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« When a large number of (correlated) variables X, ]=1,...,p are
available, they may be linearly combined in a small number of
components (projections) Z , m=1,...,M, with M<=p.

« These components can be used as inputs in regression.

- Different methods are available for constructing linear
combinations of variables
 Principal components regression

« Partial least squares
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Principal Component Regression (PCR)



Principal Components: SVD
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N
Linear components Z are defined by Principal Component

Analysis (PCA).

\.

« Principal components (Karhunen-Loeve) directions of X are

computed by SVD of X (eigenvalue decomposition of XX, if X is
standardized).

« The SVD of the N x p matrix X can be written as:

X=UDV'

where:

« U(NXxp)andV (p x p) are orthogonal matrices

e Columns of U span the column space of X

e Columns of V span the row space of X

e DIs a p x p diagonal matrix with entries d1 >=d2 >= ... >=dp >=0
singular values of X.



Principal Components: eigen decomposition
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The SVD of the centered matrix X is another way of expressing
the principal components of X.

\

In fact, the covariance matrix can be decomposed as
X™X = VD3VT
which is the eigen decomposition of X'X.

. The eigenvectors % (columns of V) are also called principal
components (Karhunen-Loeve) directions of X.



Principal Components: directions and variance

« The first principal components direction v, (eigenvector of X'X)
has the property that z, = X*v, has the largest sample variance
amongst all normalized linear combinations of columns of X

Var(z,) = Var(X*v,) = d_*/N,

where d, is the eigenvalue of X'X

Wlth maXImum abSOIUte Value and N LangestPrincipaI 0
IS the total number of observations. omponen!

« Subsequent principal components
z have maximum variance and

are orthogonal to the earlier ones. < .-
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Principal Component Regression: parameter learning

Principal Component Regression forms the derived input columns

Z =X*v
m m

\and then regressesyonz,z,...,z , for some M<=p y

« Since the z_ are orthogonal, this regression is a sum of univariate
regressions:
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Inner product  \_ m=1 \ Parameter on the m-th
\ principal component

where ém — <Zm7y->/<zm7zm>'

« Since the z_ are linear combinations of the original X, the
coefficients of variables x; can be written as
( )

B (M Z Orm V.
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Observations

 Data standardization is needed (as in ridge regression) since
principal components depend on variable scale.

e If M=p then PCR corresponds to OLS since the columns of Z=UD
span the column space of X.

Similarities between ridge regression and PCR: \

e Both operate on principal components of X

 Ridge shrinks more the components with small eigenvalues
(directions with smaller variance)

 PCR discards the p-M smallest eigenvalue components
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PCR on the prostate cancer dataset

Cross-validation MSE

16 1.8
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Number of Directions
Regression Coefficients
Term LS Best Subset Ridge Lasso PCR
Intercept 2.465 2.477 2.452  2.468 2.497
lcavol 0.680 0.740 0.420 0.533 0.543
lweight 0.263 0.316 0.238  0.169 0.289
age —0.141 —0.046 —0.152
1bph 0.210 0.162  0.002 0.214
svi 0.305 0.227  0.094 0.315
lcp —0.288 0.000 —0.051
gleason —0.021 0.040 0.232
pgg4s 0.267 0.133 —0.056
Test Error 0.521 0.492 0.492  0.479 0.449
Std Error 0.179 0.143 0.165 0.164 0.105




Exercise: Prediction on the prostate cancer dataset

See text of Exercise 5
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