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    Motivation

● When a large number of (correlated) variables X
j
, j=1,…,p are 

available, they may be linearly combined in a small number of
 
 

components (projections) Z
m
, m=1,…,M, with M<=p.

● These components can be used as inputs in regression.

● Different methods are available for constructing linear 
combinations of variables

● Principal components regression

● Partial least squares
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    Principal Component Regression (PCR)



    Principal Components: SVD

● Principal components (Karhunen-Loeve) directions of X are 
computed by SVD of X (eigenvalue decomposition of XTX, if X is 
standardized).

● The SVD of the N x p matrix X can be written as:

X = UDVT

where:

● U (N x p) and V (p x p) are orthogonal matrices
● Columns of U span the column space of X
● Columns of V span the row space of X
● D is a p x p diagonal matrix with entries d1 >= d2 >= … >= dp >=0 

singular values of X. 

   Linear components Z
m
 are defined by Principal Component 

   Analysis (PCA).



    Principal Components: eigen decomposition

In fact, the covariance matrix can be decomposed as

XTX = VD2VT

which is the eigen decomposition of XTX. 

● The eigenvectors v
j
 (columns of V) are also called principal 

components (Karhunen-Loeve) directions of X.

The SVD of the centered matrix X is another way of expressing
the principal components of X.



    Principal Components: directions and variance

● The first principal components direction v
1 
(eigenvector of XTX) 

has the property that z
1
 = X*v

1
  has the largest sample variance 

amongst all normalized linear combinations of columns of X

Var(z
1
) = Var(X*v

1
) = d

1
2/N,

where d
1
 is the eigenvalue of XTX 

with maximum absolute value and N 
is the total number of observations.

● Subsequent principal components
 z

j
 have maximum variance and 

are orthogonal to the earlier ones.

z
1

z
2



    Principal Component Regression: parameter learning

● Since the z
m
 are orthogonal, this regression is a sum of univariate 

regressions:

where                                               .

● Since the z
m
 are linear combinations of the original x

j
, the 

coefficients of variables x
j
 can be written as

Principal Component Regression forms the derived input columns

z
m
=X*v

m
 

and then regresses y on z
1
, z

2
,…,z

M
, for some M<=p

Parameter on the m-th
principal component

Inner product



    Observations

● Data standardization is needed (as in ridge regression) since 
principal components depend on variable scale.

● If M=p then PCR corresponds to OLS since the columns of Z=UD 
span the column space of X. 

Similarities between ridge regression and PCR:

● Both operate on principal components of X
● Ridge shrinks more the components with small eigenvalues 

(directions with smaller variance)
● PCR discards the p-M smallest eigenvalue components

Principal component index



    PCR on the prostate cancer dataset

Cross-validation MSE

Regression Coefficients



    Exercise: Prediction on the prostate cancer dataset

 See text of Exercise 5



    References

[Hastie 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction (second edition). 
Springer. 2009.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

