
Dynamic Programming -
Value Iteration and Policy Iteration

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 Policy Evaluation (Prediction)

 Policy Improvement

 Policy Iteration

 Value Iteration

 Asynchronous Dynamic Programming

 Generalized Policy Iteration

 Categorization of RL algorithms (recap)

Value based
 Value function: yes
 Policy: no (implicit)

Policy based
 Value function: no
 Policy: yes

Actor-critic
 Value function: yes
 Policy: yes

Model based
 Dynamics model (i.e.,

transition and reward): yes

Model free
 Dynamics model (i.e.,

transition and reward): no

 Introduction

 Introduction

 Dynamic Programming (DP) in RL refers to a collection of
algorithms used to compute optimal policies

 Assumption: complete knowledge of the dynamics model (limit to
their applicability)

 Drawback: high computational expense

 DP methods are important theoretically

 DP methods are applied to finite MDP. A common way of obtaining
approximate solutions for tasks with continuous states and actions
is to quantize the state and action spaces

 DP can be used to compute the value function using the Bellman
equation in an iterative way to improve value approximations

 Policy Evaluation (Prediction)

 (Iterative) Policy evaluation

 How to compute the value function for an arbitrary policy ?

 Let’s recall the Bellman equation (system of |S| equations):

 For our purpose iterative solution methods are most suitable

 We use the Bellman equation as an update rule (k is the iteration):

v * π

 (Iterative) Policy evaluation

 Given an arbitrary initial approximation we obtain a sequence of
approximate value functions in which is a fixed point.

 The sequence can be shown to converge to as under the
conditions that guarantee the existence of (or termination)

v 0
v 0 ,v1 , v2 , .. . v k=vπ

v π k→∞
v π γ<1

Algorithm (in place update)

Bellman Equation

Complexity: O(|S|2 * |A|)

 Example: Gridworld

O
p

ti
m

al
 p

o
lic

ie
s

in
 t

h
is

 c
as

e,
 b

u
t

o
n

ly
 g

u
ar

an
te

ed
 t

o
 b

e
im

p
ro

ve
m

en
ts

o

ve
r

th
e

ra
n

d
o

m
 p

o
lic

y

 Nonterminal states:

 Actions:

 Deterministic transition model

 Undiscounted episodic task

 Example: Gridworld

Homework: use the code of the policy evaluation algorithm developed in
the next lab to evaluate the random policy on the gridworld problem
of the previous lecture (lecture 3)

 Policy Improvement

 Policy improvement

 Given the value function for a policy we would like to know
whether we can get a better policy by choosing a different action
a in a specific state s

 Idea: consider selecting the new action a in s and then following the
existing policy . The value for the state-action pair in that case is:

 Criterion: If than the action improves the policy.

 In this case action a should always be substituted to action in
state s

v π (s)

qπ (s , a)≥vπ (s)

π (s)

π

π

 Policy improvement theorem

Theorem: Let and be any pair of deterministic policies such that
for all

Then the policy must be as good as, or better than, . That is,

In particular, if the first inequality is strict at any state, then there must
be a strict inequality also in the second one in at least one state.

π '
s∈S

π '

v π (s)≤qπ (s , π ' (s))

π

π

v π (s)≤qπ (s , π ' (s))

Proof (idea):

 Policy Improvement

 Policy improvement: We extend the improvement to all states and
actions, selecting at each state the action that appears best
according to , i.e., new greedy policy given by

 The greedy policy takes the action that looks best after one step of
lookahead according to

 By construction this policy meets the conditions of the policy
improvement theorem, hence it is as good as, or better than, the
original policy

qπ (s , a) π '

v π

 Policy Improvement

 Optimality: If than and both and are optimal
and their value is

 This theory can be extended to stochastic policies

v π=vπ ' v π=v* π 'π

π (a∣s)

 Policy Iteration

 Policy Iteration

 The Policy Iteration algorithm repeats policy evaluation and
policy improvement obtaining a sequence of monotonically
improving policies and value functions, until convergence to an
optimal policy and optimal value function.

 The convergence in a finite number of iterations is ensured in
finite MDPs by the finite number of policies available.

 Notice: each policy evaluation step is started with the value
function for the previous policy (with a great increase in the speed of
convergence)

 Policy Iteration Algorithm



Deterministic policy assumed

 Value Iteration

 Value Iteration

 The Value Iteration Algorithm can be seen as a version of Policy
Iteration in which the policy evaluation step (generally iterative) is
stopped after a single step.

 The update rule that combines policy improvement and single-step
policy evaluation is:

 The policy evaluation step of policy iteration can be truncated in
several ways without losing the convergence guarantees of policy
iteration. The strategy used by value iteration is an example.

 The Gridworld example seen before provides an idea about why
policy evaluation can be truncated in advance. Iterations after the
third have no effect on the greedy policy in that example.

 Value Iteration

Complexity: O(|S|2 * |A|)

 Value Iteration

 Value iteration is obtained by turning the Bellman optimality equation in
an update rule.

 Notice: Value iteration does not explicitly represent the policy and it
does not explicitly improves it. The policy is implicitly extracted from
the value function at the end of the algorithm (see last line).

 Notice: the value iteration update is identical to the policy evaluation
update exept that it requires the maximum to be taken overall actions.

 Backup diagrams

Value iteration

(see Bellman optimality equation for)

Policy evaluation

(see Bellman equation for)v * v π

 Asyncronous Dynamic Programming

 Asynchronous Dynamic Programming

 The main idea of Asynchronous DP is to order the policy/value-
function updates to let value information propagate from state to
state in an efficient way.

 Some ideas:
 Some states may not need their values updated as often as others
 Skip updating some states entirely if they are not relevant to

optimal behaviour (see Chapter 8 of SutBar)
 Agent’s experinece can be used to determine the states to which

the DP algorithm applies its updates (e.g., update states as the
agent visits them)

 Focus the DP algorithm’s update onto parts of the state set that
are most relevant

 This can improve performance in general and allow DP algorithms
to be applied to domains with large state space

 Generalized Policy Iteration

 Generalized Policy Iteration

 Policy iteration: two interacting (competing/cooperating) processes:
 Policy evaluation
 Policy improvement

 This schema, called Generalized

Policy Iteration (GPI), is common

to several RL algorithms, such as,
 Value iteration
 Asynchronous DP methods

 Efficiency of Dynamic Programming

 Efficiency of Dynamic Programming
 DP may not be practical for very large problems but it is efficient

 DP methods are polynomial in the number of states and actions
 They take a number of computational operations less than some

polynomial function of |S| and |A|
 Although the total numeber of (deterministic) policies to search is

 Linear programming methods become impractical at a much smaller
number of states than do DP methods

 With today’s computer, DP methods can be used to solve MDPs with
millions of states → Policy and Value Iterations are used in practice

 It is not clear which of the two algorithms is better in general

 They are faster than their theoretical worst-case run times if started with
good initial value function or policy

|A|
|S|

 Important Observation about DP methods

 DP methods update estimates of the values of states based on
estimates of the values of successor states, i.e., they update
estimates on the basis of other estimates.

→ DP methods perform bootstrapping

 Lecture 5 (Monte Carlo Methods): methods that do not require a
model and do not bootstrap

 Lecture 6 (Temporal-Difference Learning): methods that do not
require a model and do bootstrap

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

