
Temporal Difference Learning

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 TD Prediction

 Advantages of TD Prediction Methods

 Batch Updating

 Q-Learning: Off-Policy TD Control

 Expected Sarsa (hints)

 Maximization Bias and Double Learning (hints)

 Introduction

 Introduction

 Temporal Difference (TD) is the most central and novel idea of RL

 TD is a combination of DP and MC ideas
 Like MC, TD can learn from raw experience, without a model of

the dynamics
 Like DP, TD performs bootstrapping, i.e., updates estimates

based on other learned estimates without waiting for final outcome

 Relationships between DP, MC and TD is a recurring theme in RL

 These ideas blend into each other and can be combined (see
Chapters 7 and 12 of SutBar)

 GPI apprach: all DP, MC and TD use it but they differentiate in the
approach used to solve the prediction problem

 TD Prediction

 TD Prediction

 Both TD and MC use experience to solve the prediction problem

 Given some experience following policy both methods update
their estimate V of for the nonterminal states S

t
 occurring in the

experience

 MC methods wait until the return following the visit is known. It uses
the return as a target for V(S

t
).

 Every-visit MC update (contstant- MC):

 where G
t
 is the actual return following time t

 is a constant step-size parameter

π

v π

α

α

 TD Prediction

 TD methods instead need to wait only until the next time step. At
time t+1 they immediately form a target and make a useful update
using the observed reward R

t+1
 and the estimate V(S

t+1
).

 The simplest TD method makes the update (TD(0) or one-step TD)

immediately on transition to S
t+1

.

 The target for the MC update is G
t

 The target for TD update is

 TD(0) is a special case of TD() (Ch. 12 SutBar) and n-step TD
(Ch. 7 SutBar)

λ

 TD Prediction

 TD Prediction

 TD(0) is a bootstrapping method (as DP) since it bases its update in
part on an existing estimate

 MC vs DP:

 The MC target is an estimate because the expected value in the first
equation is unknown (a sample return is used in place of the real
expected return)

 The DP target is an estimate because is not known and the
current estimate V(S

t+1
) is used instead (the expected values are

completely provided by the model of the environment)

Target of MC methods

Target of DP methods

Target of MC methods

 TD Prediction

 The TD target is an estimate for both reasons: it samples the
expected values and it uses the current
estimate V instead of the true

 TD combines the sampling of MC with the bootstrapping of DP,
trying to get the advantages of both approaches

 Backup diagram of TD(0)

 Sample updates (used by MC and TD) differ from expected
updates (used by DP) in that they are based on a single sample
successor rather than a complete distribution of all possible
successors

v π

 TD Prediction

 TD error: the quantity in brackets in the TD(0) update

is a sort of error, measuring the difference between the estimated
value of S

t
 (i.e., V(S

t
)) and the better estimate .

 This error is based on the estimate made at time t and it is not
available until one time step later → Error in V(S

t
) available at time

t+1

 TD Prediction

 If the array V does not change during the episode (as in MC) then
the MC error can be written as a sum of TD errors

 This identity is not exact if V is updated during the episode (as in
TD(0)) but if the step size is small then it may still hold
approximately.

 Example: Driving home

MC approach TD approach

G
t

Known at
the end of

the
episode

 Example: Driving home

MC approach TD approach

G
t

Known at
the end of

the
episode

Is it necessary to wait until the final outcome is known before learning can begin?

Must you wait until you get home before increasing your estimate for the initial state?

 Example: Driving home

MC approach TD approach

G
t

Known at
the end of

the
episode

 Example: Driving home

TD approach

Each error is proportional to the change over time of the prediction,
i.e., to the Temporal Difference in predictions

 Advantages of TD Prediction Methods

 Advantages of TD Prediction Methods (over MC and DP)

 1. TD methods do not require a model of the environment as DP
methods

 2. TD methods are naturally implemented in an online and fully
incremental way, unlike MC methods

 With MC methods one has to wait until the end of the episode to
make updates, while TD methods wait only one time step

 Some applications have very long episodes hence the wait is
too long

 Other applications are continuing tasks and have no episode
at all

 MC methods have slow learning in some conditions, while TD
methods are less susceptible to these problems because they
learn from each transition regardles of subsequent actions

 Are TD methods sound? Convergence

For any fixed policy , TD(0) has been proved to converge to

 In the mean for a constant step-size parameter if it is
sufficiently small;

 With probability 1 if the step-size parameter decreases according to
stochastic approximation conditions (Sec. 2.5 SutBar)

where is the step-size parameter at the n-th selection of
action a.

 First condition: guarantees that the steps are large enough to
overcome any initial condition or random fluctuation

 Second condition: guarantees that eventually the steps
become small enough to assure convergence

π v π

α n=α

 Are TD methods sound? Convergence

 Most convergence proofs apply only to the table-based case of the
algorithm

 Some proofs also apply to the case of general linear function
approximations (Ch. 9 SutBar)

 Convergence speed

 Both TD and MC methods converge asymptotically to the correct
predictions.

 Which get first?
 Which uses more efficiently limited data?

 This is an open question. No mathematical proof of faster
convergence

 In practice, TD methods usually converge faster than constant-
MC methods on stochastic tasks

α

 Example: Random Walk

TD

Comparison between TD(0) and constant- MCα

Markov Reward Process (MRP)
(equal transition probability among states)

1/6 2/6 3/6 4/6 5/6 True values

Values learned by TD(0), =0.1α TD(0) vs MC (100 episodes)

 Batch Updating

 Batch updating

 Batch updating: suppose a finite amount of experience is
available, e.g., 10 or 100 episodes, a common approach with
incremental learning is to present the experience repeatedly until
convergence

 Given an approximate value function V the increments are computed
for every time step t in which a nonterminal state is visited

but

the value function is updated only once (after processing the
complete batch) by the sum of all increments

then

the experience is processed again with the new value function to
produce a new overall increment

until

the value function converges

 Batch updating: difference between MC and TD

 Under batch updating TD(0) converges deterministically to a single
answer indipendent of the step-size parameter , as long as it is
choosen to be sufficiently small

 The constant- MC method also converges deterministically under
the same conditions, but to a different answer

 Why the answers provided by the two methods is different? Let’s
understand it from two examples

α

α

 Example: Random walk under batch updating

 Batch TD was consistently better than batch MC
 Constant- MC converges to values V(S) that are sample averages of

the actual returns experienced after visiting each state.
 They are optimal estimates, they minimize the MSE from actual

returns in the training set
 How is that batch TD performed better than this optimal method?

α

 Example: You are the predictor

 Given this batch of data, what are the best estimates for V(A) and
V(B)?

 Is the optimal value for V(B) 3/4?
 What is the optimal value for the estimate of V(A)?

 Answer 1 (MC): we have seen A once and the return that followed
was 0 → The estimated V(A) is 0 (notice: this answer has
minimum squared error on the training data!)

 Answer 2 (TD): 100% times the process was in A it moved to B with
reward 0 → The value of A is ¾.

 This answer is given by first modeling the Markov process (left)

Unknown Markov random process Eight episodes observed

 Batch updating: difference between MC and TD

 If the process is Markovian, we expect that the second answer
(provided by TD) will produce lower error on future data, even
though the MC answer is better on the observed data

General difference between batch TD(0) and batch MC:
 Batch TD(0) finds the estimate that would be exactly correct for the

maximum-likelihood model of the Markov process
 Batch MC finds the estimate that minimize mean-squared error on

the training set, without considering the Markov propery of the
process

 The Maximum-likelihood estimate of a parameter is the parameter
value whose probability of generating the data is greater. This
estimate considers the model of the Markov process, not considered
by MC

 Batch updating: difference between MC and TD

 Certainty-equivalence estimate: it is the estimate of the parameter
obtained assuming that the estimate of the underlying process was
known with certainty

 Batch TD(0) converges to the certainty-equivalence estimate

 This helps esplaining why Batch TD methods converge more
quickly than Batch MC methods

 Nonbatch methods do not achieve the certainty-equivalence or the
minimum squared-error estimate but they move roughly in these
directions.

 This empirically motivates why also nonbatch TD(0) is usually
faster than nonbatch constant- MC. At the moment nothing more
definite can be said abou the relative efficiency of online TD and MC

α

 Batch updating: difference between MC and TD

 Notice: If n is the number of states, then conventionally computing the
certainty-equivalence estimate may require

 the order of n2 memory
 the order of n3 computational steps

 TD methods can approximate the same solution using
 memory no more than order n
 repeated computations over the training set

 On tasks with large state space TD may be the only feasible way of
approximating the certainty-equivalence estimate solution

 Sarsa: On-Policy TD Control

 Sarsa: On-Policy TD Control

 We use TD prediction for the control problem

 According to the GPI approch, we use TD methods for evaluation

 As with MC we need to trade off exploration and exploitation

→ On-policy vs Off-policy methods

 We estimate an action-value function for the policy qπ (s , a) π

 Sarsa: On-Policy TD Control

 We can adapt the TD method for learning considering transactions
from state-action to state-action, obtaining the update rule:

performed after every transition from a nonterminal state S
t
. Notice

that Q(S
t+1

, A
t+1

)=0 if S
t+1

 is a terminal state

 The rule is called Sarsa because it uses elements S
t
, A

t
, R

t+1
, S

t+1
, A

t+1

 The backup diagram for Sarsa is the following

 The on-policy control algorithm based on Sarsa prediction continually
estimates for the behavior policy and at the same time
changes towards greedyness w.r.t.

v π

qπ π

π qπ

 Sarsa: On-Policy TD Control

Notice: there is no explicit representation of the policy. It is implicitly
derived from the Q-function (i.e., selecting the action greedly on Q)

// Exploration
policy

// Exploration
policy

// It learns Q values of the
exploration policy

 Sarsa: On-Policy TD Control

 The convergence properties of Sarsa depend on the nature of the
policy dependence on Q

 Sarsa converges with probability 1 to an optimal policy and action-
value function as long as

 all state-value pairs are visited an infinite number of times
 the policy converges in the limit to the greedy policy (e.g., using

 -greedy policies with)ε ε=1/ t

 Windy Gridworld

Results with -greedy Sarsa
with =0.1, =0.5

ε

ε α

Trajectory using a policy generated after
8000 time steps (not optimal, it takes 17 steps
while the optimal policy takes 15)

Termination cannot be guaranteed → MC methods cannot easily be used in this task

 Q-Learning: Off-Policy TD Control

 Q-Learning: Off-Policy TD Control

 Proposed by Watkins in 1989, Q-learning is one of the early
breakthroughs in RL, defined by the update rule

 The learned action-value function Q directly approximate q
*
, the

optimal action-value function, indipendent of the policy being
followed (this makes the method off-policy). The policy however
determines which state-action pairs are visited and updated

 This strategy simplifies the analysis of the algorithm and enables
early convergence proofs

 For correct convergence it is only required that the policy followed
ensures all pairs continue to be updated (as in any other method).

 Under this assumption and a variant of stochastic approximation
conditions on step-size, Q is shown to converge with prob. 1 to q

*

 Q-Learning: Off-Policy TD Control

The backup diagram for Q-learning is reported in the following:

Notice: a is not selected by the
-greedy policy as in Sarsaε

// Exploration
policy

// It learns Q values of
policy q

*

(not exploratory policy)

 Cliff Walking (comparing Sarsa and Q-learning)

ε=0.1

Sarsa and Q-learning used
 -greedy action selection
with

ε

Optimal policy

Worse online
performance

Actions: up, down, left, right

Reward:
• -1 on all transitions
• -100 stepping into the cliff

If is gradually reduced than both methods converge to q
*
 ε

 Expected Sarsa

 Expected Sarsa

 Consider Q-learning with expected value instead of the maximum
over next state-action pairs

 Update rule:

 Given next state S
t+1

 this algorithm moves deterministically in the

same direction as Sarsa moves in expectation (Expected Sarsa)

 The backup diagrams of Q-learning and Expected Sarsa are
compared here:

 Expected Sarsa
 Advantage: expected Sarsa eliminates the variance due to the

random selection of A
t+1

 made by Sarsa

 Disadvantage: expected Sarsa is computationally more complex
than Sarsa

 Given the same amount of experience we might expect Expected
Sarsa to perform better than Sarsa and Q-learning (see results for
cliff-walking)

(100 episodes)

(100000 episodes)

 Expected Sarsa

 Expected Sarsa can be used both on-policy and off-policy. In the
second case a policy different from the target policy is used to
generate the behavior

 E.g., if is greedy and behavior is exploratory then Expected Sarsa
is exactly Q-learning

 Expected Sarsa subsumes and generalizes Q-learning while
reliably improving over Sarsa

π

π

 Maximization Bias and Double Learning

 Maximization Bias and Double Learning

 Control algorithms involve maximization in the construction of the
target policy (e.g., max in Q-learning, -greedy in Sarsa)

 Problem: a maximum over estimated values is used implicitly as
an estimate of the maximum value

 This can lead to a positive bias called maximization bias

 Example: state s, actions with true values q(s,a)=0, estimated values
Q(s,a) with uncertainty (some above and some below zero)

 The maximum of the true values q(s,a) is 0
 The maximum of the estimates is positive → Positive bias

ε

 Maximization Bias Example

● Expected return for trajectories starting from left: -0.1

● Best policy: always select right from state A

● Problem: TD methods may favor the left action from state A because
of the maximization bias making B appear to have positive value

Starting state

 Maximization Bias and Double Learning

 How to avoid maximization bias?

 Consider the actions connected to state B in the previous example

 Suppose we divide the plays of each actions in two sets and
obtain two independent estimates of q(B,a) for each action a,
namely, Q

1
(B,a) and Q

2
(B,a) for all a.

 We can then use one estimate (e.g., Q
1
(B,a)) to determine the

maximizing action A*=argmax
a
Q

1
(B,a) and the other (e.g., Q

2
(B,a)) to

provide an estimate of its value Q
2
(B,A*)=Q

2
(B,argmax

a
Q

1
(B,a))

 This estimate is unbiased, namely, E[Q
2
(B,A*)]=q(B,A*)

 This is the idea of Double Learning

 Maximization Bias and Double Learning

 Obs 1: we can also repeat the process with the role of the two
estimetes reversed to obtain a secon unbiased estimate

 Obs 2: Although we learn two estimates, only one estimate is
updated on each play

 Obs 3: Double learning doubles the memory requirements, but it
does not increase the amount of computation per step.

 Maximization Bias and Double Learning

 The double learning analogous to Q-learning is called Double Q-
learning.

 It divides the time steps in two, flipping a coin on each step

 If the coin comes up heads, the update is

 If the coin comes up tails, then the same update is done with Q
1

and Q
2
 switched, so that Q

2
 is updated

 The behavior policy can use both action-values estimates

 Double Q-Learning

 There exist also double versions of Sarsa and Expected Sarsa

 Summary

 We introduced Temporal-Difference learning (TD)
 TD is an alternative to MC for solving the prediction problem in GPI

 On-policy TD: Sarsa
 Off-policy TD: Q-learning, Expected Sarsa

 Third way to use TD in control: Actor-Critic methods (Ch. 13 SutBar).
They explicitly represent also the policy which is instead inferred from
the value functions in standard TD

 TD methods are the most widely used RL methods

 In this lecture we analyzed one-step, tabular, model-free TD methods
 Ch 7: n-steps (link to MC methods that perform all episode steps)
 Ch 8: model-based RL methods (link to planning)
 Part II: function approximation (link to deep RL)

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

