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Basics

Complex Numbers

Quantitative information, e.g. measurement results, is usually
represented by real numbers R. In the ‘real world’ we do not
experience complex numbers.

“The temperature today is (24 - 13i)C” or “The time a process
takes is 14.64i seconds” are not very usual statements in the daily
life.

Complex numbers, C, play an essential role in quantum mechanics.



Basic Definitions

A complex number z ∈ C is a (formal) combinations of two reals
x , y ∈ R:

z = x + iy

with: i2 = −1.

The complex conjugate of a complex number z ∈ C is:

z∗ = z = x + iy = x − iy

Hauptsatz of Algebra
Complex numbers are algebraically closed: Every polynomial of
order n over C has exactly n roots.

Algebraic structure of C

The set of complex number C is a field:

Addition is commutative and associative;

Multiplication is commutative and associative;

Addition has an identity: (0, 0);

Multiplication has an identity: (1, 0);

Multiplication distributes wrt addition;

Multiplication and addition have inverses.



Polar Coordinates

φ

r

Conversion
x = r · cos(φ) y = r · sin(φ)

and
r =

√
x2 + y2 φ = arctan(

y

x
)

Another representation:

(r , φ) = r · e iφ e iφ = cos(φ) + i sin(φ).

Phase

φ

r

If we fix r then we have a different complex number for each
0 ≤ φ ≤ 2π.
For φ = 0 we get all positive real numbers.
For φ = π we get all negative real numbers.



Vector Spaces
A vector space (over a field K, e.g. R or C) is a set V together
with two operations:

Scalar Product . ·. : K× V 7→ V
Vector Addition .+. : V × V 7→ V

such that (∀x , y , z ∈ V and α, β ∈ K):

1. x + (y + z) = (x + y) + z

2. x + y = y + x

3. ∃o : x + o = x

4. ∃−x : x + (−x) = o

5. α(x + y) = αx + αy

6. (α + β)x = αx + βx

7. (αβ)x = α(βx)

8. 1x = x (1 ∈ K)

Tuple Spaces

Theorem
All finite dimensional vector spaces are isomorphic to the (finite)
Cartesian product of the underlying field Kn (i.e. Rn or Cm).

x = (x1, x2, x3, . . . , xn)

y = (y1, y2, y3, . . . , yn)

Algebraic Structure

αx = (αx1, αx2, αx3, . . . , αxn)

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . , xn + yn)

Finite dimensional vectors can be represented via their coordinates
with respect to a given base.



Hilbert Spaces I

A complex vector space H is called an Inner Product Space (or
(Pre-)Hilbert Space) if there is a complex valued function 〈., .〉
on H×H that satisfies (∀x , y , z ∈ H and ∀α ∈ C):

1. 〈x , x〉 ≥ 0

2. 〈x , x〉 = 0 ⇐⇒ x = o

3. 〈αx , y〉 = α 〈x , y〉
4. 〈x , y + z〉 = 〈x , y〉+〈x , z〉
5. 〈x , y〉 = 〈y , x〉

The function 〈., .〉 is called an inner product on H.

Hilbert Spaces II

A complex inner product space H is called a Hilbert Space if for
any Cauchy sequence of vectors x0, x1, . . . , there exists a vector
y ∈ H such that

lim
n→∞

‖xn − y‖ = 0,

where ‖ · ‖ is the norm defined by

‖x‖ =
√
〈x , x〉.

Theorem
Every finite-dimensional complex vector space with a inner product
is a Hilbert space.



Basis Vectors
A set of vectors xi is said to be linearly independent iff∑

λixi = 0 implies that ∀ i : λi = 0

Two vectors in a Hilbert space are orthogonal iff

〈x , y〉 = 0

An orthonormal system in a Hilbert space is a set of linearly
independent vectors of norm 1 such that:

〈bi , bj〉 = δij =

{
1 iff i = j
0 iff i 6= j

Theorem
For a Hilbert space there always exists a orthonormal basis {bi}
(Gram-Schmidt transformation).

We will always work with vectors represented in a orthonormal
basis.

Dirac Notation

P.A.M. Dirac “invented” the Bra-Ket Notation

〈x , y〉 = 〈x |y〉 = 〈x | |y〉

In particular, we enumerate the basis vectors:

~bi is denoted by |i〉

I Ket-vectors are vectors in Cn

I Bra-vectors are vectors in (Cn)∗ = Cn.



Conventions
Physical Convention:

〈x |αy〉 = α 〈x |y〉

Mathematical Convention:

〈αx , y〉 = α 〈x , y〉

Linear in first or second argument.

〈αx , y〉 = α 〈x , y〉
〈x , αy〉 = 〈αy , x〉 = ᾱ〈y , x〉 = ᾱ 〈x , y〉

Finite-Dimensional Hilbert Spaces – Cn

We represent vectors and their transpose by:

~x = |x〉 =

 x1
...

xn

 , ~y = 〈y | =

 y1
...

yn


T

= (y1, . . . , yn)

The adjoint of ~x = (x1, . . . , xn) is given by

~x† = (x∗1 , . . . , x
∗
n )T

The inner product can be represented by:

〈~y ,~x〉 =
∑

i

y∗i xi = ~y †~x

We can also define a norm (length) ‖~x‖ =
√
〈~x ,~x〉.



Qubits

Consider a simple systems with two degrees of freedom.

|0〉 |1〉

Definition
A qubit (quantum bit) is a quantum state of the form

|ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers with |α|2 + |β|2 = 1.

Qubits live in a two-dimensional complex vector, more precisely,
Hilbert space C2 and are normalised, i.e. ‖ |ψ〉 ‖ = 〈ψ,ψ〉 = 1.

Quantum States

The postulates of Quantum Mechanics require that a
computational quantum state is given by a normalised vector in
Cn. A qubit is a two-dimensional quantum state, i.e. in C2

Mathematical Notation: x or ~xi

Physical Notation: |x〉 or |i〉

We represent the coordinates of a state or ket-vector as a column
vector, in particular a qubit:

|ψ〉 =

(
α
β

)
or ~x =

(
x1

x2

)
with respect to the (orthonormal) basis {~b0,~b1} or {|0〉 , |1〉}.



Change of Basis
We can represent a quantum state |ψ〉 with respect to any basis.
For example, we can consider in C2, i.e. for qubits, the
(alternative) orthonormal basis:

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉)

and thus, vice versa:

|0〉 =
1√
2

(|+〉+ |−〉) |1〉 =
1√
2

(|+〉 − |−〉)

A qubit is therefore represented in the two bases as:

α |0〉+ β |1〉 =
α√

2
(|+〉+ |−〉) β√

2
(|+〉 − |−〉)

=
α + β√

2
|+〉+

α− β√
2
|−〉

Representing a Qubit

A qubit |ψ〉 = α |0〉+β |1〉 with |α|2 + |β|2 = 1 can be represented:

|ψ〉 = cos(θ/2) |0〉+ e iϕ sin(θ/2) |1〉 ,

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. Using polar coordinates we have:

|ψ〉 = r0e iφ0 |0〉+ r1e iφ1 |1〉 ,

with r2
0 + r2

1 = 1. Take r0 = cos(ρ) and r1 = sin(ρ) for some ρ.
Set θ = ρ/2, then |ψ〉 = cos(θ/2)e iφ0 |0〉+ sin(θ/2)e iφ1 |1〉 , with
0 ≤ θ ≤ π, or equivalently

|ψ〉 = e iγ(cos(θ/2) |0〉+ e iϕ sin(θ/2) |1〉),

withϕ = φ1 − φ0 and γ = φ0, with 0 ≤ ϕ ≤ 2π. The global
phase shift e iγ is physically irrelevant (unobservable).



Bloch Sphere

|0〉

|1〉

cos(θ/2) |0〉+ e iϕ sin(θ/2) |1〉

θ

ϕ

Linear Operators

A map L : V → W between two vector spaces V and W is called a
linear map if

1. L(x + y) = L(x) + L(y) and

2. L(αx) = αL(x)

for all x , y ∈ V and all α ∈ K (e.g. K = C or R).

For V =W we talk about a linear operator on V.



Images of the Basis

Like vectors, we can represent a linear operator L via its
“coordinates” as a matrix. Again these depend on the particular
basis we use.

Specifying the image of the base vectors determines – by linearity
– the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors |0〉 and |1〉

L(|0〉) = α00 |0〉+ α01 |1〉
L(|1〉) = α10 |0〉+ α11 |1〉

then this is enough to know the αij ’s to know what L is doing to
all vectors (as they are representable as linear combinations of the
basis vectors).

Matrices

Using a “mathematical” indexing (starting from 1 rather than 0)
and using the first index to indicate a row position and the second
for a column position we can identify the operator/map with a
matrix:

L =

(
α11 α12

α21 α22

)

The application of L to a general vector (qubit) then becomes a
simple matrix multiplication:

L(

(
α
β

)
) =

(
α11 α12

α21 α22

)(
α
β

)
=

(
α11α + α12β
α21α + α22β

)

Multiplications: (Lij)(xi ) =
∑

i

Lijxi and (Lij)(Kki ) =
∑

i

LijKki



Transformations

We can define a linear map B which implements the base change
{|0〉 , |1〉} and {|+〉 , |−〉}:

B =
1√
2

(
1 1
1 −1

)
Transforming the coordinates (xi ) in {|0〉 , |1〉} into coordinates
(yi ) using {|+〉 , |−〉} can be obtained by matrix multiplication:

B(xi ) = (yi ) and B−1(yi ) = (xi )

The matrix representation L of an operator using {|0〉 , |1〉} can be
transformed into the representation K in {|+〉 , |−〉} via:

K = BLB−1

Outer Product

Useful means for representing linear maps.
In the bra-ket notation the outer product is expressed by |x〉〈y |.
Every orthonormal basis {|i〉} satisfies the completeness relation∑

i |i〉 〈i | = I.
For the canonical basis of C2 we have I = |0〉〈0|+ |1〉〈1|; in fact,

(|0〉〈0|+ |1〉〈1|) |ψ〉 = (|0〉〈0|+ |1〉〈1|)(α |0〉+ β |1〉)
= α |0〉〈0||0〉+ α |1〉〈1||0〉+

β |0〉〈0||1〉+ β |1〉〈1||1〉
= α |0〉+ β |1〉

Using coordinates, we have with |x〉 = (xi )
T and 〈y | = (yj):

(|x〉〈y |)ij = xiyj e.g. |0〉〈1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)



Adjoint Operator
For a matrix L = (Lij) its transpose matrix LT is defined as

(LT
ij ) = (Lji )

the conjugate matrix L∗ is defined by

(L∗ij) = (Lij)
∗

and the adjoint matrix L† is given via

(L†ij) = (L∗ji ) or L† = (L∗)T

Notation: In mathematics the adjoint operator is usually denoted
by L∗ and defined implicitly via:

〈L(x), y〉 = 〈x ,L∗(y)〉 or
〈

L†x |y
〉

= 〈x ,Ly〉

Unitary Operators

A square matrix/operator U is called unitary if

U†U = I = UU†

That means U’s inverse is U† = U−1. It also implies that U is
invertible and the inverse is easy to compute.

The postulates of Quantum Mechanics require that the time
evolution to a quantum state, e.g. a qubit, are implemented via a
unitary operator (as long as there is no measurement).

The unitary evolution of an (isolated) quantum state/system is a
mathematical consequence of being a solution of the Schrödinger
equation for some Hamiltonian operator H.



Unitary Operators

It is easy to check that a matrix U unitary iff its columns (or rows)
form a orthonormal basis.

Theorem
A linear operator maps a qubit to a qubit (i.e. preserves
normalized vectors) iff it is unitary.

Theorem
A matrix M is unitary iff it preserves all inner products:

〈Mx ,My〉 = 〈x , y〉 .

Quantum Gates

Basic 1-Qubit Operators

Pauli X-Gate X =

(
0 1
1 0

)
Pauli Y-Gate Y =

(
0 −i
i 0

)
Pauli Z-Gate Z =

(
1 0
0 −1

)
Hadamard Gate H = 1√

2

(
1 1
1 −1

)
Phase Gate Φ =

(
1 0
0 e iφ

)

The Pauli-X gate is also often referred to as NOT gate.



Graphical “Notation”

The product (combination) of unitary operators results in a unitary
operator, i.e. with U1, . . . ,Un unitary, the product U = Un . . .U1

is also unitary (Note: (LK)† = K†L†).

|x〉 H X
φ

H U |x〉

Any unitary 2× 2 matrix U can be expressed as

U =

(
e i(α−β/2−δ/2) cos γ/2 e i(α+β/2−δ/2) sin γ/2

−e i(α−β/2+δ/2) sin γ/2 e i(α+β/2+δ/2) cos γ/2

)
where α, β, δ and γ are real numbers (angles).

Measurement Principle

The values α and β describing a qubit are called probability
amplitudes. If we measure a qubit

|φ〉 = α |0〉+ β |1〉 =

(
α
β

)
in the computational basis {|0〉 , |1〉} then we observe state |0〉
with probability |α|2 and |1〉 with probability |β|2.

Furthermore, the state |φ〉 changes: it collapses into state |0〉 with
probability |α|2 or |1〉 with probability |β|2, respectively.



Self Adjoint Operators

An operator A is called self-adjoint or hermitean iff

A = A†

The postulates of Quantum Mechanics require that a quantum
observable A is represented by a self-adjoint operator A.

Possible measurement results are eigenvalues λi of A defined as

A |i〉 = λi |i〉 or A~ai = λi~ai

Probability to observe λk in state |x〉 =
∑

i αi |i〉 is

Pr(A = λk , |x〉) = |αk |2

Spectrum

The set of eigen-values {λ1, λ2, . . .} of an operator L is called its
spectrum σ(L).

σ(L) = {λ | λI− L is not invertible}

It is possible that for an eigen-value λi in the equation

L |i〉 = λi |i〉

we may have more than one eigen-vector |i〉, i.e. the dimension of
the eigen-space d(n) > 1. We will not consider these degenerate
cases here.

Terminology: “eigen” means “self” or “own” in German (cf Italian
“auto-valore”).



Projections

Projections
An operator P on Cn is called projection (or idempotent) iff

P2 = PP = P

Orthogonal Projection
An operator P on Cn is called (orthogonal) projection iff

P2 = P = P†

We say that an (orthogonal) projection P projects onto its image
space P(Cn), which is always a linear sub-spaces of Cn.

Spectral Theorem

In the bra-ket notation we can represent a projection onto the
sub-space generated by |x〉 by the outer product Px = |x〉〈x |.

Theorem
A self-adjoint operator A (on a finite dimensional Hilbert space,
e.g. Cn) can be represented uniquely as a linear combination

A =
∑

i

λiPi

with λi ∈ R and Pi the (orthogonal) projection onto the
eigen-space generated by the eigen-vector |i〉:

Pi = |i〉〈i |

In the degenerate case we had to consider: Pi =
∑d(n)

j=1 |ij〉〈ij |.



Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have to
decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen

I The measurement instrument will the display λi .

I The state |x〉 collapses to |i〉.

Do-It-Yourself Observable

We can take any (orthonormal) basis {|i〉}n0 of Cn+1 to act as
computational basis. We are free to choose (different)
measurement results λi to indicate different states in {|i〉}.

|x〉 =
∑

i 〈i |x〉|i〉 A =
∑

i λi |i〉〈i |

|〈n|x〉|2

λn

|n〉

...

|〈0|x〉|2
λ0

|0〉

The “display” values λi are essential for physicists, in a quantum
computing context they are just side-effects.



Reversibility

Quantum Dynamics
For unitary transformations describing qubit dynamics:

U† = U−1

The quantum dynamics is invertible or reversible

Quantum Measurement
For projection operators involved in quantum measurement:

P† 6= P−1

The quantum measurement is not reversible. However

P2 = P

The quantum measurement is idempotent.

Beyond Qubits

Operations on a single Qubit are nice and interesting but don’t
give us much computational power.

We need to consider “larger” computational states which contain
more information.

I Quantum Systems with a larger number of freedoms.

I Quantum Registers as a combination of several Qubits.

Though it might one day be physically more realistic/cheaper to
built quantum devices based on not just binary basic states, even
then it will be necessary to combine these larger “Qubits”.



Multi Qubit State

We encountered already the state space of a single qubit with
B = {0, 1} but also with B = {+,−}.

The state space of a two qubit system is given by

V({0, 1} × {0, 1}) or V({+,−} × {+,−})

i.e. the base vectors are (in the standard base):

B = {(0, 0), (1, 0), (0, 1), (1, 1)}

or we use a “short-hand” notation B = {00, 01, 10, 11}

In order to understand the relation between V(B) and V(B × B)
and in general V(Bn) we need to consider the tensor product.

Tensor Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl


The tensor or Kronecker product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB


Special cases are square matrices (n = m and k = l) and vectors
(row n = k = 1, column m = l = 1).



Tensor Product of Vectors

The tensor product of (ket) vectors fulfills a number of nice
algebraic properties, such as

1. The bilinearity property:

(αv + α′v ′)⊗ (βw + β′w ′) =
= αβ(v ⊗ w) + αβ′(v ⊗ w ′) + α′β(v ′ ⊗ w) + α′β′(v ′ ⊗ w ′)

with α, α′, β, β′ ∈ C, and v , v ′ ∈ Ck , w ,w ′ ∈ Cl .

2. For v , v ′ ∈ Ck and w ,w ′ ∈ Cl we have:〈
v ⊗ w |v ′ ⊗ w ′

〉
=
〈
v |v ′

〉 〈
w |w ′

〉
3. We denote by bm

i ∈ Bn ⊆ Cm the i ’th basis vector in Cm then

bk
i ⊗ bl

j = bkl
(i−1)l+j

Tensor Product of Matrices

For the tensor product of square matrices we also have:

1. The bilinearity property:

(αM + α′M′)⊗ (βN + β′N′) =
= αβ(M⊗N) + αβ′(M⊗N′) + α′β(M′ ⊗N) + α′β′(M′ ⊗N′)

α, α′, β, β′ ∈ C, M,M′ m ×m matrices N,N′ n × n matrices.

2. We have, with v ∈ Cm and w ∈ Cn:

(M⊗N)(v ⊗ w) = (Mv)⊗ (Nw)
(M⊗N)(M′ ⊗N′) = (MM′)⊗ (NN′)

3. If M and N are unitary (or invertible) so is M⊗N, and:

(M⊗N)T = MT ⊗NT and (M⊗N)† = M† ⊗N†



The Two Qubit States

Given two Hilbert spaces H1 with basis B1 and H2 with basis B2

we can define the tensor product of spaces as

H1 ⊗H2 = V({bi ⊗ bj | bi ∈ B1, bj ∈ B2})

Using the notation |i〉 ⊗ |j〉 = |i〉 |j〉 = |ij〉 the standard base of the
state space of a two qubit system C4 = C2 ⊗ C2 are:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1


Use lexigographical order for enumeration of the base in the
n-qubit state space C2n

and represent them also using a decimal
notation, e.g. |00〉 ≡ |0〉, |01〉 ≡ |1〉, |10〉 ≡ |2〉, and |11〉 ≡ |3〉.

Entanglement

The important relation between V(B), e.g. V({0, 1}), and V(Bn),
e.g. V({0, 1}n) is given by V(Bn) = (V(B))⊗n, i.e.:

V(B × B × . . .× B) = V(B)⊗ V(B)⊗ . . .⊗ V(B)

Every n qubit state in C2n
can represented as a linear combination

of the base vectors |0 . . . 00〉 , |0 . . . 01〉 , |0 . . . 10〉 , . . . , |1 . . . 11〉 or
decimal |0〉 , |1〉 , |2〉 , . . . , . . . , |2n − 1〉.

A two-qubit quantum state |ψ〉 ∈ C22
is said to be separable iff

there exist two single-qubit states |ψ1〉 and |ψ2〉 in C2 such that

|ψ〉 = |ψ1〉 ⊗ |ψ2〉

If |ψ〉 is not separable then we say that |ψ〉 is entangled.


