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    Categorization of RL algorithms (recap)

Value based
 Value function: yes
 Policy: no (implicit)

Policy based
 Value function: no
 Policy: yes

Actor-critic
 Value function: yes
 Policy: yes

Model based
 Dynamics model (i.e., 

transition and reward): yes

Model free
 Dynamics model (i.e., 

transition and reward): no



    Introduction



    Introduction

 Dynamic Programming (DP) in RL refers to a collection of 
algorithms used to compute optimal policies

 Assumption: complete knowledge of the dynamics model (limit to 
their applicability)

 Drawback: high computational expense

 DP methods are important theoretically

 DP methods are applied to finite MDP. A common way of obtaining 
approximate solutions for tasks with continuous states and actions 
is to quantize the state and action spaces

 DP can be used to compute the value function using the Bellman 
equation in an iterative way to improve value approximations



    Policy Evaluation (Prediction)



    (Iterative) Policy evaluation

 How to compute the value function      for an arbitrary policy     ? 

 Let’s recall the Bellman equation (system of |S| equations):

 For our purpose iterative solution methods are most suitable

 We use the Bellman equation as an update rule (k is the iteration):

v * π



    (Iterative) Policy evaluation

 Given an arbitrary initial approximation      we obtain a sequence of 
approximate value functions                  in which            is a fixed point.

 The sequence can be shown to converge to      as           under the 
conditions that guarantee the existence of      (       or termination)

v 0
v 0 ,v1 , v2 , .. . v k=vπ

v π k→∞
v π γ<1

Algorithm (in place update)

Bellman Equation

Complexity: O(|S|2 * |A|)



    Example: Gridworld
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 Nonterminal states: 

 Actions:

 Deterministic transition model 

 Undiscounted episodic task



    Example: Gridworld

Homework: use the code of the policy evaluation algorithm developed in 
the next lab to evaluate the random policy on the gridworld problem 
of the previous lecture (lecture 3)



    Policy Improvement



    Policy improvement

 Given the value function           for a policy      we would like to know 
whether we can get a better policy by choosing a different action 
a in a specific state s

 Idea: consider selecting the new action a in s and then following the 
existing policy     . The value for the state-action pair in that case is:

 Criterion: If                          than the action improves the policy. 

 In this case action a should always be substituted to action         in 
state s

v π ( s )

qπ ( s , a )≥vπ (s )

π (s )

π

π



    Policy improvement theorem

Theorem: Let     and     be any pair of deterministic policies such that 
for all  

Then the policy      must be as good as, or better than,    . That is, 

In particular, if the first inequality is strict at any state, then there must 
be a strict inequality also in the second one in at least one state.

π '
s∈S

π '

v π ( s )≤qπ ( s , π ' ( s) )

π

π

v π ( s )≤qπ ( s , π ' ( s) )

Proof (idea):



    Policy Improvement

 Policy improvement: We extend the improvement to all states and 
actions, selecting at each state the action that appears best 
according to             , i.e., new greedy policy       given by

 The greedy policy takes the action that looks best after one step of 
lookahead according to 

 By construction this policy meets the conditions of the policy 
improvement theorem, hence it is as good as, or better than, the 
original policy

qπ ( s , a ) π '

v π



    Policy Improvement

 Optimality: If             than             and both     and      are optimal 
and their value is 

 This theory can be extended to stochastic policies 

v π=vπ ' v π=v* π 'π

π (a∣s)



    Policy Iteration



    Policy Iteration

 The Policy Iteration algorithm repeats policy evaluation and 
policy improvement obtaining a sequence of monotonically 
improving policies and value functions, until convergence to an 
optimal policy and optimal value function.

 The convergence in a finite number of iterations is ensured in 
finite MDPs by the finite number of policies available. 

 Notice: each policy evaluation step is started with the value 
function for the previous policy (with a great increase in the speed of 
convergence)



    Policy Iteration Algorithm

  

Deterministic policy assumed



    Value Iteration



    Value Iteration

 The Value Iteration Algorithm can be seen as a version of Policy 
Iteration in which the policy evaluation step (generally iterative) is 
stopped after a single step.

 The update rule that combines policy improvement and single-step 
policy evaluation is:

 The policy evaluation step of policy iteration can be truncated in 
several ways without losing the convergence guarantees of policy 
iteration. The strategy used by value iteration is an example. 

 The Gridworld example seen before provides an idea about why 
policy evaluation can be truncated in advance. Iterations after the 
third have no effect on the greedy policy in that example.



    Value Iteration

Complexity: O(|S|2 * |A|)



    Value Iteration

 Value iteration is obtained by turning the Bellman optimality equation in 
an update rule. 

 Notice: Value iteration does not explicitly represent the policy and it 
does not explicitly improves it. The policy is implicitly extracted from 
the value function at the end of the algorithm (see last line).

 Notice: the value iteration update is identical to the policy evaluation 
update exept that it requires the maximum to be taken overall actions.

 Backup diagrams

Value iteration

(see Bellman optimality equation for      )

Policy evaluation

(see Bellman equation for       )v * v π



    Asyncronous Dynamic Programming



    Asynchronous Dynamic Programming

 The main idea of Asynchronous DP is to order the policy/value-
function updates to let value information propagate from state to 
state in an efficient way.

 Some ideas:
 Some states may not need their values updated as often as others
 Skip updating some states entirely if they are not relevant to 

optimal behaviour (see Chapter 8 of SutBar)
 Agent’s experinece can be used to determine the states to which 

the DP algorithm applies its updates (e.g., update states as the 
agent visits them)

 Focus the DP algorithm’s update onto parts of the state set that 
are most relevant

 This can improve performance in general and allow DP algorithms 
to be applied to domains with large state space



    Generalized Policy Iteration



    Generalized Policy Iteration

 Policy iteration: two interacting (competing/cooperating) processes:
 Policy evaluation
 Policy improvement

 This schema, called Generalized 

Policy Iteration (GPI), is common 

to several RL algorithms, such as,
 Value iteration
 Asynchronous DP methods



    Efficiency of Dynamic Programming



    Efficiency of Dynamic Programming
 DP may not be practical for very large problems but it is efficient

 DP methods are polynomial in the number of states and actions
 They take a number of computational operations less than some 

polynomial function of |S| and |A|
 Although the total numeber of (deterministic) policies to search is 

 Linear programming methods become impractical at a much smaller 
number of states than do DP methods

 With today’s computer, DP methods can be used to solve MDPs with 
millions of states → Policy and Value Iterations are used in practice

 It is not clear which of the two algorithms is better in general

 They are faster than their theoretical worst-case run times if started with 
good initial value function or policy

|A|
|S|



    Important Observation about DP methods

 DP methods update estimates of the values of states based on 
estimates of the values of successor states, i.e., they update 
estimates on the basis of other estimates.

→ DP methods perform bootstrapping

 Lecture 5 (Monte Carlo Methods): methods that do not require a 
model and do not bootstrap

 Lecture 6 (Temporal-Difference Learning): methods that do not 
require a model and do bootstrap
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