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    Introduction

All methods seen so far are action-value methods. They:
 estimate action values
 select actions based on these values
 but do not explicitly represent the policy function

Policy gradient methods are different. They: 
 learn a parametrized policy function
 selects actions using this policy and without consulting value 

functions

A value function can be used only to learn policy parameters

Actor-critic methods are policy gradient methods that learn also 
approximations of the value function

 Actor: learned policy
 Critic: learned value function



    Introduction

Some notation:
               is the policy’s parameter vector

                                                              is the probability that action a is 
taken at time t given the environment is in state s and policy 
parameters are    

              is the learned value function, if required by the method, with 
parameters  

          is a measure of policy performance depending on policy 
parameters

The goal of policy gradient methods is to learn parameters     that 
maximize         



    Introduction

 The goal of policy gradient methods is to learn parameters     that 
maximize         

 Parameter updates approximate gradient ascent in    : 

   

   where                        is a stochastic estimate of the gradient of        
   w.r.t.    

 Episodic case: performance is the value of the start state under 
the parametrized policy

 Continuing case: performance is the average reward rate  
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    Policy Approximation and its Advantages

 The policy can be parametrized in any way as long as                 is 
differentiable w.r.t. its parameters

 To ensure exploration we require the policy never become 
deterministic, i.e., 

 Discrete (and not too large) action space: a natural 
parametrization are numerical preferences                        for each 
state-action pair

 Probability is assigned to actions proportionally to preferences, 
e.g., according to exponential soft-max distribution (called soft-
max in action preferences)



    Policy Approximation and its Advantages

 Preferences can themselves be parametrized arbitrarily

 A deep ANN can be used to compute preferences (as in AlphaGo). 
In this case     is the vector of connection weights 

 Or the preferences could be linear in the features: 

                                       with                         features of the policy

 Action values could be used as preferences with soft-max but 
this would not allow the policy to approach deterministic behaviours

 Instead, general action preferences do not have to approach 
specific values allowing them to approach also deterministic policies

 E.g., preferences of optimal actions can be driven infinitely 
higher than all suboptimal actions



       Policy Approximation and its Advantages

Advantages of policy parametrization vs action value parametrization:

 The policy may be a simpler function to approximate

 Policy parametrization allows to inject prior knowledge: this is 
often the most important reason to use for using a policy-based 
learning method

 Action-value methods have no natural way of finding stochastic 
policies, while policy gradient methods (e.g., with soft-max in action 
preferences) enables the selection of actions with arbitrary 
probabilities (e.g., stochastic policies)

 Policy-based methods can deal with continuous action spaces 



       Example: Short corridor with switched actions

 Reward: -1 per step
 Actions: left, right
 State features: 

 x(s,right) = [1,0]T

 x(s,left) = [0,1]T

     for all states s

 Action value method: 2 possible policies
 1. Right with probability (1-   )/2
 2. Left with probability (1-   )/2

 Policy gradient method:
 Best probability to select right: 0.59
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    The Policy Gradient Theorem

 With continuous policy parametrization the action probabilities 
change smoothly as a function of parameters, instead in action 
value methods with   -greedy selection action probabilities may 
change dramatically for small changes of action values

 Because of this, stronger convergence guarantees ara available 
for policy gradient methods 

 Given the performance of the episodic case                            and 
assuming no discounting (i.e.,           ) 

 How can we change the policy parameters in a way that ensure 
improvement?

 Performance depends on both action selection and distribution of 
states and both are affected by the policy parameters



    The Policy Gradient Theorem

Given a state: 
 The effect of policy parameters on actions and therefore reward 

can be computed
 The effect of the policy on the state distribution is a function of the 

environment which is typically unknown (we are in a model-free 
setting) -> Problem!

 Question: How can we estimate the performance gradient w.r.t. 
the policy parameters when the gradient depends on the unknown 
effect of policy changes on the state distribution?

 The Policy Gradient Theorem answers to this question with an 
analytic expression for the gradient of the performance w.r.t. 
policy parameter that does not involve the derivative of the state 
distribution  



    The Policy Gradient Theorem

The Policy Gradient Theorem for the episodic case estabilishes that:

where the gradients are column vectors of partial derivatives w.r.t. the 
components of      and          is the on-policy state distribution under 
policy     (parametrized by     )

 The constant of proportionality is 
 the average length of an episode in the episodic case 
 1 in the continuing case

 Proof: page 325 of the book 



    The Policy Gradient Theorem (proof)

Where                          is the probability of transitioning from state s to state x 
in k steps under policy  



    The Policy Gradient Theorem (proof)
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    REINFORCE: Monte Carlo Policy Gradient

 Given the strategy of stochastic gradient ascent seen at the 
beginning

    we need a way to obtain samples such that the expectation of the 
    sample gradient               is proportional to the actual gradient   

 The policy gradient theorem provides an exact expression 
proportional to the gradient, hence we use it for sampling from 
that expression



    REINFORCE: Monte Carlo Policy Gradient

 We have that 

   since following     the states are encountered according to distribution 
      

 Then, we can instantiate a first stochastic gradient-ascent 
algorithm as

   where     is some learned approximation of

 We call this algorithm all-actions because its update involves all of 
the actions



    REINFORCE: Monte Carlo Policy Gradient

 If we consider instead only the action      taken at time t we obtain the 
REINFORCE algorithm

 To derive it we first take the last formula of the gradient              and 
multiply and divide the summed terms by  

  where G
t
 is the return, as usual

 The final expression is what we need: a quantity that can be sampled 
on each time step, whose expectation is equal to the gradient

As done with s in 
the previous slide



    REINFORCE: Monte Carlo Policy Gradient
 The parameter update rule of the REINFORCE algorithm is therefore:

 Idea: each increment is a product of a return       and the vector

 Vector                      is the direction in the parameter space that most 
increases the probability of repeating the action       of future visits 
of state 

 The update increases the parameter vector in this direction 
proportional to the return and inversely proportional to the action 
probability 

Causes the parameters to move most in 
the direction that favour highest returns

Remove advantage of actions selected 
most frequently, they could not bring
the highest return



    REINFORCE: Monte Carlo Policy Gradient (Williams 1992)

=

since

This holds for the general 
discount case with 

 
 

<=1



    REINFORCE: Monte Carlo Policy Gradient

 REINFORCE uses the complete return G
t
 from time t (i.e., all 

rewards until the end of the episode) 

 REINFORCE is a Monte Carlo algorithm and it is well defined for the 
episodic case



    REINFORCE: Monte Carlo Policy Gradient

 REINFORCE has good theoretical convergence properties

 The expected update over an episode is in the same direction as the 
performance gradient

 This assures improvement of expected performance for sufficiently 
small     and convergence to a local optimum under standard 
stochastic approximation conditions (Ch. 2 Sutton and Barto) for 
decreasing 

 As a Monte Carlo method REINFORCE may be of high variance and 
thus produce slow learning



    Example: Short corridor with switched actions with REINFORCE

 Reward: -1 per step
 Actions: left, right
 All the states appear identical 

under
   the function approximation (model 
   free RL)

  Features for 
all states

Performance of REINFORCE



    REINFORCE with Baseline



    REINFORCE with Baseline

 The policy gradient theorem can be generalized to include a 
comparison of the action value to an arbitrary baseline b(s)

 The equation remains valid if the baseline does not vary with a 
because the subctracted quantity is zero:

 A new version of REINFORCE can be derived using the update rule 
that includes a general baseline: 



    REINFORCE with Baseline

 The baseline leaves the expected value of the update unchanged 

 But it can have a positive effect on the variance

 The baseline can vary with the state 
 In some states all actions have high values → high baseline to 

differentiate the higher valued actions from the less highly valued ones
 In other states all actions have low values → low baseline is 

appropriate

 One natural choice for the baseline is an estimate of the state value

                 where w is learned with value based methods

 If we use Monte Carlo to learn both w and     we obtain the following 
algorithm 



    REINFORCE with Baseline

See Eq. 9.7 of the book



    REINFORCE with Baseline
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    Actor-Critic Methods

 REINFORCE-with-baseline learns both:
 A policy
 A state-value function (i.e., the baseline)

 However, we do not consider it as an actor-critic method, because the 
state-value function is not used as a critic

 The value-function is not used for bootstrapping, namely, for updating 
the value estimate for a state from the estimated values of 
subsequent states 

 It is used only as a baseline for the state whose estimate is being 
updated



    Actor-Critic Methods

 As seen before, the bias introduced by bootstrapping is often 
beneficial because it reduces variance and accellerate learning

 REINFORCE with baseline is unbiased and converges asymptotically 
to a local minimum

 However, Monte-Carlo methods tend to learn slowly (estimates have 
high variance) and to be inconvenient to implement online of for 
continuing problems

 Temporal-Difference methods can eliminate these inconveniences

 To gain advantages of TD in policy gradient methods we introduce 
Actor-Critic methods with a Bootstrapping critic

 Actor-Critic is a Temporal Difference (TD) version of Policy gradient 



    Actor-Critic Methods

 One-step actor-critic methods are the policy-gradient analog of the 
TD methods introduced before, i.e., TD, Sarsa, Q-learning

 They are fully online and incremental

 They replace the full return of REINFORCE with the one-step-return 
and use a learned state-value function as the baseline 

 The update rule becomes:
Update rule of 
REINFORCE
with baseline BaselineTarget

Used for 
Bootstrapping
→ Critic



    Actor-Critic Methods

 The natural way to learn the state-value function in this context is 
semi-gradient TD(0) (see methods for On-policy prediction with 
approximation)

                     : actor

              : critic

                                : target

                                                 : advantage (=TD error)

 The advantage tells us if a state is better or worse than expected. If the 
action is better than expected - advantage > 0 - then we want to 
incourage this action. If it is worse than expected - advantage < 0  - 
we want to encourage the opposite action
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    Actor-Critic Methods: Advantage Actor-Critic (A2C)
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    Policy Gradient for Continuing Problems

 For continuing problems without episode boundaries we need to 
define performance as the average rate of reward per time step:

   where      is the steady-state distribution under    :

 If we define values as                                      

   with   

   Then the policy gradient theorem remains true and similar                  
   algorithms can be used

and
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    Policy Parametrization for Continuous Actions

 Policy-gradient methods can deal with large action spaces, even 
continuous spaces

 We learn statistics of the probability distribution instead of single 
probabilities for each action

 E.g., actions can be chosen according to normal (Gaussian) 
distribution

 Probability density function for                                                   
normal distribution:



    Policy Parametrization for Continuous Actions

 Policy parametrization: the policy can be defined as the normal 
probability density over a real-value scalar action

   with mean and the standard deviation given by parametric function        
   approximators that depend on the state

 We divide the policy parameters in two parts: 



    Policy Parametrization for Continuous Actions

 The mean can be approximated by a linear function, the standard 
deviation as the exponential of a linear function (it must be positive):

   with            and            state feature vectors.

Using this parametrization all the policy gradient algorithms defined 
before can directly be applied to learn to select real-valued actions
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