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Possible problems of Least Squares Estimation (LSE):

e Prediction accuracy.
e Low bias, large variance
« Can sometimes be improved by shrinking. Sacrifice a bit of bias
but reduce variance

e Interpretation:

o |ldentification of a small subset of variables with the strongest
effect
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« Here we describe different strategies to variable subset selection
with linear regression.

olution: Model selection

« In next lectures shrinkage and dimension-reduction approaches
\for controlling variance. )




Best-subset selection

« Finds for each k={0,1,2,...,p} the subset of size k that gives smaller
Residual Sum of Squares.

e Leaps and bounds procedure (Furnival and Wilson, 1974): feasible
for p as large as 30 or 40.

« RSSs of all subset models for the prostate cancer example:
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General idea of best-subset selection
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Use the training data to produce a sequence of models varying in
complexity and indexed by a single parameter.

« Cross-validation and the AIC criterion (presented in next lectures)
can be used to estimate the best parameter k.

Term LS |Best Subset All Subsets
Intercept 2.465 2.477 2
lcavol 0.680 0.740 ©
lweight  0.263 0.316 j
age —0.141 -
lbph  0.210 5
svi  0.305 > o
lcp —0.288 i
gleason —0.021 S
pgg4b 0.267 =
Test Error 0.521 0.492 i |
Std Error 0.179 0.143 0 2 4 6 8
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Forward-Stepwise Selection

« Search all possible subsets is infeasible for large p, hence we
seek a good path through them.

« Forward-stepwise selection:
e starts with the intercept

 sequentially adds into the model the predictor that most
Improve the fit

 produces a sequence of models indexed by k, the subset size

IS a greedy algorithm, producing a nested sequence of
models

IS suboptimal compared to best-subset selection

IS applicable with large p

has lower variance but perhaps higher bias



Backward-Stepwise Selection

« Backward-stepwise selection:
o starts with the full model

. Sﬁq?entially deletes the predictor that has the least impact on
the fit

 the candidate for dropping is the variable with the smallest Z-
score

e can only be used when N > p

produces a sequence of models indexed by k, the subset size

IS a greedy algorithm, producing a nested sequence of
models

IS suboptimal compared to best-subset selection

Is applicable with large p

has lower variance but perhaps higher bias



Comparison
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On the prostate cancer example, best-subset, forward and
backward selection all gave exactly the same sequence of terms.
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Hybrid stepwise selection strategies

« Hybrid stepwise-selection strategies consider both forward and
backward moves at each step, and select the “best” of the
two.

« The R function called step uses the Akaike (AIC) criterion for
weighting the choices, i.e., at each step an add or drop is
performed that minimizes the AIC score.

« Notice that standard errors of coefficients in non-full models are
not valid since they do not account for the search process.

« Bootstrap techniques (presented in next lectures) can be
used to solve this problem



Exercise: Prediction on the prostate cancer dataset

See text of Exercise 3
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