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Abstract. In this paper we propose to use advanced classification tech-
niques with shape features for nuclei classification in tissue microarray
images of renal cell carcinoma. Our aim is to improve the classification
accuracy in distinguishing between healthy and cancerous cells. The ap-
proach is inspired by natural language processing. Several features are
extracted from the automatically segmented nuclei and quantized to vi-
sual words, and their co-occurrences are encoded as visual topics. To
do this, a generative model, the probabilistic Latent Semantic Analysis
is learned from quantized shape descriptors (visual words). Finally, we
extract from the learned models a generative score, that is used as input
for new classifiers, defining a hybrid generative/discriminative classifica-
tion algorithm. We compare our results with the same classifiers on the
feature set to assess the increase in accuracy when we apply pLSA. We
demonstrate that the feature space created using pLSA achieves better
accuracies than the original feature space.
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1 Introduction

The computer-based detection and analysis of cancer tissues represents a chal-
lenging and yet unsolved task for researchers in both Medicine and Computer
Science. The complexity of the data, as well as the intensive labor practice needed
to obtain them, makes the development of such automatic tools very problem-
atic. In this paper we consider the problem of classifying cancer tissues starting
from a tissue microarray (TMA), a technology which enables studies associating
molecular changes with clinical endpoints [15]. With this technique, 0.6mm tis-
sue cylinders are extracted from primary tumor blocks of hundreds of different
patients, and are subsequently embedded into a recipient paraffin block. Such
array blocks can then be used for simultaneous analysis of primary tumors on
DNA, RNA, and protein level.

Here we focus on the specific case of renal cell carcinoma (RCC): in order
to analyse it, the tissue is transferred to an array and stained to make the
? Corresponding author. †Equal contributors
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morphology of cells and cell nuclei visible. Current image analysis software for
TMAs requires extensive user interaction to properly identify cell populations
on the TMA images, to select regions of interest for scoring, to optimize analysis
parameters and to organize the resulting raw data. Because of these drawbacks,
pathologists typically collect tissue microarray data by manually assigning a
composite staining score for each spot. The manual rating and assessment of
TMAs under the microscope by pathologists is quite unconsistent due to the
high variability of cancerous tissue and the subjective experience of humans, as
shown in [11]. Manual scoring also introduces a significant bottleneck that limits
the use of tissue microarrays in high-throughput analysis. Therefore, decisions
for grading and/or cancer therapy might be inconsistent among pathologists.
With this work, we want to contribute to a more generalized and reproducible
system that automatically processes TMA images and thus helps pathologists
in their daily work. One keypoint in the automatic TMA analysis for renal

Fig. 1. The nuclei classification pipeline: detection, segmentation and classification into
benign or cancerous.

cell carcinoma is the nucleus classification. In this context, the main goal is to
automatically classify cell nuclei into cancerous or benign – this typically done
by trained pathologists by eye. Clearly, prior to classification, the nucleus should
be detected and segmented in the image.

In this paper the problem of the classification of nuclei in renal cancer cells is
investigated with the use of hybrid generative-discriminative schemes, represent-
ing a quite recent and promising trend of classification methodologies [14, 16].
The underlying idea is to take advantage of the best of the generative and the
discriminative paradigms – the former based on probabilistic class models and
a priori class probabilities, learnt from training data and combined via Bayes
law to yield posterior probabilities, the latter aimed at learning class boundaries
or posterior class probabilities directly from data, without relying on generative
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class models [17, 19]. In the hybrid generative-discriminative scheme, the typical
pipeline is to learn a generative model from the data – suitable to properly de-
scribe the problem – through which project every object in a feature space (the
so-called generative embedding space), where a discriminative classifier may be
trained. This class of approaches have been successfully applied in many different
scenarions, especially in the case of non-vectorial data (strings, trees, images)
[21, 5, 18]. In this paper, their usefulness in the specific and challenging scenario
of classification of cell nuclei of renal cell carcinoma is investigated.

In particular, as for the generative model, we choose to employ the proba-
bilistic Latent Semantic Analysis (pLSA – [13]), a powerful methodology intro-
duced in the text understanding community for unsupervised topic discovery in
a corpus of documents, and subsequently largely applied in the computer vision
community [9, 5] as well as in the medical informatics domain [2, 8, 3]. Referring
to the linguistic scenario, where these models have been intially introduced, we
can say that the basic idea is that a given document is characterized by the
presence of one or more topics (e.g. sport, finance, politics), which may induce
the presence of some particular words – the topic distribution may be learned
by looking at word co-occurrence in the whole corpus. In our case, similarly to
[5, 8], the documents are the cell nuclei images, whereas the words are visual
features computed from the image – following the automated pipeline of TMA
processing already proposed in [20]. Given a set of images, the visual features are
quantized in order to define the so-called dictionary, and histograms of features
describe the level of presence of the different visual words in every image. Then
the pLSA model is learned to find local patterns of co-occurrences, by leading
to the definition of the so called visual topics. Finally, the topic distributions
of each image represent the new space (the generative embedding space), where
any discriminative classifier may be employed.

The proposed approach has been tested in a dataset composed by 474 cell
nuclei images, employing different visual features as well as different classifiers
in the generative embedding final space. The results were compared to those
obtained working directly with the visual features, encouraging us in going ahead
along this direction.

The paper is organized as follows: in Section 2 we introduce PLSA and in
Section 3, we introduce the data set and preprocessing used in this study. We
explain the methods applied in Section 4, and show our experiments in Section 5.
We conclude in Section 6.

2 Background: the probabilistic Latent Semantic Analysis

The probabilistic Latent Semantic Analysis (pLSA) [13] is a probabilisitc gener-
ative model firstly introduced in the linguistic scenario, to describe and model
documents. The basic idea underlying this model – and in general under the
class of the so called topic models (another excellent example is the the Latent
Dirichlet Allocation LDA [4]) – is that each document is characterized by the
presence of one or more topics (e.g. sport, finance, politics), which may induce
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the presence of some particular words. From a probabilistic point of view, the
document may be seen as a mixture of topics, each one providing a probability
distribution over words. A topic model represents a generative model for docu-
ments, since a simple probabilistic procedure permits to specify how documents
are generated. In particular, a new document may be generated in the following
way: first choose a distribution over topics; then, for each word in that docu-
ment, randomly select a topic according to its distribution, and draw a word
from that topic. It is possible to invert the process, in order to infer the set of
topics that were responsible for generating a collection of documents. The rep-
resentation of documents and words with topic models has one clear advantage:
each topic is individually interpretable, providing a probability distribution over
words that picks out a coherent cluster of correlated terms. This may be really
advantageous in the cancer detection context, since the final goal is to provide
knowledge about complex systems, and provide possible hidden correlations.

A variety of probabilistic topic models have been used to analyze the con-
tent of documents and the meaning of words. These models all use the same
fundamental idea – that a document is a mixture of topics – but make slightly
different statistical assumptions; here we employed the probabilistic Latent Se-
mantic Analysis, briefly presented in the following. Let us introduce the pLSA
model from the original and most intuitive point of view, namely from the lin-
guistic community perspective. As a starting point, the pLSA model takes as
input a data set of N documents {di}, i=1,..., N , encoded by a set of words.
Before applying pLSA, the data set is summarized by a co-occurrence matrix of
size M×N , where the entry n(wj , di) indicates the number of occurrences of the
word wj in the document di. The presence of a word wj in the document di is
mediated by a latent topic variable, z ∈ T = {z1,..., zZ}, also called aspect class,
i.e.,

P (wj , di) =
Z∑

k=1

P (wj |zk)P (zk|di)P (di). (1)

In practice, the topic zk is a probabilistic co-occurrence of words encoded by
the distribution P (w|zk), w = {w1,..., wM}, and each document di is compactly
(Z < M)4 modeled as a probability distribution over the topics, i.e., P (z|di),
z = {z1,..., zZ}; P (di) accounts for varying number of words. The hidden distri-
butions of the model, P (w|z) and P (z|d), are learnt using Expectation-Maximi-
zation (EM), maximizing the model data-likelihood L:

L =
N∏

i=1

M∏
j=1

P (wj , di)n(wj ,di) (2)

The E-step computes the posterior over the topics, P (z|w, d), and the M-step
updates the parameters, P (w|z) which identifies the model. Once the model has
been learnt, the goal of inference is to estimate the topic distribution of a novel

4 Both Z and M are constants to be a-priori set.
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document. To do this, one can use the standard learning algorithm keeping fixed
the parameters P (w|z).

The typical classification scheme with pLSA is a standard generative ap-
proach, where one has to learn a model per-class and assign a new sample to the
category whose model fits the point best, i.e., the model with highest likelihood
(see Equation 2). Recently, other approaches successfully used meaningful dis-
tributions or other by-products coming from a generative model, as feature for
a discriminative classifier. The intuition is that generative models like pLSA are
built to understand how samples were generated, and they haven’t any notion
of discrimination; on the other hand, discriminative classifiers are built to sepa-
rate the data and they are highly more effective if the data has been previously
“explained” by a generative model. In this paper pLSA has been used in such a
hybrid generative-discriminative context.

3 The Tissue Microarray (TMA) pipeline

In this section the tissue microarray pipeline is briefly summarized. For a full
description please refer to [20]. In particular, first we describe how TMA are
determined, followed by the image normalization and patching (how to segment
nucleui). Finally, the image features we employed are described.

3.1 Tissue Micro Arrays

Small round tissue spots of cancerous tissue are attached to TMA glass plate.
The diameter of the spots is 1mm and the thickness corresponds to one cell
layer. Eosin staining made the morphological structure of the cells visible, so
that cell nuclei appear bluish in the TMAs. Immunohistochemical staining for
the proliferation protein MIB-1 (Ki-67 antigen) makes nuclei in cell division
status appear brown.

For computer processing, the TMA slides were scanned with a magnifica-
tion of 40x, resulting in a per pixel resolution of 0.23µm. The final spots of
single patients are separately extracted as three channel color images of size
3000x3000px.

The data set we employed in the evaluation consists of the top left quarter
of eight tissue spots from eight patients. Therefore, each image shows a quarter
of the whole spot, i.e. 100-200 cells per image (see Figure 2). In order to have
a ground truth, the TMA images were independently labeled by two patholo-
gists [11], retaining only those nuclei on which the two pathologists agree on the
label.

3.2 Image Normalization and Patching

The images were adjusted in contrast to minimize illumination variances among
the scans. To classify the nuclei individually, we extracted patches, of dimension
80x80 pixels, from the whole image, such that each patch has one nucleus in
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Fig. 2. Top: One 1500x1500px quadrant of a TMA spot from a RCC patient. Bottom:
A pathologist exhaustively labeled all cell nuclei and classified them into malignant
(black) and benign (red).
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the center (see Figure 3). The locations of the nuclei were known from the
labels of the pathologists. Both procedures drastically improved the following
segmentation of cell nuclei.

3.3 Segmentation

The segmentation of cell nuclei was performed with graphcut [7]. The gray inten-
sities were used as unary potentials. The binary potentials were linearly weighted
based on their distance to the center to prefer roundish objects lying in the cen-
ter of the patch (see Figure 3). The contour of the segmented object was used
to calculate several shape features as described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80x80 pixel patch are
shown, each with the corresponding nucleus shape found with graphcut.

3.4 Feature extraction

Given the patch image, several features have been extracted, on the basis of sev-
eral intuitive guidelines used by pathologists to classify nuclei. They are based
on pixel intensities as well as on shape descriptors. Such features have been then
summarized in histograms, representing the starting point of our algorithm. In
[20], histograms have been directly used for classification: we will show in this
paper that a significant benefit may be gained when an intermediate genera-
tive step is introduced before the final classification. In Table 1) the full list of
histograms are described.

4 Nuclei classification

The hybrid generative discriminative approach employed to classify the nuclei
can be summarized as follows:

1. Nucleus image characterization via feature extraction and summa-
rization: in this step each image is analysed following the pipeline described
in the previous section, giving as output features, histograms.
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Table 1. Features extracted from patch images for training and testing. All features
are histograms.

Shortcut Feature Description

All Patch Intensity: A 16-bin histogram of gray scaled patch

Fg Foreground Intensity: A 16-bin histogram of nucleus

Bg Background Intensity: A 16-bin histogram of background

Lbp Local Binary Patterns: This local feature has been shown to bring con-
siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

Col Color feature: The only feature comprising color information. The colored
patch (RGB) is rescaled to size 5x5. The 3x25 channel intensities are then
concatenated to feature vector of size 75.

Fcc Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point ([12]). The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

Sig 1D-signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape
([12]). As feature, a 16-bin histogram of the signature is generated.

Phog Pyramid histograms of oriented gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches ([6]).

2. Generative model training: given the training set, the pLSA generative
model is trained. In particular, we straightforwardly assume that the vi-
sual features previously presented represent the words wj , while the nuclei
are the documents d. With such a point of view, the extracted histograms
represent the counting vectors, able to describe how much a visual feature
(namely a word) is present in a given image (namely a document). Given the
histograms, pLSA is trained following the procedure described in Section 2.
Only one model is trained for both classes, disregarding labels. Despite its
simplicity – many other schemes may be used to fit the generative model in
a classification task [1] – this option yielded promising results.

3. Generative embedding: within this step, all the objects involved in the
problem (namely training and testing patterns) are projected, through the
learned model, to a vector space. In particular, for a given nucleus d, the
representation φ(d) in the generative embedding space is defined as the es-
timated pLSA posteriors distribution (namely the mixture of topics charac-
terizing the nuclei). In formulae we have that the

φ(d) = [P (z|d)] = [P (z1|d), · · ·P (zZ |d)] (3)

Our intuition is that the co-occurrence of visual features is different be-
tween healthy and cancerous cells. Since the co-occurrences are captured by
the topic distribution P (z|d), we are defining a meaningful score for dis-
crimination. This representation with the topic posteriors has been already
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successfully used in computer vision tasks [9, 5] as well as in the medical
informatics domain [8, 3].

4. Discriminative classification: In the resulting generative embedding space
any discriminative vector-based classifier may be employed. In this fashion,
according to the generative/discriminative classification paradigm, we use
the information coming from the generative process as discriminative fea-
tures of a discriminative classifier.

5 Experiments

In this section the presented approach has been evaluated. In particular we give
details about the experimental setup, together with the results and a discussion.

The classification experiments have been carried using a subset of the data
presented in [20]. We selected a three patient subset preserving the cancer-
ous/benign cell ratio. In particular, we employed three patients: from the la-
beled TMA images, we extracted 600 nuclei-patches of size 80x80 pixels. Each
patch shows a cell nucleus in the center (see Figure 3). 474 (79 %) from the
nuclei form our data set (as said before, we retain only those where the two
pathologists agree on the label): 321 (67 %) benign and 153 (33 %) malignant
nuclei.

The data of 474 nuclei samples is divided into ten folds (with stratification).
We have eight representations (All, Bg, Col, Fcc, Fg, Lbp, Phog, and
Sig); for each representation and each fold, we train pLSA on the training set
and apply it to the test set. The number of topics has been chosen using leave-
another-fold-out (of the nine training folds, we used 9-fold cross validation to
estimate the best number of topics) cross validation procedure on the training
set. In the obtained space, different classifiers have been tried. The obtained
results have been compared with those obtained with the same classifier working
on the original histograms (namely without the intermediate generative coding).
In particular we employed the following classifiers (where not explicitly reported,
all parameters have been tuned via cross validation on the training set)

– (svl): support vector machines with linear kernel (this represents the most
widely employed solution with hybrid generative-discriminative approaches).

– (svp): support vector machines with polynomial kernel: after a preliminary
evaluation, the degree p was set to 2.

– (svr): support vector machines with radial basis function kernel.
– (ldc): linear discriminant classifier
– (qdc): quadratic discriminant classifier
– (knn): k-nearest neighbor classifier
– (tree): decision tree

All results were computed by using PRTools [10] MATLAB toolbox. They are
reported in tables 2 and 3, for the SVM family and for the other classifiers,
respectively. The feature representations where the proposed approach overper-
forms the original space are marked with bold face (statistically significant dif-
ference with paired t-test, p = 0.05). In particular, results are averaged over ten
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runs. In all experiments the standard errors of the mean were inferior to 0.01 for
support vector machines and 0.017 for other classifiers.

Table 2. Accuracies with SVM. ORIG is the original histogram based feature space,
whereas PLSA stands for the proposed approach.

svl svp svr
ORIG PLSA ORIG PLSA ORIG PLSA

All 68.36 74.26 65.40 75.06 74.47 75.11
Bg 72.88 70.82 66.79 71.50 74.22 71.92
Col 66.90 69.03 56.93 70.32 68.98 68.82
Fcc 67.30 67.72 66.89 67.92 67.95 68.57
Fg 70.68 71.97 64.12 72.62 70.49 71.09
Lbp 68.61 69.43 42.36 70.70 68.79 70.47
Phog 75.45 79.67 63.92 79.22 76.55 76.80
Sig 67.72 68.34 58.64 67.69 67.72 67.72

Table 3. Accuracies using different classifiers. ORIG is the original histogram based
feature space, whereas PLSA stands for the proposed approach.

ldc qdc knn tree
ORIG PLSA ORIG PLSA ORIG PLSA ORIG PLSA

All 71.71 70.21 69.55 69.01 72.35 73.44 ∗71.97 70.30
Bg 70.79 68.31 68.48 67.52 74.25 71.29 62.25 67.29
Col 69.42 69.86 67.55 67.94 69.41 68.62 60.62 62.44
Fcc 66.68 65.25 60.76 65.19 66.66 67.71
Fg 70.24 70.70 68.59 68.78 69.79 70.48 63.07 63.46
Lbp 71.55 71.98 70.71 68.37 71.13 70.29 60.14 63.97
Phog 75.29 ∗77.57 67.93 ∗74.62 70.71 ∗74.69 63.51 66.49
Sig 67.73 66.87 64.74 68.95 63.50 67.72 58.04 61.85

Observing the Table 2, we can see that the best accuracy using a SVM
is 75.45% whereas the best accuracy on the pLSA space is 79.22 %. For most
representations (except Lbp, Phog and Col), the accuracies of different kernels
on the original space do not have large differences. We also observe that the data
set is a difficult data set because there are some classifiers which have accuracy
equal to the prior class distribution of the data set (67 per cent). We see that
except the support vector machine with rbf kernel, the space constructed by
pLSA always supercedes the original space (except Bg on svl) in terms of average
accuracy. The bold face in the table shows feature sets where pLSA space is more
accurate than the original space using 10-fold CV paired t-test at p = 0.05.
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By looking at the result with other classifiers (Table 3), we can again see that
when we transform to the space with pLSA, we get higher accuracies with other
classifiers but this time the difference is not strong as in support vector machines.
The values with a “*” shows the best classification accuracy using that classifier
and again bold face shows feature sets where pLSA space is more accurate than
the original space. We can see that, although the number of feature sets where
pLSA is better than the original space decreases, except for the decision tree,
pLSA space gives the best results for all the classifiers.

5.1 Discussion

We have seen that by using the generative abilities of pLSA and applying the
idea of natural language processing to shape features, we can project our data
to another space where discriminative classifiers work better. We see that our
algorithm automatically finds number of topics and on the space created by
pLSA, we have the best results. We observe this behavior with support vector
machine variants and also other classifiers.

In this preliminary work, we used a subset of all available subjects to test
if the new space created by pLSA has advantages. We have seen that with the
new space we have higher accuracy than applying on the original feature space.
This promising result encourages us to use more data and apply other kernels to
get better classification accuracies. In this work, we use the outputs of pLSA as
features in a new space. Another approach would be to directly compute kernels
after pLSA and use them for classification. We will explore this option as a future
work.

6 Conclusion

In this paper, we propose the use of pLSA to transfer the given shape features
into another space to get better classification accuracy for the classification of
nuclei in TMA images of renal clear cell carcinoma. Our results show that the
features computed by pLSA are more discriminative and achieves higher classi-
fication accuracies.

This study extends our previous works by using pLSA to project the data
into another space which is more discriminative. We have used the outputs of
pLSA as features in a new space but for future work, we plan to compute kernels
from the outputs of pLSA and directly use them in kernel based classification.
Since the outputs of pLSA are actually probability density functions, we believe
that by computing the kernel directly and applying them in a kernel learning
paradigm, we may achieve better classification accuracies.

In this work, we used image based feature sets for creating multiple features.
In a further application of this scenario, the use of other modalities or other
features (e.g. SIFT) extracted from these images, as well as the incorporation of
complementary information of different modalities to achieve better classification
accuracy is possible.
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