert space (see below).
In the paper we deal with Hilbert spaces of two sorts that, via trivial isomorphisms, correspond to the finite dimensional

space Cn and the @0-dimensional space `2.

3 8✏ > 0.9N > 0.8n,m > N.d(�n,�m) < ✏.
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Definition  An Hilbert space H is a complex inner product space that is complete 
with respect to the distance induced by the inner product.

Proposition   Any finite dimensional inner product space is a Hilbert space

Definition    Let H’, H” be  Hilbert space, and let U : H’ → H” be a linear surjection map. 
If for all φ, ψ , ⟨Uφ, Uψ⟩H’ = ⟨φ, ψ⟩H” we say that U is an unitary operator.

Definition   (finite dimensional spaces). Let H be a finite dimensional Hilbert space, and 
let U : H → H be a linear surjection map. The adjoint of U is the unique linear transform 
U†: H → H such that for all φ, ψ ⟨Uφ, ψ⟩ = ⟨φ, U† ψ⟩. 	


If U†U is the identity, we say that U is a unitary operator.	


(REMARK: each unitary operator is injective and therefore invertible)	


The inverse of an unitary operator is denoted with U† and is called Adjoint of U



Please note that the concept of a Hilbert basis is different from the concept of vector space basis 
(a maximal linearly independent set of vectors), the so-called Hamel basis. In fact it is possible 
to exhibit a space H with Hilbert basis M s.t. H is not finitely generated by M and therefore M 
is not a maximal linearly independent set of vectors. An orthonormal Hamel basis is usually 
called orthonormal basis.	


In the finite dimensional case, the two concepts of a Hamel basis and a Hilbert basis coincide. 
This fails for the infinite dimensional cases [21].	


Definition  (Span). Let H be an inner-product space and let S ⊆ H, the span of S is 
the inner product subspace of H defined by	


span(S)= {∑ cisi|ci∈C,si∈S, n∈N}	


!
i≤n

Even if H is an Hilbert space, span(S) is not necessarily an Hilbert space

Definition   (Hilbert Basis). Let B a maximal orthonormal set in a Hilbert space H (whose 
existence is consequence of Zorn’s lemma). B is said to be an Hilbert basis of H.	


Definition   (Hamel Basis). Let B a maximal linearly independent set in a Hilbert space H 
(whose existence is consequence of Zorn’s lemma). B is said to be an Hamel basis of H.	
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A.1. The Hilbert space H(S)

Let S a set such that |S|  @0 and let H(S) be the set
(

� | � : S ! C,
X

s2S

|�(s)|2 < 1
)

equipped with:

(i) an inner sum + : H(S) ⇥ H(S) ! H(S) defined by (� +  )(s) = �(s) +  (s);
(ii) a multiplication by a scalar · : C ⇥ H(S) ! H(S) defined by (c · �)(s) = c · (�(s));
(iii) an inner product4 h·, ·i : H(S) ⇥ H(S) ! C defined by h�, i = P

s2S �(s)⇤ (s);

It is quite easy to show that H(S) is an Hilbert space.
We call quantum register any normalized vector in H(S).
The set B(S) = {|si : s 2 S}, where |si : S ! C is defined by:

|si(t) =
⇢
1 if s = t
0 if s 6= t

is a Hilbert basis of H(S), usually called the computational basis in the literature.
It is now interesting to distinguish two cases:

(1) S is finite: in this case B(S) is also an orthonormal (Hamel) basis of H(S) and consequently span(B(S)) = H(S). H(S)
is isomorphic to C|S|. With a little abuse of language, we can also say that H(S) is ‘‘generated’’ or ‘‘spanned’’ by S.

(2) S is denumerable: in this case it is easy to show that B(S) is a Hilbert basis of H(S), but it is not a Hamel basis. In fact
let us consider the subspace span(B(S)). We see immediately that span(B(S)) � H(S)5 is an inner-product infinite
dimensional space with B(S) as the Hamel basis, but span(B(S)) is not a Hilbert space because it is not complete (see
[21]). The careful reader immediately recognizes that H(S) is the well known fundamental Hilbert space `2(S). There
are strong relationships between span(B(S)) and H(S), in fact it is possible to show (this is a standard result for `2)
that span(B(S)) is a dense subspace of H(S), and that H(S) is the (unique!) completion of span(B(S)). This fact is
important because in themain literature on quantum Turingmachines, unitary transforms are usually defined on spaces
like span(B(S)), but this could be problematic because span(B(S)) is not a Hilbert space. Anyway, this is not a real
problem: it is possible to show that each unitary operator U in span(B(S)) has a standard extension in H(S) [7].

Appendix B. Confluence

First of all, we need to show that wheneverM !↵ N , the underlying quantum register evolves in a uniform way:
Lemma 14 (Uniformity). For every M,N such that M !↵ N, exactly one of the following conditions holds:

1. ↵ 6= new and there is a unitary transformation UM,N : H(Q(M)) ! H(Q(M)) such that [Q, QV,M] !↵ [R, RV,N] iff
[Q, QV,M] 2 C, RV = QV and R = (UM,N ⌦ IQV�Q(M))Q.

2. ↵ = new and there are a constant c and a quantum variable r such that [Q, QV,M] !new [R, RV,N] iff [Q, QV,M] 2 C,
RV = QV [ {r} and R = Q ⌦ |r 7! ci.

Proof. We go by induction on M . M cannot be a variable nor a constant nor a unitary operator nor a term !L. If M is an
abstraction � .L, then N = � .R, L !↵ R and the thesis follows from the inductive hypothesis. Similarly whenM is a tuple
hM1, . . . ,Mki. IfM = LQ , then we distinguish a number of cases:

• N = RQ and L !↵ R. The thesis follows from the inductive hypothesis.
• N = LP and Q !↵ P . The thesis follows from the inductive hypothesis.
• L = Un, Q = hr1, . . . , rni and N = hr1, . . . , rni. Then case 1 holds. In particular, Q(M) = {r1, . . . , rn} and UM,N =

Uhhr1,...,rnii.
• L = �x.S and N = S{Q/x}. Then case 1 holds. In particular UM,N = IQ(M).
• L = �hx1, . . . , xni.S, Q = hr1, . . . , rni and N = S{r1/x1, . . . , rn/xn}. Then case 1 holds and UM,N = IQ(M).
• L = �!x.S, Q =!T and N = S{T/x}. Then case 1 holds and UM,N = IQ(M).
• Q = (�⇡ .S)T and N = (�⇡ .LS)T . Then case 1 holds and UM,N = IQ(M).
• L = (�⇡ .S)T and N = (�⇡ .SQ )T . Then case 1 holds and UM,N = IQ(M).

If M = new(c) then N is a quantum variable r and case 2 holds. This concludes the proof. �

4 In order the inner product definition make sense we must prove that the sum
P

s2S �(s)⇤ (s) converges.
5 span(B(S)) contains all the functions of H(S) that are almost everywhere 0.
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• an initial configuration has the shape h�, q0, ni;

• a final configuration has the shape h↵, qf ,�i; the string ↵+ � is called
output;

• given a configuration c = h↵, q,�i, with val[c] we denote the number n

if c = h�, q0, ni (the n is the input) and the number of 010 in ↵� if c is
not initial.

With C⌃,Q we denote the set of possible configurations (we will omit the
subscripts when the choice of Q and ⌃ is clear from the context). Elements
of C⌃,Q are denoted by C, D eventually indexed.

Definition 2 (Hilbert space of configurations) Given a set C⌃,Q of con-
figurations, with `

2(C⌃,Q) we will denote the infinite dimensional Hilbert
space defined as follow.

The set of vectors in `

2(C⌃,Q) is the set
8
<

:� | � : C⌃,Q ! C,

X

C2C⌃,Q

|�(C)|2 < 1

9
=

;

and equipped with:

1. An inner sum + : `2(C⌃,Q)⇥ `

2(C⌃,Q) ! `

2(C⌃,Q)
defined by (�+  )(C) = �(C) +  (C);
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A.1. The Hilbert space H(S)

Let S a set such that |S|  @0 and let H(S) be the set
(

� | � : S ! C,
X

s2S

|�(s)|2 < 1
)

equipped with:

(i) an inner sum + : H(S) ⇥ H(S) ! H(S) defined by (� +  )(s) = �(s) +  (s);
(ii) a multiplication by a scalar · : C ⇥ H(S) ! H(S) defined by (c · �)(s) = c · (�(s));
(iii) an inner product4 h·, ·i : H(S) ⇥ H(S) ! C defined by h�, i = P

s2S �(s)⇤ (s);

It is quite easy to show that H(S) is an Hilbert space.
We call quantum register any normalized vector in H(S).
The set B(S) = {|si : s 2 S}, where |si : S ! C is defined by:

|si(t) =
⇢
1 if s = t
0 if s 6= t

is a Hilbert basis of H(S), usually called the computational basis in the literature.
It is now interesting to distinguish two cases:

(1) S is finite: in this case B(S) is also an orthonormal (Hamel) basis of H(S) and consequently span(B(S)) = H(S). H(S)
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P

s2S �(s)⇤ (s) converges.
5 span(B(S)) contains all the functions of H(S) that are almost everywhere 0.
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Abstract

The paper gives an answer to the following question: “what is a
quantum partial function?”. We propose a characterization of quan-
tum computable functions in `

2 by studying the infinite behaviour of
Quantum Turing Machines. Suitable observational protocols for the
Quantum Turing Machine are also proposed.

1 Quantum Turing Machine

Following and extending [?] we will define the concept of Quantum Turing
Machine as a quantum extension of ordinary Turing Machine.

In the following we will assume to deal with a finite alphabet ⌃ with
two distinguished symbols 1,2, where 2 represents the blank symbol and
1 is needed to represent integers. With ↵,�, eventually indexed, we will
represent strings in ⌃⇤ (� denotes the empty string). The finite set Q is
called set of states, and contains two distinguished states q0 (the initial
state) and qf (the final state). Let n 2 N, with n we denote the string 1n+1.

Definition 1 (configurations) The notion of configuration is standard,
namely a configuration is a triple c = h↵, q, �i 2 ⌃⇤ ⇥Q⇥ ⌃⇤ where:

• q is the current state;

• ↵ represents the tape content at the left of the pointer, i.e. the longest
string in ⌃⇤ on the tape starting with a symbol di↵erent from 2, such
that the last symbol in ↵ is in the cell predecessor of the current cell;

• � is the tape content at the right of the pointer, i.e. the longest string
in ⌃⇤ on the tape ending with a symbol di↵erent from 2 such that the
first symbol in � is the content of the current cell (if � = � the current
cell contains 2);
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• an initial configuration has the shape h�, q0, ni;

• a final configuration has the shape h↵, qf ,�i; the string ↵+ � is called
output;

• given a configuration c = h↵, q,�i, with val[c] we denote the number n

if c = h�, q0, ni (the n is the input) and the number of 010 in ↵� if c is
not initial.

With C⌃,Q we denote the set of possible configurations (we will omit the
subscripts when the choice of Q and ⌃ is clear from the context). Elements
of C⌃,Q are denoted by C, D eventually indexed.

Definition 2 (Hilbert space of configurations) Given a set C⌃,Q of con-
figurations, with `

2(C⌃,Q) we will denote the infinite dimensional Hilbert
space defined as follow.

The set of vectors in `

2(C⌃,Q) is the set
8
<

:� | � : C⌃,Q ! C,

X

C2C⌃,Q

|�(C)|2 < 1

9
=

;

and equipped with:

1. An inner sum + : `2(C⌃,Q)⇥ `

2(C⌃,Q) ! `

2(C⌃,Q)
defined by (�+  )(C) = �(C) +  (C);

2. A multiplication by a scalar · : C⇥ `

2(C⌃,Q) ! `

2(C⌃,Q)
defined by (a · �)(C) = a · (�(C));

3. An inner product1 < ·, · >: `2(C⌃,Q)⇥ `

2(C⌃,Q) ! C
defined by < �, >=

P
C2C⌃,Q

�(C)⇤ (C);

4. The Euclidian norm is defined as k � k=< �,� >.

Definition 3 (computational basis) The set of functions CBC⌃,Q = {|Ci :
C 2 C⌃,Q, |Ci : C⌃,Q ! C} such that for each C

|Ci(D) =
⇢

1 if C = D

0 if C 6= D

is called computational basis of `2(C⌃,Q).
1in order the inner product definition make sense, we must prove that the sumP

C2C �(C)⇤ (C) converges.

2
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Theorem 4 The set CBC⌃,Q is an Hilbert basis of `2(C⌃,Q).

Please note that the inner product space span(CBC⌃,Q) defined by:

span(CBC⌃,Q) =

(
nX

i=1

cisi | ci 2 C, si 2 CBC⌃,Q , n 2 N
)

.

is a proper inner product subspace of `2(C⌃,Q), but it is not an Hilbert Space
(this means that CBC⌃,Q is not an Hamel basis of `2(C⌃,Q)).

The completion of span(CBC⌃,Q) (denoted by c�span(CBC⌃,Q)) is a space
isomorphic to `2(C⌃,Q).

By means of a standard result in functional analysis we have:

Theorem 5 1. span(CBC⌃,Q) is a dense subspace of `2(C⌃,Q);

2. `2(C⌃,Q) is the (unique! up to isomorphism) completion of span(CBC⌃,Q).

This fact is important because in the main literature on quantum Turing
machines, unitary operators are defined by linearity on span(CBC⌃,Q) not
directly on `2(C⌃,Q). This is not a real problem, since it is possible to show
that:

Theorem 6 Each unitary operator U in span(CBC⌃,Q) has an unique ex-
tension in `

2(C⌃,Q) [?].

Definition 7 (computable numbers) A real number x is called computable
if there exists a deterministic Turing machine that on input 1n computes a
binary representation of an integer m 2 Z such that | m

2n � x|  1
2n .

Let us call C̃, the computable complex number, the set of complex num-
bers such that the real and imaginary parts are computable.

Definition 8 (quantum configuration) An elements � 2 `2(C⌃,Q) is called
quantum configuration (q-configuration) if

P
C2C |�(C)|2 = 1. A q-configuration

C is computable if �(C⌃,Q) ✓ C̃;
The set of q-configuration is denoted by qC⌃,Q; the set of computable

q-configuration is denoted by cqC⌃,Q; the elements of qC⌃,Q are denoted by
|�i, | i possibly indexed.

Definition 9 (pre-Quantum Turing Machine) Given a set Q of states
and the alphabet ⌃, a pre-Quantum Turing Machine is a triple M = h⌃, Q, �i
where

� : Q⇥ ⌃ ! ((⌃⇥Q⇥ {L, R}) ! C̃)

s.t.:
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Theorem 13. Let M = h⌃, Q, �i be a pre–quantum TM; if U
M

is an isom-
etry in `

2(C⌃,Q

) then it is also unitary.

The previous result is important, since for an infinite dimensional Hilbert
space H (e.g. `

2(C⌃,Q

)), we have that U : H ! H is unitary i↵ 8x, y 2
H, hUx,Uyi = hx, yi (it is an isometry) and moreover U(H) = H (it is
surjective). The condition of surjectivity is not necessary in the case of
finite dimensional Hilbert spaces, since in this case each isometry is also
surjective.

2. Quantum Computable Functions

Definition 14. A q–configuration |�i = P

e

i

|Cii is called initial if all the
C

i

are initial, and is called final if all the C

i

are final.

Let us denote with F the set of final q–configurations.
Since the time evolution operators of QTM are isometries we have that:

Proposition 15. Let M be a QTM; for each q–configuration |�i, U
M

|�i 2
qC.
Definition 16 (computation). Let M be a QTM and let U

M

be the as-
sociated time evolution operator. Given an a initial q–configuration |�i, a
computation for M is a denumerable sequence {|�ii}i2! s.t.

(1) |�0i = |�i;
(2) |�ii = U

i

M

(|�i).
Therefore, given a QTM M , each computation is univocally determined

by its initial q–configuration.
We denote a computation of a QTM M with initial q–configuration |�i

with K

M

|�i. If KM

|�i = {|�ii}i2N we denote with (KM

|�i)i the q–configuration

|�ii.
It is important to observe that, strictly speaking, QTM-s does not have

finite computations.
We recall here the notion of multiset.
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X

p2Q
�(q0, a0, b0, p, L)⇤�(q, a, b, p, R) = 0

Theorem 13. Let M = h⌃, Q, �i be a pre–quantum TM; if U
M

is an isom-
etry in `

2(C⌃,Q

) then it is also unitary.

The previous result is important, since for an infinite dimensional Hilbert
space H (e.g. `

2(C⌃,Q

)), we have that U : H ! H is unitary i↵ 8x, y 2
H, hUx,Uyi = hx, yi (it is an isometry) and moreover U(H) = H (it is
surjective). The condition of surjectivity is not necessary in the case of
finite dimensional Hilbert spaces, since in this case each isometry is also
surjective.

2. Quantum Computable Functions

Definition 14. A q–configuration |�i = P

e

i

|Cii is called initial if all the
C

i

are initial, and is called final if all the C

i

are final.

Let us denote with F the set of final q–configurations.
Since the time evolution operators of QTM are isometries we have that:

Proposition 15. Let M be a QTM; for each q–configuration |�i, U
M

|�i 2
qC.
Definition 16 (computation). Let M be a QTM and let U

M

be the as-
sociated time evolution operator. Given an a initial q–configuration |�i, a
computation for M is a denumerable sequence {|�ii}i2! s.t.

(1) |�0i = |�i;
(2) |�ii = U

i

M

(|�i).
Therefore, given a QTM M , each computation is univocally determined

by its initial q–configuration.
We denote a computation of a QTM M with initial q–configuration |�i

with K

M

|�i. If KM

|�i = {|�ii}i2N we denote with (KM

|�i)i the q–configuration

|�ii.
It is important to observe that, strictly speaking, QTM-s does not have

finite computations.
We recall here the notion of multiset.
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Definition 17 (denumerable multiset). Given a set A, a multiset on A is
a function m

A

: A ! N (which gives the multiplicity of an element). Let
↵ = |m�1

A

(N � {0})|, m
A

is finite (denumerable) if ↵ < @0 (↵ = @0). With

2mA we denote the set of all, at most denumerable, multisets on A.

As usual we will use freely the usual set–theoretic operation on multisets.
In particular, given a set A, ; denotes the constant-0 multiplicity function
m

A

(i) = 0.

Definition 18 (the sets M and M1). Let us consider the following sets:

M =

8

<

:

|vi | |vi : N ! m2C,
X

i2N,d2C
(|vi(i)(d))|d|2  1

9

=

;

M1 =

8

<

:

|vi | |vi : N ! m2C,
X

i2N,d2C
(|vi(i)(d))|d|2 = 1

9

=

;

The element of M (M1) are called quasi–register (register).

A (quasi–)register |vi is called computable if |vi(N) ✓ m2C̃; (computable)
registers are denoted with (kvii, kwii...) |vi, |wi...).
A (quasi–)register |vi is called finite if 8n.|vi(n) is a finite multiset and
|{n : |vi(n) 6= ;}| < @0.

Definition 19 (numerical evaluation of quantum configurations). The nu-
merical evaluation of quantum configurations val : qC⌃,Q

! M is defined in
the following way:

(val|�i)(k)(d) = | {C | val[C] = k, d = |�i(C)} |
Let {|�ii}i2! be a computation, with val({|�ii}i2!) we denote the sequence
{val|�ii}i2! in M.

Definition 20 (probabilities).
(1) Let |�i =

P

e

i

|Cii be a q–configuration, we associate to |�i a real
number in R[0,1] denoted with Pn

|�i in the following way: (i) if each

C

i

is not final, Pn

|�i = 0 otherwise Pn

|�i =
P

qf2Ck,val[Ck]=n

|e
k

|2.
(2) Moreover let KM

|�i = {|�ii}i2!), with P[KM

|�i, n] we denote the number

sup{Pn

|�ii}i2N.
(3) Let us denote with Pn

|vi the number
P

d2C(|vi(n)(d))|d|2 2 R[0,1].

It is immediate to observe that if |�i 2 F then 8n.Pn

|�i = Pn

val[|�i].
The following theorem relates the computed quantum amplitudes with

probabilities.

Definition 21 (probabilistically monotone computations).
A computation {|�ii}i2! is probabilistically monotone (p–monotone) if

8n, 8i, j > 0 s.t. i < j,Pn

|�ii  Pn

|�ji.
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How to read the result of a computation?



The approach of Bernstein and Vazirani 

Definition    When the q-configuration |ψ⟩ = ∑ei|Cj⟩  is observed or measured, 
configuration Ci is seen with probability |ei|2. Moreover, the superposition of M is 
updated to ψ’= |Ci⟩	


What it happens if we make a measurement of a NON final q-configuration?

|ψ⟩ = e1|C1⟩+e2|C2⟩+e3|C3⟩ with C1, C2 not final and C3 final

meas(|ψ⟩)
|e1|

2

|e2|
2

|C1⟩ |C2⟩

we have destroyed  the quantum computation

|e3|
2

|C3⟩



In order to supersede the problem Bernstein and Vazirani propose in [?] to consider only 
QTM where all the computations in superposition have the same length. More precisely:	


”A final configuration of a QTM is any configuration in state qf . If when QTM M 
is run with input x, at time T the superposition contains only final configurations, 
and at any time less than T the superposition contains no final configuration, then 
M halts with running time T on input x.”	


Even their choice is well motivated by the use of QTM in order to solve classical 
decision problems, it is highly unsatisfactory in order to develop a truly quantum theory 
of computable function.	


It is in fact quite easy to observe that the QTM of Bernstein and Vazirani ar not robust 
enough to admit quantum inputs but only classical ones.	




Deutsch assumes to enrich the quantum Turing machines with a termination bit T. At the 
beginning of a computation the bit T is set to 0 and during the computation the termination 
bit T is set to 1 when the machine enters in a final configuration. Following this approach 
the form of a generic q–configuration is:	


The approach of Deutsch. 

8 QUANTUM COMPUTABILITY

The fundamental problem is about the existence of a physically measure-
ment protocol that agree with the quantum amplitudes.

Unfortunately each measurement of a q–configuration produces a proba-
bilistic distribution (more generally a so called mixed–state) destroying the
superposition and therefore destroying the nature of quantum algorithm.

If we perform a measurement of a q–configuration obtaining a configura-
tion not in a final state we have irremediably lost the possibility to continue
to compute in a correct way.

3.1. The approach of Bernstein and Vazirani. In order to supersed the
problem Bernstein and Vazirani propose in [?] to consider only QTM where
all the computations in superposition have the same length. More precisely,
in definition 3.11 of [?] they write: ”A final configuration of a QTM is any
configuration in state qf . If when QTM M is run with input x, at time T the
superposition contains only final configurations, and at any time less than T
the superposition contains no final configuration, then M halts with running
time T on input x.”

Even their choice is well motivated by the use of QTM in order to solve
classical decision problems, it is highly unsatisfactory in order to develop a
truly quantum theory of computable function.

It is in fact quite easy to observe that the QTM of Bernstein and Vazirani
ar not robust enough to admit quantum inputs but only classical ones.

3.2. The approach of Deutsch. Another approach is those followed by
Deutsch in [?]. He assumes to enrich the quantum Turing machines with a
termination bit T . At the beginning of a computation the bit T is set to
0 and during the computation the termination bit T is set to 1 when the
machine enters in a final configuration. Following this approach the form of
a generic q–configuration is:

|�i = |T = 0i ⌦
X

e

i

|C0
ii+ |T = 1i ⌦

X

d

j

|C00
j i.

where all the C

0
i

are not final and all the C

00
j

are final. The observer period-

ically measures T (in a non destructive way):

(1) if the result of the measurement of T gives the value 0 the compu-
tation continues with the new (collapsed) q–configuration

| 0i = |T = 0i ⌦P

e

i

|C0
ii

P |e
i

|2 .

(2) if the result of the measurement of T gives the value 0, then |psii
collapses (with probability

P |e
j

|2) to

| 00i = |T = 1i ⌦P

d

j

|C00
j i

P |d
j

|2 .

Immediately after the collapse the observer makes a further mea-

surement of the component
P

dj |C00
j iP

|dj |2 in order to read-back the result.

not final final



The observer periodically measures T (in a non destructive way):	
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|2) to

| 00i = |T = 1i ⌦P

d

j

|C00
j i

P |d
j

|2 .

Immediately after the collapse the observer makes a further mea-

surement of the component
P

dj |C00
j iP

|dj |2 in order to read-back the result.

Even if this approach gives correct observational results, each observation changes 
the superpositions during a computation.	



