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    Introduction



    Introduction

 Temporal Difference (TD) is the most central and novel idea of RL

 TD is a combination of DP and MC ideas
 Like MC, TD can learn from raw experience, without a model of 

the dynamics
 Like DP, TD performs bootstrapping, i.e., updates estimates 

based on other learned estimates without waiting for final outcome

 Relationships between DP, MC and TD is a recurring theme in RL

 These ideas blend into each other and can be combined (see 
Chapters 7 and 12 of SutBar)

 GPI apprach: all DP, MC and TD use it but they differentiate in the 
approach used to solve the prediction problem



    TD Prediction



    TD Prediction

 Both TD and MC use experience to solve the prediction problem

 Given some experience following policy      both methods update 
their estimate V of        for the nonterminal states S

t
 occurring in the 

experience

 MC methods wait until the return following the visit is known. It uses 
the return as a target for V(S

t
). 

 Every-visit MC update (contstant-     MC):

 where G
t
 is the actual return following time t                                         

               is a constant step-size parameter

π

v π

α
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    TD Prediction

 TD methods instead need to wait only until the next time step. At 
time t+1 they immediately form a target and make a useful update 
using the observed reward R

t+1
 and the estimate V(S

t+1
).

 The simplest TD method makes the update (TD(0) or one-step TD)

immediately on transition to S
t+1

.

 The target for the MC update is G
t
 

 The target for TD update is

 TD(0) is a special case of TD(    ) (Ch. 12 SutBar) and n-step TD 
(Ch. 7 SutBar)

λ



    TD Prediction



    TD Prediction

 TD(0) is a bootstrapping method (as DP) since it bases its update in 
part on an existing estimate

 MC vs DP: 

 The MC target is an estimate because the expected value in the first 
equation is unknown (a sample return is used in place of the real 
expected return)

 The DP target is an estimate because               is not known and the 
current estimate V(S

t+1
) is used instead (the expected values are 

completely provided by the model of the environment)

Target of MC methods

Target of DP methods

Target of MC methods



    TD Prediction

 The TD target is an estimate for both reasons: it samples the 
expected values                                               and it uses the current 
estimate V instead of the true

 TD combines the sampling of MC with the bootstrapping of DP, 
trying to get the advantages of both approaches

 Backup diagram of TD(0)

 Sample updates (used by MC and TD) differ from expected 
updates (used by DP) in that they are based on a single sample 
successor rather than a complete distribution of all possible 
successors

v π



    TD Prediction

 TD error: the quantity in brackets in the TD(0) update

is a sort of error, measuring the difference between the estimated 
value of S

t
 (i.e., V(S

t
)) and the better estimate                            .

 This error is based on the estimate made at time t and it is not 
available until one time step later → Error in V(S

t
) available at time 

t+1



    TD Prediction

 If the array V does not change during the episode (as in MC) then 
the MC error can be written as a sum of TD errors

 This identity is not exact if V is updated during the episode (as in 
TD(0)) but if the step size is small then it may still hold 
approximately.
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    Example: Driving home

MC approach TD approach

G
t

Known at 
the end of 

the 
episode

Is it necessary to wait until the final outcome is known before learning can begin?

Must you wait until you get home before increasing your estimate for the initial state?



    Example: Driving home

MC approach TD approach

G
t

Known at 
the end of 

the 
episode



    Example: Driving home

TD approach

Each error is proportional to the change over time of the prediction,
i.e., to the Temporal Difference in predictions
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    Advantages of TD Prediction Methods (over MC and DP)

 1. TD methods do not require a model of the environment as DP 
methods

 2. TD methods are naturally implemented in an online and fully 
incremental way, unlike MC methods

 With MC methods one has to wait until the end of the episode to 
make updates, while TD methods wait only one time step

 Some applications have very long episodes hence the wait is 
too long

 Other applications are continuing tasks and have no episode 
at all

 MC methods have slow learning in some conditions, while TD 
methods are less susceptible to these problems because they 
learn from each transition regardles of subsequent actions



    Are TD methods sound? Convergence

For any fixed policy     , TD(0) has been proved to converge to        

 In the mean for a constant step-size parameter                     if it is 
sufficiently small;

 With probability 1 if the step-size parameter decreases according to 
stochastic approximation conditions (Sec. 2.5 SutBar)

where            is the step-size parameter at the n-th selection of 
action a.

 First condition: guarantees that the steps are large enough to 
overcome any initial condition or random fluctuation

 Second condition: guarantees that eventually the steps 
become small enough to assure convergence

π v π

α n=α



    Are TD methods sound? Convergence

 Most convergence proofs apply only to the table-based case of the 
algorithm

 Some proofs also apply to the case of general linear function 
approximations (Ch. 9 SutBar)



    Convergence speed

 Both TD and MC methods converge asymptotically to the correct 
predictions. 

 Which get first? 
 Which uses more efficiently limited data?

 This is an open question. No mathematical proof of faster 
convergence

 In practice, TD methods usually converge faster than constant-       
MC methods on stochastic tasks

α



    Example: Random Walk

TD

Comparison between TD(0) and constant-    MCα

Markov Reward Process (MRP)
(equal transition probability among states)

1/6               2/6               3/6              4/6               5/6   True values

Values learned by TD(0),    =0.1α TD(0) vs MC (100 episodes)
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    Batch updating

 Batch updating: suppose a finite amount of experience is 
available, e.g., 10 or 100 episodes, a common approach with 
incremental learning is to present the experience repeatedly until 
convergence

 Given an approximate value function V the increments are computed 
for every time step t in which a nonterminal state is visited

but

the value function is updated only once (after processing the 
complete batch) by the sum of all increments 

then

the experience is processed again with the new value function to 
produce a new overall increment

until

the value function converges



    Batch updating: difference between MC and TD

 Under batch updating TD(0) converges deterministically to a single 
answer indipendent of the step-size parameter    , as long as it is 
choosen to be sufficiently small

 The constant-    MC method also converges deterministically under 
the same conditions, but to a different answer

 Why the answers provided by the two methods is different? Let’s 
understand it from two examples

α

α



    Example: Random walk under batch updating

 Batch TD was consistently better than batch MC
 Constant-    MC converges to values V(S) that are sample averages of 

the actual returns experienced after visiting each state.
 They are optimal estimates, they minimize the MSE from actual 

returns in the training set 
 How is that batch TD performed better than this optimal method?

α



    Example: You are the predictor

 Given this batch of data, what are the best estimates for V(A) and 
V(B)?

 Is the optimal value for V(B) 3/4?
 What is the optimal value for the estimate of V(A)?

 Answer 1 (MC): we have seen A once and the return that followed 
was 0 → The estimated V(A) is 0 (notice: this answer has 
minimum squared error on the training data!)

 Answer 2 (TD): 100% times the process was in A it moved to B with 
reward 0 → The value of A is ¾. 

 This answer is given by first modeling the Markov process (left)

Unknown Markov random process Eight episodes observed



    Batch updating: difference between MC and TD

 If the process is Markovian, we expect that the second answer 
(provided by TD) will produce lower error on future data, even 
though the MC  answer is better on the observed data

General difference between batch TD(0) and batch MC:
 Batch TD(0) finds the estimate that would be exactly correct for the 

maximum-likelihood model of the Markov process
 Batch MC finds the estimate that minimize mean-squared error on 

the training set, without considering the Markov propery of the 
process

 The Maximum-likelihood estimate of a parameter is the parameter 
value whose probability of generating the data is greater. This 
estimate considers the model of the Markov process, not considered 
by MC



    Batch updating: difference between MC and TD

 Certainty-equivalence estimate: it is the estimate of the parameter 
obtained assuming that the estimate of the underlying process was 
known with certainty

 Batch TD(0) converges to the certainty-equivalence estimate

 This helps esplaining why Batch TD methods converge more 
quickly than Batch MC methods

 Nonbatch methods do not achieve the certainty-equivalence or the 
minimum squared-error estimate but they move roughly in these 
directions. 

 This empirically motivates why also nonbatch TD(0) is usually 
faster than nonbatch constant-    MC. At the moment nothing more 
definite can be said abou the relative efficiency of online TD and MC

α



    Batch updating: difference between MC and TD

 Notice: If n is the number of states, then conventionally computing the 
certainty-equivalence estimate may require 

 the order of n2 memory
 the order of n3 computational steps

 TD methods can approximate the same solution using 
 memory no more than order n 
 repeated computations over the training set

 On tasks with large state space TD may be the only feasible way of 
approximating the certainty-equivalence estimate solution



    Sarsa: On-Policy TD Control



    Sarsa: On-Policy TD Control

 We use TD prediction for the control problem

 According to the GPI approch, we use TD methods for evaluation 

 As with MC we need to trade off exploration and exploitation 

→ On-policy vs Off-policy methods

 We estimate an action-value function              for the policy    qπ ( s , a ) π



    Sarsa: On-Policy TD Control

 We can adapt the TD method for learning      considering transactions 
from state-action to state-action, obtaining the update rule: 

performed after every transition from a nonterminal state S
t
. Notice 

that Q(S
t+1

, A
t+1

)=0 if S
t+1

 is a terminal state

 The rule is called Sarsa because it uses elements S
t
, A

t
, R

t+1
, S

t+1
, A

t+1
 

 The backup diagram for Sarsa is the following

 The on-policy control algorithm based on Sarsa prediction continually 
estimates      for the behavior policy     and at the same time 
changes      towards greedyness w.r.t.      

v π

qπ π

π qπ



    Sarsa: On-Policy TD Control

Notice: there is no explicit representation of the policy. It is implicitly 
derived from the Q-function (i.e., selecting the action greedly on Q)

// Exploration 
policy

// Exploration 
policy

// It learns Q values of the 
exploration policy



    Sarsa: On-Policy TD Control

 The convergence properties of Sarsa depend on the nature of the 
policy dependence on Q

 Sarsa converges with probability 1 to an optimal policy and action-
value function as long as 

 all state-value pairs are visited an infinite number of times 
 the policy converges in the limit to the greedy policy (e.g., using   

 -greedy policies with          )ε ε=1/ t



    Windy Gridworld

Results with   -greedy Sarsa 
with    =0.1,    =0.5

ε

ε α

Trajectory using a policy generated after 
8000 time steps (not optimal, it takes 17 steps
while the optimal policy takes 15)

Termination cannot be guaranteed → MC methods cannot easily be used in this task



    Q-Learning: Off-Policy TD Control



    Q-Learning: Off-Policy TD Control

 Proposed by Watkins in 1989, Q-learning is one of the early 
breakthroughs in RL, defined by the update rule

 The learned action-value function Q directly approximate q
*
, the 

optimal action-value function, indipendent of the policy being 
followed (this makes the method off-policy). The policy however 
determines which state-action pairs are visited and updated

 This strategy simplifies the analysis of the algorithm and enables 
early convergence proofs  

 For correct convergence it is only required that the policy followed 
ensures all pairs continue to be updated (as in any other method). 

 Under this assumption and a variant of stochastic approximation 
conditions on step-size, Q is shown to converge with prob. 1 to q

*



    Q-Learning: Off-Policy TD Control

The backup diagram for Q-learning is reported  in the following:

Notice: a is not selected by the
-greedy policy as in Sarsaε

// Exploration 
policy

// It learns Q values of 
policy q

*
                      

(not exploratory policy)



    Cliff Walking (comparing Sarsa and Q-learning)

ε=0.1

Sarsa and Q-learning used 
   -greedy action selection 
with

 

ε

Optimal policy

Worse online 
performance

Actions: up, down, left, right

Reward: 
•  -1 on all transitions
• -100 stepping into the cliff
 

If     is gradually reduced than both methods converge to q
*
 ε



    Expected Sarsa



    Expected Sarsa

 Consider Q-learning with expected value instead of the maximum 
over next state-action pairs

 Update rule:

 Given next state S
t+1

 this algorithm moves deterministically in the 

same direction as Sarsa moves in expectation (Expected Sarsa)

 The backup diagrams of Q-learning and Expected Sarsa are 
compared here:



    Expected Sarsa
 Advantage: expected Sarsa eliminates the variance due to the 

random selection of A
t+1

 made by Sarsa

 Disadvantage: expected Sarsa is computationally more complex 
than Sarsa

 Given the same amount of experience we might expect Expected 
Sarsa to perform better than Sarsa and Q-learning (see results for 
cliff-walking)

(100 episodes)

(100000 episodes)



    Expected Sarsa

 Expected Sarsa can be used both on-policy and off-policy. In the 
second case a policy different from the target policy      is used to 
generate the behavior

 E.g., if     is greedy and behavior is exploratory then Expected Sarsa 
is exactly Q-learning

 Expected Sarsa subsumes and generalizes Q-learning while 
reliably improving over Sarsa

π

π



    Maximization Bias and Double Learning



    Maximization Bias and Double Learning

 Control algorithms involve maximization in the construction of the 
target policy (e.g., max in Q-learning,    -greedy in Sarsa)

 Problem: a maximum over estimated values is used implicitly as 
an estimate of the maximum value

 This can lead to a positive bias called maximization bias

 Example: state s, actions with true values q(s,a)=0, estimated values 
Q(s,a) with uncertainty (some above and some below zero) 

 The maximum of the true values q(s,a) is 0 
 The maximum of the estimates is positive → Positive bias

ε



    Maximization Bias Example

● Expected return for trajectories starting from left: -0.1

● Best policy: always select right from state A

● Problem: TD methods may favor the left  action from state A because 
of the maximization bias making B appear to have positive value

Starting state



    Maximization Bias and Double Learning

 How to avoid maximization bias?

 Consider the actions connected to state B in the previous example

 Suppose we divide the plays of each actions in two sets and 
obtain two independent estimates of q(B,a) for each action a, 
namely, Q

1
(B,a) and Q

2
(B,a) for all a.

 We can then use one estimate (e.g., Q
1
(B,a)) to determine the 

maximizing action A*=argmax
a
Q

1
(B,a) and the other (e.g., Q

2
(B,a)) to 

provide an estimate of its value Q
2
(B,A*)=Q

2
(B,argmax

a
Q

1
(B,a))

 This estimate is unbiased, namely, E[Q
2
(B,A*)]=q(B,A*)

 This is the idea of Double Learning



    Maximization Bias and Double Learning

 Obs 1: we can also repeat the process with the role of the two 
estimetes reversed to obtain a secon unbiased estimate

 Obs 2: Although we learn two estimates, only one estimate is 
updated on each play

 Obs 3: Double learning doubles the memory requirements, but it 
does not increase the amount of computation per step.



    Maximization Bias and Double Learning

 The double learning analogous to Q-learning is called Double Q-
learning. 

 It divides the time steps in two, flipping a coin on each step

 If the coin comes up heads, the update is

 If the coin comes up tails, then the same update is done with Q
1 

and Q
2
 switched, so that Q

2
 is updated

 The behavior policy can use both action-values estimates 



    Double Q-Learning

 There exist also double versions of Sarsa and Expected Sarsa



    Summary

 We introduced Temporal-Difference learning (TD)
 TD is an alternative to MC for solving the prediction problem in GPI

 On-policy TD: Sarsa
 Off-policy TD: Q-learning, Expected Sarsa

 Third way to use TD in control: Actor-Critic methods (Ch. 13 SutBar). 
They explicitly represent also the policy which is instead inferred from 
the value functions in standard TD 

 TD methods are the most widely used RL methods

 In this lecture we analyzed one-step, tabular, model-free TD methods
 Ch 7: n-steps (link to MC methods that perform all episode steps)
 Ch 8: model-based RL methods (link to planning)
 Part II: function approximation (link to deep RL)



    References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction. 
Second edition. Chapter 6


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

