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Motivation (1/2)

* Supervised methods (learning with a teacher):
e Input: predictor variables X'=(X, ..., X))
* Output: Y

- Predictions based on the training set (x,y.), ..., (X,,Y,) of
previously solved cases

* Loss function L(y,9), such as L(y,§) = (y — )3

e Supposing (X,Y) random variables supervised learning is a
density estimation problem:

b

E.g.: location parameters that minimize the expected error

X))

etermining the properties of the conditional density Pr(Y]|

p(x) = argmin By x L(Y, 0).
0
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Motivation (2/2)

* Unsupervised methods (learning without a teacher):
- Input: predictor variables X'=(X, ... , X))
* Output: not available

e Goal: infer the properties of the joint probability Pr(X) without
the help of a supervisor/teacher

* In low dimensional problems (p<=3) Pr(X) can be directly
estimated and graphically represented

* In high dimensional problems descriptive statistics methods
are used to characterize Pr(X)

* Low dimensional manifolds representing high data density
mayhbg identified by PCA or other dimensionality reduction
methods

* Cluster analysis attempts to find multiple convex regions of
the X-space that contain modes of Pr(X)

* No direct measure of success (as loss function)



Unsupervised learning methods

e Association rules
* Clustering analysis
* K-means
* K-medoids
* Gaussian Mixture Models
* Hierarchical clustering
* Self-organizing maps

* Principal components, curves and subspaces
* Spectral clustering

e Matrix factorization

 Other methods
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Cluster analysis



/

Grouping a collection of objects into subsets (clusters) such that

objects within each clusters are more closely related to one

another than objects assigned to different clusters

Not well separated Why?
(similar properties)

~——— Well separated
(different properties)
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Measures of similarity/dissimilarity

* Central to clustering analysis is the notion of similarity/dissimilarity
between individual objects

* Clustering methods attemFt to group the objects according to the
definition of similarity supplied to it.

Similarity measure Loss function
(clustering) (supervised learning)

 Examples of similarity/dissimilarity measures:

n

 Euclidean distance d(p,q) = /> (@ —p)*
1=1 n
e Manhattan distance di(p,a) =[p—alh =) Ipi —al
=1
» Mahalanobis distance Dy (&) = /(@ — )" S (& — i)
. : El(X — Y —
Correlation oy = (X — px)(Y — py)]
- OxOoy
e Jaccard distance J(A,B) — AN B AN B
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Proximity matrices

* Sometimes the data is represented directly in terms of proximity
between pairs of objects (similarities or dissimilarities).

e N x N matrix
N

- d, proximity between
object | and object |

d =0

* Dissimilarities are distances In the strict sense only if the triangle

inequality d;; < dj.+djp., for all k € {1,..., N} holds.



Dissimilarities based on attributes (1/2)

« Usually we have measurements x; i=1,...,N, on variables J=1,...,p
(attributes).

* Then pairwise dissimilarities between observations can be
expressed in terms of attribute values that is

D(xz;, ;) E d;i(Tij, i)

where dj(xij,xi,j) IS the d|SS|m|Iar|ty between values of the J-th
attribute.

 Most common D function is the squared distance

dj(zi, xirj) = (@35 — Ti15)7



Dissimilarities based on attributes (2/2)

* Other choices are possible depending on attribute types
 Quantitative variables

* Absolute difference  d(x;, x;/) = I(|x; — x;/|)

Zj(mij — &) (zj — Zir)
I SR ST

» Correlation p(x;,x;)

 Ordinal variables

* Categorical variables



Object dissimilarity (1/2)

* Dissimilarities of p attributes are then combined into a single
overall measure of dissimilarity D(x;,x.) between objects

 Weighted average (convex combination):

4 p
LE?,,ZEZ E wj - :U?,jaz?,j E —

9 31T J

Weight of j-th attribute

« Weight w, regulates the relative influence of variable j in
determining the overall dissimilarity between objects

- Allw=1 does NOT give all attributes equal influence

« The relative influence of the J-th variable is w, * avg(d)

N N
where 7 1
dj = ~3 > Y di(wi,zay)

=111 =1



Object dissimilarity (2/2)

« Hence, setting W, ~ 1Iavg(dj) gives all attributes equal
Influence on the overall dissimilarity

* This is related to data standardization in supervised learning

* E.g., for squared error distance

2
Di(x;,x;) E wj - (Tij — Tirj)

- N N
dj = N2> > (ij — x%J) = 2 - var;
1

1=1 1/ =

the relative importance of each attribute is proportional to its
variance over the data



Attribute relative importance

* If the goal Iis discovering natural grouping, forcing equal
Influence among attributes can be counterproductive.

* More relevant variables should have higher influence in the
object dissimilarity

* Giving all attributes equal influence tend to obscure the clusters
to clustering algorithms

o Standardized features
Original data (equivalent to weights 1/[2*Var(X)])
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The choice of appropriate dissimilarity measures is often more
Important than the choice of the clustering algorithm




Clustering algorithms

4 Goal of clustering algorithms: to partition observations into )

groups such that pairwise dissimilarities between observations

assigned to the same cluster tend to be smaller than those In

different clusters

\_ /

Algorithm types:

e Combinatorial
* Mixture modeling based

e Mode seekers



Combinatorial algorithms

* Most popular

* No probability model

* Pre-specified number of clusters K< N

* Each observation labeled by an integer k in {1,...,K}

* Assignments characterized by a many-to-one mapping (encoder):
k = C(i)

that assigns the I-th observation to the k-th cluster

/Goal seek the encoder C’(i) that minimizes a loss (or energy) )
function which depends on pairwise dissimilarities

1 oy
= o Within cluster
9 Z Z Z d(i, Tir) point scatter

_ k=1 C(i)=k C(i')=k )




Combinatorial algorithms

* Total point scatter

NN K
Tziy;y:dwziz Z diir + Z A

i=1i'=1 k=1C(i)=k \C(i")=k C(i")#k

* Between-cluster point scatter
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* Relationships

T = W(C) + B(C)

[Minimizing W(C) is equivalent to maximizing B(C) ]




Complexity

* Number of possible assignments (Jain ad Dubes, 1988)

S(N,K) = él ki_l(l)ﬂ—k (ij) LN

* E.g., S(10,4)=34105, S(19,4)=10%

e Heuristic strategies: iterative greedy descent
* Initial partition

* |terative steps for reducing the loss

* Local optima



K-means

* Squared error distance
p

(@i, wi) =Y (i — wirj)? = || — o] |

7=1
* Within point scatter

K
WE) = 338 Y -l

—1 C(i)=k C(i’)=k

Nk ||$E_£Ek||2?
=1 C(i)=k T

||
(]

e

Euclidean distance from the centroid
(mean vector) of the k-th cluster



K-means algorithm

1) Given a cluster assignment C, the total cluster variance is

minimized
K
min Z:N,:g Z H:I:i—m;gHz
O LT o=

with respect to {m,...,m } yielding the means of the currently
assigned clusters (i.e., computation of centroids from observations).

2)Given the current set of means {m_,...,m_ } the total cluster variance

IS minimized by assigning each observation to the closest (current)
cluster mean:

C'(i) = argmin ||z; — mkHQ
1<k<K

3) Itarate steps 1 and 2 until the assignments do not change.



Successive iterations of K-means

Initial Centroids Initial Partition
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Exercise: Clustering of Human tumor microarray data

See text of Exercise 6



Human tumor dataset

Experiments (samples)
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