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    Motivation (1/2)

● Supervised methods (learning with a teacher): 

● Input: predictor variables XT=(X
1
, … , X

p
)

● Output: Y

● Predictions based on the training set (x
1
,y

1
), …, (x

N
,y

N
) of 

previously solved cases

● Loss function            , such as

● Supposing (X,Y) random variables supervised learning is a 
density estimation problem: 

Determining the properties of the conditional density Pr(Y|X)

E.g.: location parameters that minimize the expected error



    Motivation (2/2)
● Unsupervised methods (learning without a teacher): 

● Input: predictor variables XT=(X
1
, … , X

p
)

● Output: not available

● Goal: infer the properties of the joint probability Pr(X) without 
the help of a supervisor/teacher

● In low dimensional problems (p<=3) Pr(X) can be directly 
estimated and graphically represented

● In high dimensional problems descriptive statistics methods 
are used to characterize Pr(X)

● Low dimensional manifolds representing high data density 
may be identified by PCA or other dimensionality reduction 
methods

● Cluster analysis attempts to find multiple convex regions of 
the X-space that contain modes of Pr(X)

● No direct measure of success (as loss function)



    Unsupervised learning methods

● Association rules

● Clustering analysis
● K-means
● K-medoids
● Gaussian Mixture Models
● Hierarchical clustering

● Self-organizing maps

● Principal components, curves and subspaces
● Spectral clustering

● Matrix factorization

● Other methods 



    Unsupervised learning methods

● Association rules

● Clustering analysis
● K-means
● K-medoids
● Gaussian Mixture Models
● Hierarchical clustering

● Self-organizing maps

● Principal components, curves and subspaces
● Spectral clustering

● Matrix factorization

● Other methods



    Cluster analysis



    Goal

Grouping a collection of objects into subsets (clusters) such that 

objects within each clusters are more closely related to one 

another than objects assigned to different clusters

Not well separated 
(similar properties)

Well separated 
(different properties)

Why?



    Measures of similarity/dissimilarity

● Central to clustering analysis is the notion of similarity/dissimilarity 
between individual objects

● Clustering methods attempt to group the objects according to the 
definition of similarity supplied to it.

● Examples of similarity/dissimilarity measures:

● Euclidean distance 

● Manhattan distance

● Mahalanobis distance

● Correlation

● Jaccard distance

Similarity measure
(clustering)

Loss function
(supervised learning)



    Proximity matrices

● Sometimes the data is represented directly in terms of proximity 
between pairs of objects (similarities or dissimilarities).

● N x N matrix

● Dissimilarities are distances in the strict sense only if the triangle 

inequality                                                                           holds.

N

N

d
ij
 proximity between 

object i and object j

d
ii
=0



    Dissimilarities based on attributes (1/2)

● Usually we have measurements x
ij
 i=1,…,N, on variables j=1,…,p 

(attributes). 

● Then pairwise dissimilarities between observations can be 
expressed in terms of attribute values, that is

where d
j
(x

ij
,x

i’j
) is the dissimilarity between values of the j-th 

attribute.

● Most common D function is the squared distance



    Dissimilarities based on attributes (2/2)

● Other choices are possible depending on attribute types

● Quantitative variables

● Absolute difference

● Correlation

● ...

● Ordinal variables

● Categorical variables



    Object dissimilarity (1/2)

● Dissimilarities of p attributes are then combined into a single 
overall measure of dissimilarity D(x

i
,x

i’
) between objects

● Weighted average (convex combination):

● Weight w
j
 regulates the relative influence of variable j in 

determining the overall dissimilarity between objects

● All w
j
=1 does NOT give all attributes equal influence

● The relative influence of the j-th variable is w
j
 * avg(d

j
)

where 

Weight of j-th attribute



    Object dissimilarity (2/2)

● Hence, setting w
j 
~ 1/avg(d

j
) gives all attributes equal 

influence on the overall dissimilarity

● This is related to data standardization in supervised learning

● E.g., for squared error distance

the relative importance of each attribute is proportional to its 
variance over the data



    Attribute relative importance
● If the goal is discovering natural grouping, forcing equal 

influence among attributes can be counterproductive.

● More relevant variables should have higher influence in the 
object dissimilarity

● Giving all attributes equal influence tend to obscure the clusters 
to clustering algorithms

Original data
Standardized features

(equivalent to weights 1/[2*Var(X
j
)])

The choice of appropriate dissimilarity measures is often more 
important than the choice of the clustering algorithm



    Clustering algorithms

Goal of clustering algorithms: to partition observations into 

groups such that pairwise dissimilarities between observations

assigned to the same cluster tend to be smaller than those in 

different clusters

Algorithm types:

● Combinatorial

● Mixture modeling based

● Mode seekers



    Combinatorial algorithms

● Most popular

● No probability model

● Pre-specified number of clusters K < N

● Each observation labeled by an integer k in {1,…,K}

● Assignments characterized by a many-to-one mapping (encoder):

k = C(i)

that assigns the i-th observation to the k-th cluster

Goal: seek the encoder C*(i) that minimizes a loss (or energy) 
function which depends on pairwise dissimilarities

Within cluster
point scatter



    Combinatorial algorithms

● Total point scatter

● Between-cluster point scatter

●  Relationships

Minimizing W(C) is equivalent to maximizing B(C) 



    Complexity

● Number of possible assignments (Jain ad Dubes, 1988)

● E.g., S(10,4)=34105, S(19,4)=1010

● Heuristic strategies: iterative greedy descent

● Initial partition

● Iterative steps for reducing the loss

● Local optima



    K-means

● Squared error distance

● Within point scatter

Euclidean distance from the centroid 
(mean vector) of the k-th cluster



    K-means algorithm

1) Given a cluster assignment C, the total cluster variance is
 minimized 

with respect to {m
1
,…,m

K
} yielding the means of the currently 

assigned clusters (i.e., computation of centroids from observations).

2)Given the current set of means {m
1
,…,m

K
} the total cluster variance 

is minimized by assigning each observation to the closest (current) 
cluster mean:

3) Itarate steps 1 and 2 until the assignments do not change.



    Successive iterations of K-means



    Exercise: Clustering of Human tumor microarray data

 See text of Exercise 6



    Human tumor dataset

Genes

Experiments (samples)
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