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    Motivation

● Subset selection is a discrete process (variables are retained or 
discarded).

● It often exhibits high variance, thus it does not always reduce the 
prediction error of the full model.

● Shrinkage methods are more continuous and they do not suffer 
as much from high variability.



    Ridge regression

● Ridge regression shrinks the regression coefficients imposing an 
L

2
 penalty on their size

Goodness-of-fit Penalty

Complexity parameter: 
controls the amount of 
shrinkage

● The larger the value of λ, the greater the amount of shrinkage.

● Coefficients are shrunk towards zero.

● Penalization of the sum-of-squares of parameters is used also in 
neural networks (weight decay).

Lagrangian form



    Equivalent way to write the Ridge problem

The size constraint t on parameters is explicit.

In case of many correlated variables, coefficients of OLS may 
become poorly determined (high variance).

● A large positive coefficient in one variable can be canceled by a 
negative coefficient of a correlated variable

● This problem is alleviated by the above formulation (squared 
constraint penalizes large coefficients)



    Assumptions

● Data standardization is needed since solutions are not equivalent 
under scaling.

● The intercept β
0 
 is not shrunk

● The computation of βridge can be separated in two steps:

● 1. β
0
 is estimated by 

● 2. all coefficients except β
0 
are computed from centered x and 

without intercept by ridge regression



    Matrix form for the ridge RSS

● Residual Sum of Squares:

● Ridge regression solution:

● The quadratic penalty            ensures that ridge regression solution 
is a linear function of y.

● The solution adds a positive constant to the diagonal of XTX before 
inversion → nonsingular problem even if X has not full rank

 Identity matrix

     Covariance 
     matrix

 

Main motivation for ridge regression when it was introduced
(Hoerl and Kennard, 1970)



    Ridge coefficient estimate for prostate cancer example

Selection based on 
1-standard error rule

In case of orthonormal 

inputs 



    Singular Value Decomposition (SVD) and Ridge regression

The SVD of the centered matrix X provides additional insight into the 
nature of the ridge regression.

The SVD of the N x p matrix X can be written as:

X = UDVT

● U and V orthogonal matrices

● Columns of U (Nxp) span the column space of X

● Columns of V (pxp) span the row space of X

● D is a p x p diagonal matrix with entries d1 >= d2 >= … >= dp >=0 
singular values of X. 

● If one or more dj=0 then X is singular



    Singular Value Decomposition (SVD) and Ridge regression
Using the SVD the least squares fitted vector can be written as:

and the ridge solutions can be expressed as:

where u
j 
are the columns of U and d

j
2 / (d

j
2 + λ) <= 1.) <= 1.

● As in OLS, ridge regression computes the coordinates of y as linear 
combinations of the orthonormal basis U. Then it shrinks the 
coordinates by the factor d

j
2 / (d

j
2 + λ) <= 1.).

● The smaller d
j
2 the larger the amount of shrinkage.

Similar to the OLS case 

    (QR decomposition)

Projection of Y on
column space of X



    Singular Value Decomposition (SVD) and Ridge regression
Using the SVD the least squares fitted vector can be written as:

and the ridge solutions can be expressed as:

where u
j 
are the columns of U and d

j
2 / (d

j
2 + λ) <= 1.) <= 1.

● As in OLS, ridge regression computes the coordinates of y as linear 
combinations of the orthonormal basis U. Then it shrinks the 
coordinates by the factor d

j
2 / (d

j
2 + λ) <= 1.).

● The smaller d
j
2 the larger the amount of shrinkage.

Similar to the OLS case 

    (QR decomposition)

What are the d
j
?

Projection of Y on
column space of X



    Principal component interpretation

The SVD of the centered matrix X is a way of expressing the 
principal component of the variables in X.

Using the SVD, the covariance matrix can be written as:

which is the eigen decomposition of XTX.

● The eigenvectors v
j
 (columns of V) are the principal component 

(Karhunen–Loeve) directions of X.

● The first principal component has the property that z
1
 = X*v

1
 has 

the largest sample variance

● Similar for other d
j



    Principal component interpretation

Subsequent principal components 
z

j
 have maximum variance d

j
2/N,

subject to being orthogonal to the 
earlier ones

● The last principal component has 
minimum variance

● Small singular values d
j
 correspond

to directions in the column space 
of X having small variance

● Ridge regression shrinks these 
directions the most

● Implicit assumption: the response will tend to vary most in the 
directions of high variance of the inputs

● Often reasonable but need not hold in general

z
1

z
2



    Effective degrees of freedom

● Although all p coefficients in a ridge fit will be non-zero, they are 
fit in a restricted fashion controlled by λ) <= 1..

● The effective degree of freedom of the ridge regression fit is:

● df(λ) <= 1.) = p when λ) <= 1. = 0 (no regularization) 

● df(λ) <= 1.) → 0 as λ) <= 1. → ∞.



    Ridge coefficient estimate for prostate cancer example

Ridge regression reduces the test error of the full least squares 
estimates by a small amount



    LASSO regression

● The lasso estimate is defined by

Goodness-of-fit Penalty

Complexity parameter: 
controls the amount of 
shrinkage

● The L
2
 ridge penalty                

is replaced by the L
1
 lasso penalty

● The nature of the shrinkage causes some of the coefficients to be 
exactly zero (kind of continuous subset selection)

Lagrangian form



    LASSO regression

● Alternative (non-Lagrangian) form of the lasso problem:

● If t is chosen lager than                         then no shrinkage is 
performed.

● For                  , for instance, OLS coefficients are shrunk of 50% 
on average.

● The nature of shrinkage is not obvious.



    Complexity

● The LASSO constraint makes the solution nonlinear in the y
i

● No closed form expression as in ridge regression 

● Quadratic programming problem

● The complexity parameter should be chosen to minimize an 

estimate of the expected prediction error (cross validation)



    Coefficient estimate for prostate cancer example

4 parameters



    “Nature of shrinkage”: comparison (1/2)

OLS OLS OLS

LassoRidgeBest subset



    “Nature of shrinkage”: comparison (2/2)

Contours of constraint function Contours of constraint function

Contours of least squares error Contours of least squares error
High

Low (OLS)

High

Low (OLS)



    Generalizations of ridge and lasso regression

● Ridge regression and lasso can be generalized by

where q>=0. 

● The contours of                  for different q are shown in the following:

Ridge Lasso Variable subset
selection

(q=0)

● Lasso sets coefficients to zero because its |β|β|β|1 is not differentiable at 0
● Ridge shrinks together coefficients of correlated variables
● How to put these two effects together?



    Elastic net regression

● One possibility is to use q in (1,2), such as q=1.2

● The elastic net penalty (Zou and Hastie, 2005) 

is a different compromise

● It selects variable like lasso, and shrinks together the coefficients of 
correlated predictors like ridge

Ridge Lasso

Contours of constraint function

Sharp (non-differentiable)
corners

Differentiable
corners



    Exercise: Prediction on the prostate cancer dataset

 See text of Exercise 4
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