Vis Comput
DOI 10.1007/s00371-014-0938-1

ORIGINAL ARTICLE

A sparse coding approach for local-to-global 3D shape description

Davide Boscaini - Umberto Castellani

© Springer-Verlag Berlin Heidelberg 2014

Abstract The definition of reliable shape descriptors is
an essential topic for 3D object retrieval. In general, two
main approaches are considered: global, and local. Global
approaches are effective in describing the whole object, while
local ones are more suitable to characterize small parts of
the shape. Recently some strategies to combine these two
approaches have been proposed which are mainly concen-
trated to the so-called bag of words paradigm. With this
paper we address this problem and propose an alternative
strategy that goes beyond the bag of word approach. In par-
ticular, a sparse coding technique is exploited for the 3D
domain: a set of local shape descriptors are collected from
the shape, and then a dictionary is trained as generative
model. In this fashion the dictionary is used as global shape
descriptor for shape retrieval purposes. Several experiments
are performed on standard databases in order to evaluate the
proposed method in challenging situations like the case of
‘SHREC 2011: robustness benchmark’ where strong shape
transformations are included, and the case of ‘SHREC 2007:
partial matching track’” where composite models are con-
sidered in the query phase. A drastic improvement of the
proposed method is observed by showing that sparse coding
approach is particularly suitable for local-to-global descrip-
tion and outperforms other approaches such as the bag of
words.
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1 Introduction

3D shape retrieval methods are important to deal with the
continuously increased availability of 3D models [9, 14,18,
20,34]. A general aim is to define a proper representation of
the objects in order to improve the indexing phase for data
retrieval purposes. In the literature, such representation is
called shape descriptor or signature.

Roughly speaking, descriptors can be global or local [14,
19,34]. The former consist of a set of features that effectively
and compactly describe the whole 3D model [14]. The latter,
instead, are collections of local features of relevant object
subparts (i.e. single points or regions) [14,19,34].

In this paper, we address the problem of combining the
two approaches by defining a global shape descriptor start-
ing from a set of local point signatures [1,8,12,33]. In this
fashion it is possible to obtain the twofold advantage: from
one side we are able to compare global shapes rather than
a set of single points. From the other side, we exploit local
information which, in general, is more robust to noise and
missing parts and more suitable to deal with partial objects.
A popular method consists of introducing a counting pro-
cedure by collecting local characteristics into a histogram
which provides a local-to-global signature. Examples of this
paradigm are shape distance distributions (SDD) [14] or the
bag of words approach [6,12,36].

With this work we propose to go beyond the bag of words
approach by exploiting recently proposed dictionary learning
methods employing sparse coding techniques [23,24]. Start-
ing from a set of local signatures we learn a dictionary which
is able to summarize the most relevant properties of such set.
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This leads to a more sparse representation of the shape which
is used for its description. We propose this approach in a
shape retrieval context. In particular, we design and evaluate
two matching strategies: (i) shape-to-shape, and (ii) shape-
to-class. In shape-to-shape case we train a dictionary from
the set of point-signatures extracted in a single shape (i.e.,
one dictionary per shape). In shape-to-class case we train a
dictionary from all point-signatures of shape belonging to
the same class (i.e., one dictionary per class). Once the dic-
tionary have been learned, in the query phase, a given shape
is generated by all available dictionaries and it is assigned to
the class or shape with less generative error.

A well-defined shape retrieval pipeline is proposed by
combining effectively the most promising local shape descrip-
tors with the proposed local-to-global approach based on
sparse coding. The main steps are:

— Local descriptors computation,
— Dictionary learning by sparse coding,
— Shape matching by best generative signature estimation.

In particular, as local descriptors we exploit two recently
proposed approaches: (i) the Wave Kernel Signature [1]
which adopts a diffusion geometry paradigm, and (ii) the
local depth SIFT (LD-SIFT) [12] that extends the SIFT image
descriptor [22] to meshes.

Then, dictionary learning method is applied by using the
Lasso model [35]. Although such approach is quite popular in
signal processing, to the best of our knowledge, only recently
it has been proposed in computer vision for 2D image coding
and very few work has been done in 3D domain (e.g., [28]).

Experiments are evaluated on two standard dataset, i.e.
SHREC 2011 robustness benchmark [5] and SHREC 2007
partial matching track [25,37]. We show a drastic improve-
ment over both state-of-the-art global shape descriptor, such
as Shape DNA [29], and standard local-to-global approaches,
such as shape distance distribution [14]. Furthermore, the
proposed sparse coding approach is exhaustively compared
with bag of words method [6,12,36] from both method-
ological and experimental aspects. A preliminary version
of this work has appeared at the 3DOR 2013 conference
[4].

The rest of the paper is organized as follows. Section 2
reports the state of the art by focusing mainly on the shape
descriptors which are related to the proposed work. Section 3
introduces the two proposed local shape descriptors, namely
WKS, and LD-SIFT. Section 4 describes the background of
sparse coding and it introduces the proposed local-to-global
approach. In Sect. 5 we discuss the main differences between
the bag of words and the proposed sparse coding approach.
Section 6 reports the experimental results by showing the
performance of the proposed descriptor in comparison with
other methods. Finally, in Sect. 7, conclusions are drawn and
future work is envisaged.
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2 Related work

Ideal shape descriptors should satisfy properties like dis-
criminativeness, invariance to pose and shape deforma-
tion, robustness to noise, compactness and so on (see, e.g.,
[21,29]). Several work have been proposed in order to define
reliable descriptors satisfying these properties. In the follow-
ing we revise the main approaches for 3D shape description
namely global, local, and local-to-global methods. For amore
detailed overview we refer to [19].

2.1 Global methods

Regarding global methods we highlight two different para-
digms: (i) methods based on the deformation-invariant rep-
resentation of the shape, and (ii) methods based on spectral
shape analysis. In the first approach, in order to deal with
deforming objects, the non-rigid shape is modified to obtain
a ‘standard’ common pose. To this aim Elad and Kimmel
[13] proposed a multidimensional scaling (MDS) algorithm
by embedding the geodesic distances among the mesh ver-
tices in a 3D Euclidean space. The resulting canonical form
can be treated as a rigid shape, and can be compared to other
shapes by a standard rigid alignment method such as iterative
closest points (ICP) [3].

In the second approach, rather then directly matching the
shapes, the comparison is carried out between their descrip-
tors. A largely employed class of methods is based on eigen-
decomposition of Laplace—Beltrami Operator (LBO) of the
underlying shape [14,17,34]. For instance Shape DNA [29]
computes the spectral decomposition of the LBO defined on
the manifold represented by the shape and uses the truncated
set of the computed eigenvalues as global signature. This
leads to a very effective descriptor which was successfully
employed on several applicative scenarios, such as shape
retrieval and shape matching in medical domain [11,18,29].
A similar approach is proposed in [30] where the signature
is defined as the collection of the eigenvectors of the LBO
normalized by the corresponding eigenvalues.

2.2 Local methods

Local descriptors are employed for point-to-point correspon-
dences [10,14,34]. A common approach is to collect local
geometric properties on the point neighborhood and accu-
mulate these values on a multidimensional histogram. Exam-
ples are Spin Images [15] or Shape Context [2]. In particular,
Waubhrer and colleagues [38] proposed to deal with deformable
shapes by combining Spin Images with shape transformation
methods. Surfaces are first projected onto the canonical form
[13] and then local descriptors are computed [15]. Darom and
Keller [12] proposed an extension of the well known SIFT
descriptor [22] from images to shapes, namely the Local
Depht SIFT (LD-SIFT). A feature detection phase is car-
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ried out in order to select the most relevant surface points.
Then a local descriptor is computed by collecting local sur-
face gradients in the neighborhood of the feature point. Here
the scale invariance is obtain by estimating automatically the
size of the local support. Other approaches exploit proba-
bilistic properties of the shape. For intance in [10] a Hidden
Markov Models is adapted to work on 3D surfaces and it is
used as local generative descriptor.

Another popular class of local descriptors are based on the
property of the heat kernel associated to the manifold. All
of these methods can be grouped under the name diffusion
geometry. In [33] the so-called heat kernel signature (HKS)
was introduced which exploits the local surface properties at
different scales. Some extensions of HKS are proposed in [§]
to deal with scale invariance. Recently, in [1], the so-called
wave kernel signature (WKS) was proposed. WKS employs
a different physical model and therefore it is related with
oscillation rather than heat diffusion processes.

2.3 Local-to-global methods

Local-to-global approaches are therefore introduced to define
a global signature from a collection of local descriptors
[6,11,12,14,36]. A simple method consists of computing
pairwise distances among points in the descriptor space and
accumulate these distances into a histogram [14]. In [11] the
authors proposed the Global-HKS descriptor by collecting all
the HKS signatures and defining a histogram for each scale.
More sophisticate techniques exploit probabilistic methods,
such as in [26], where a probabilistic fingerprint is intro-
duced. Being encouraged by feature-based methods devel-
oped in Computer Vision, several work employed the so-
called bag of words paradigm [6,12,16,36]. In [6] the bag of
word descriptor is computed from the set of local HKS sig-
natures. In [36] a region-based approach is introduced where
the visual words are defined by region properties computed
after shape segmentation. In [12] authors extracted the bag of
words from local LD-SIFT signature described above. In [16]
a spatial constraint is introduced in the bag of words process.
Moreover, the spectral transform of the LBO is computed
over local patches rather than the whole shape.

In this paper, we propose to exploit dictionary learning
and sparse coding approaches [23,24]. To the best of our
knowledge, sparse coding approach is very few adopted for
3D shapes and only recently some methods have been pro-
posed, such as in [28], for point-to-point correspondences of
non-rigid or partial shapes.

3 Local descriptors

In this work, we exploit two different approaches to describe
local shapes: (i) descriptors based on diffusion geometry, and
(ii) descriptors based on scale-invariant features.

3.1 Descriptors based on diffusion geometry

In the context of diffusion geometry, the most popular local
descriptor is the HKS [33] and its scale-invariant version,
SI-HKS [8]. They are based on the properties of the heat
diffusion process on the shape governed by the heat equation

0
——A ,t)=0. 1
(2 a)ucer o

From the signal processing perspective the solution u (x, )
of differential equation (1) at time 7 is defined by the convo-
lution between the impulse response h;(x, t) and the initial
data ug(x),

u(x, 1) = /hxx, Wio(y) do (¥).

The kernel of this integral operator is called heat kernel and
it corresponds to the amount of heat transferred from point
X to point y after time ¢. In particular, HKS represents the
autodiffusion process &, (x, x) centered in a vertex x of the
shape, at different time scales.

As described in [21], the heat kernel descriptor could be
thought as a collection of low-pass filters. This emphasizes
how low frequencies damage the ability of the descriptor to
precisely localize shape features. A remedy to the poor fea-
ture localization of the heat kernel descriptor was proposed
by the so-called WKS [1]. The authors proposed to replace
the heat diffusion equation (1), by the Shrédinger equation:

0
(5 + iA) v(x,1) =0,

where v(x, t) is the complex wave equation. Here the physi-
cal interpretation is different: it represents the average prob-
ability of measuring a quantum particle with a certain energy
distribution at a specific location. That is, instead of repre-
senting diffusion, v has oscillatory behavior.

Letting vary the energy of the particle, the WKS encodes
and separates information from various different frequencies.
Similarly to the former signal processing interpretation of
HKS, the WKS can be thought as a collection of band-pass
filters [21]. As a result, the wave kernel descriptor exhibits
superior feature localization properties.

3.2 Descriptors based on scale-invariant features.

Darom and Keller [12] proposed to extend the popular
scale-invariant feature transform (SIFT) [22] from images
to meshes. Their method consists of two steps: (i) detection
of feature points, (ii) computation of the scale-invariant local
descriptors.

In the image domain, the SIFT operator achieves the detec-
tion of interest points invariant to image scale and rota-
tion, exploiting the property of the DoG operator. The main
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problem in the generalization of the DoG operator from a
flat 2D images to a curved 3D shape is that, in the latter
case, the vertices of the mesh are non-uniformly sampled.
To overcome this difficulty, in [12] the authors proposed a
density-invariant Gaussian filter on the mesh geometry. This
gives rise to a set of filtered meshes. Feature points are then
extracted as local maxima both in scale and location. The
main characteristic of the method consists of providing each
interest point with an adaptive support proportional to the fil-
ter width. Indeed, by controlling the local scale the tradeoff
between locality and robustness to noise is carried out.

Once feature points are obtained the local scape descrip-
tors are computed. More in details, Darom and Keller [12]
compute a plane at each interest point using the two leading
eigenvectors of the PCA around the interest point. In par-
ticular, the neighborhood of the interest point is defined by
the adaptive local scale by providing scale invariance. The
descriptor is the depth map computed by projecting the ver-
tices around the interest point onto the estimated plane. In
order to gain rotation invariance, the authors define a dom-
inant angle in the local plane and cyclically shift the radial-
polar histograms within the SIFT descriptor, such that the
dominant angle is the zero angle.

4 Global shape descriptor by sparse coding

In this section we give a brief overview of general theoretical
background on sparse coding. Then, we highlight our main
contribution that is how to exploit sparse coding to propose
a global signature from a set of local descriptors.

4.1 Background

A general problem in machine learning and pattern recogni-
tion can be formulated as follows (see, e.g., [31]). Given two
classes of objects x;, and a new previously unseen object x,
how can we assign the unknown object to the right class? To
distinguish the objects belonging to a class from the others,
we assign them a label y;, i.e.

(-xlv yl)v ey (-xnv )’n) € X X {:l:l}v

where the labels are chosen as +1 and —1 for the sake of
simplicity and X is some non-empty set containing the pat-
terns x;. Given some new pattern x € X, we want to infer the
corresponding label y € {£1}. To this end an interpolation
function f on the given data, i.e.

min ||y; — Fel3

is not effective since it is not able to generalize well for unseen
patterns. A possible approach to avoid this problem is sug-
gested by Tychonoff regularization theory and consist of a
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restriction of the class of admissible solutions to, e.g., a com-
pactset. Indeed, the previous problem can be reformulated as:

min |y; - FDIE+ AR,

where

— [lyi — f(xp)|3 is the data term,

— R(f) is the regularization term,

— A > 0 is the so-called regularization parameter which
specifies the trade-off between fidelity to the data in the
sense of ¢2 norm, as represented by the former term, and
simplicity of the solution, enforced by R(f).

An example of regularization operator is R(f) = || f" ||z,
for some m € N. This particular choice promotes the smooth-
ness of the solution.

Let we now address a slightly different problem. Given
a sentence s and a dictionary D, we want to explain the
sentence s with words contained in D. This problem could
be defined as

min [|s — aD||3,
o

where the idea is that the vector « picks up only the words
that describe the sentence s. In general, a dictionary is over-
complete: there are a lot of words with the same or similar
meaning. For this reason we might be interested to consider
the minimum number of words as possible. Again regular-
ization theory help us. If we consider the problem

min ||s — aD|3 + AR(x), )
o

with the choice R(«) = |||} we are promoting the sparsity
of the solution. In this case we refer as sparse coding and the
corresponding problem is known in the literature as Lasso
formulation (see, e.g., [35]).

In general, as described in [28], s could be though as a
generic signal and the interpretation of Lasso formulation
could be the following: many families of signals can be rep-
resented as a sparse linear combination in an appropriate
domain, usually referred to as dictionary, so thats ~ aD. In
other words, the signal s could be generated by a D. Finally,
given the signal s and the dictionary D, the solution of the
unconstrained convex minimization problem of equation (2)
gives us the sparse vector «.

However, in general the dictionary D is not available. We
therefore are interested in inferring both the vector o and the
dictionary D from the signal s. The problem becomes:

min(min |ls — aD|3 + 2lal)). 3)

In [23,24], problem (3) was solved employing an alternating
minimization method between the variables D and «.
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As a further step we should consider that in the more
general case, instead of a single signal s, we have a collection
of signals s = {si}izl ~. Therefore, Equation (3) can be
generalized as:

,,,,,

N

1 . S 4

min 3 2. min (15" = DI + 2l 1) )
i=

where o = {a/}i—.__y is though as a collection of vectors.

.....

4.2 Local-to-global descriptors

Since we want to apply sparse coding technique to the context
of shape analysis, we consider as signals s the collection
of local descriptors at each vertex of the considered shape.
Then, learning techniques described in [23,24] are employed
for solving problem (4), i.e. learn the dictionary D. In this
paper we exploit two approaches: (i) shape-to-shape, and (ii)
shape-to-class.

4.2.1 Shape-to-shape

In the shape-to-shape approach a dictionary is trained for
each shape. In this fashion the estimated dictionary is a sort of
global signature of the given shape. Then, in the query phase,
given a new unseen object the retrieval is carried out by trying
to generate it from all the available dictionaries and assign to
it the shape associated to the dictionary which produces the
less generative error. Note that in this approach the shapes
are compared pairwise as usual for shape retrieval. More in
details, given the set of n training shapes: {0y, ...0,}, a
set of n dictionaries are estimated {D1, ...D,}. In particular
a dictionary D; is computed by solving problem (4) where
the input s; is the set of local signatures extracted from the
shape O;.

In the query phase, given the query object O, and its col-
lection of local signatures s, the retrieval is obtained by the
following steps: (i) solve problem (2) for the case of multi-
signals for each dictionary D ;, which outputs is aé , (i1) assign
to the query object O, the retrieved object Oy, such that:

t : j
lIsq — a[r]e Dyl = m/,m lIsq — acijj”- ©)

Note that in Eq. 5 a L, norm is computed which is very
sensitive to outliers. This means that few wrong signals s; S
s, can affect the overall retrieval performance. In order to
address this issue we introduce a robust approach. Let A =
(AJ S, A{V) the vector of generative errors of each signal,

where Alj = (s; — aéDj), and N is the number of signals in

query shape O, . Let A/ be the ordered generative error vector
aiming at organizing the error components in ascendent order.

The robust overall generative error is therefore computed as:

P
sy — e Dyer || = min D" A, (6)
J

i=1

where P < N represents the number of signal inliers. In
this fashion, the highest error components, that are associ-
ated to ouliers, are excluded from the overall generative error
computation.

Finally, if the query and the retrieved share the same label
the retrieval phase is satisfied.

4.2.2 Shape-to-class

In this case we consider another matching strategy. It is worth
noting that s could be considered also as the collection of
local signatures of an entire class of shapes. For instance,
several deformations of the same object or several objects
that are instances of the same class can contribute in learning
a joint dictionary. To this aim a single dictionary is trained
for each class by therefore reducing the number of training
procedures. In this fashion the matching is carried out at class
level rather than at shape level. More precisely a matching-
by-recognition strategy is employed by adopting a classifica-
tion procedure based on the sparse coding framework. More
in details:

- {Of, ... O} are several instances of objects belonging to
the same class c,

— k is the number of instances,

— D€ represents the dictionary of class c.

D¢ is trained from all the signatures {s{,...s;} of the
instances of the class c. For example, if ¢ represent a class
of noise deformations of the same shape O, then Of repre-
sents a noise deformation of O and k the number of noise
deformations of the shape O present in c.

Then, in the query phase, given a query shape O, and its
collection of local signatures s,, we solve (the multi-signals
version of) problem (2) for each class-based dictionary D¢
and we obtain the vectors osz . Finally, at the query shape O,
is then assigned the class ¢ such that

Is — gDl = min s — o D @

Also in this case it is possible to compute a robust gener-
ative error as described in Sect. 4.2.1.

In retrieval applications, the principal advantage of this
matching-by-recognition method is that it allows to compare
the signatures of a query shape only with the dictionary of the
classes of the shapes present in the database considered. Con-
versely, in standard shape-to-shape methods, the matching is
done between the query shape and all the instances of the
database. Another important advantage is that the dictionary
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can encode more instances of the same non-rigid deforma-
tion, making the proposed signature a descriptor of the entire
class of deformations rather than a single shape descriptor.

5 Sparse coding and bag of words

There are clear analogies between the sparse coding and bag
of words approaches. Both methods define a dictionary com-
posed of atoms or words which are in somehow representa-
tives of the input signals. The advantage consists of avoiding
a point-to-point matching between shapes. More precisely,
the matching is intermediated by the words of the dictionary:
instead of performing a direct comparison between local sig-
natures of two shapes, each signature of a given shape is
compared with only the words of the dictionary. The main
differences between sparse coding and bag of words are in
the way such dictionaries are estimated. In the bag of words
approach a dictionary is defined by a clustering procedure
on the feature space where the centroids of such clustering
become the visual words. In sparse coding instead a genera-
tive approach is introduced in order to represent a signal as a
linear combination of the atoms. Indeed, in the bag of words
approach an input signal is associated to a single visual word
(i.e., the nearest). Conversely in sparse coding method an
input signal can be associated to several atoms and, in gen-
eral, the number of involved atoms depends by the strongness
of the sparsity constraint. Moreover, a relevant difference
between the two methods involves also the matching phase.
In fact, in the bag of word paradigm the dictionary enables
the construction of the bag of word descriptor and then shape
matching is carried out by a direct comparison between such
descriptors (in general Ly norms is used). In the sparse cod-
ing method instead the shape matching is fully intermediated
by the dictionaries. In particular, the dictionary is not used
to compute a further descriptor, but it is employed in the
matching phase to compute directly the matching error. It is
worth noting that in [28] authors also proposed sparse cod-
ing method for shape matching. They formulated the prob-
lem of dense shape matching as a permuted sparse coding
approach. In particular, they solved simultaneously for an
unknown permutation ordering the regions on two shapes
and for an unknown correspondence in functional represen-
tation [27]. This leads to a dense point-to-point matching,
which is the main objective of this work. In our paper we
differ from [28] since we obtain a shape comparison without
requiring an explicit point-to-point matching.

6 Results
In this section we evaluate the proposed method on challeng-

ing datasets. SHREC 11 Robustness benchmark is useful to
test the performance against strong shape deformations. In
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SHREC 2007 the evaluation is more focused on the capability
of methods in dealing with partial or composed objects.

6.1 Experimental setup

According to the pipeline proposed in Sect. 4, we extract the
local descriptors for each vertex of each shapes.

For the WKS [1] we based on the Matlab code freely
available.! In all our experiments the parameters were fixed
accordingly with [1]. In particular, we considered n = 200
eigenvalues of the LBO, a variance 0 = 6(¢p — ¢1) and
we evaluate at M = 500 values of energy e, where epin =
log ¢1 + 20 and epmax = log ¢, — 20 and ¢; denotes the ith
eigenvalue of the Laplace—Beltrami operator.

For the LD-SIFT we used the code available from the
Matlab File exchange repository.” In all our experiments we
used default parameters as described in [12].

Once local shape descriptors are computed, sparse coding
is employed for local-to-global descriptor. For the numeri-
cal solution of the optimization problem (2) and (4), we use
SPArse Modeling Software (SPAMS), an open-source opti-
mization toolbox based on [23,24]. In all our experiments we
make the trivial choice A = 1/2. For the case of shape-to-
shape matching we fix a dictionary of M = 60 atoms, while
in the case of shape-to-class we define M = 500 atoms since
the dictionary should be more expressive.

Finally, we compare the performances of our method with
a global signature, namely Shape DNA [29], and with two
well-known quantization approaches [14]: signature distance
distribution (SDD) and bag of words (BoW).

Shape DNA signature [29] consist of the truncated spec-
trum of the LBO. For the application of this popular global
descriptor to retrieval scenarios, we follow the suggestions
reported in [18]. More specifically, we consider only the first
13 eigenvalues and rescale the spectrum by the shape’s area
to obtain the scale invariance of the descriptor.

Signature distance distribution (SDD) is a simple example
of local-to-global descriptor. The idea consists of computing
the histogram of Euclidean distances between pairs of point
signatures randomly sampled on the shape. In order to cap-
ture the underlying geometry, the random selection of points
are repeated several times. In our case, the random selec-
tion was repeated 10 times, leading to about 10* distances
between local descriptors. The output is a histogram ables to
discriminate between different shapes, as reported in Fig. 1.
For matching purposes, at each pair of shapes we compute
the £2 error between vectors of histogram occurrences.

Bag of word approach is the state-of-the-art method for
local-to-global shape matching. In this paper we imple-
mented the standard version. Starting from the set of all point

! http://vision.in.tum.de/publications.

2 http://www.mathworks.com/matlabcentral/fileexchange/.
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signatures extracted from all shapes a quantization procedure
is computed by k-means clustering [31]. The number of cen-

10 20 3 0 50 60

Fig. 1 Comparison between the SDD of the shapes of a cat and a dog.
In the former there is a peak approximately around the 20th bin, in the
latter around the 40th bin

Adw RN

troids is defined in accordance with the number of atoms
computed for the sparse coding approach, i.e., k = 60.

6.2 SHREC 11 robustness benchmark

The database is composed of 12 different triangulated meshes
from TOSCA [7] and Sumner [32] databases, that we con-
sider as null shapes, and their non-rigid deformations. For
each null shape reported in Fig. 2, transformations were split
into 9 different types:

— affine,

— big holes,

— micro holes,

— scale,

— down sampling (less than 20 % of original points),

— additive Gaussian noise,

— shot noise,

— topology (welding of shapes vertices resulting in different
triangulation), and

— view,

as reported in Fig. 3. Each triangular meshes has about 1,500
vertices.

Each type of transformation appeared in five different ver-
sions numbered from 1 — 5. In all deformation types, the

MW <S@

Fig. 2 Null shapes of our database taken from TOSCA [7] and Sumner
[32] databases. From left to right we find man, dog, cat, man, woman,
horse, camel, cat, elephant, flamingo, horse and lioness. In all our exper-
iment we consider correct the matching between two men, cats or horses.

The camel and elephant shapes are created by pose transfer from the
galloping horse, and the lioness from pose transfer from the crouching
cat

A< AL AAALA

Fig. 3 Examples of deformations types considered in our database, taken from SHREC 11 robust benchmark. From left to right we find the null
shape, affine, holes, micro holes, scale, sampling, noise, shot noise, topology and view
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Table 1 Comparison between

the nearest neighbor retrieved Deformation SDD Shape DNA BoW Sparse coding
shape by S.DD’ shape DNA and Corrects % Corrects % Corrects % Corrects %
sparse coding approach
Affine 45/72 0.67 49/72 0.68 60/72 0.83 59/72 0.82
Holes 36/72 0.50 58/72 0.81 52/72 0.72 65/72 0.90
Microholes 65/72 0.90 64/72 0.89 65/72 0.90 65/72 0.90
Scale 72/72 1.00 71/72 0.99 71/72 0.99 72/72 1.00
Sampling 67/72 0.93 69/72 0.96 72/72 1.00 72/72 1.00
Noise 71/72 0.99 72/72 1.00 71/72 0.99 72/72 1.00
Shotnoise 70/72 0.97 72/72 1.00 72/72 1.00 72/72 1.00
Topology 58/72 0.80 55/72 0.76 68/72 0.94 72/72 1.00
View 11/72 0.15 16/72 0.22 37/72 0.51 49/72 0.64
Best performance are Average 495/648  0.76  526/648  0.81  568/648  0.88  598/648  0.92

highlighted in bold

version number correspond to the transformation strength
level: the higher the number, the stronger the deformation
(e.g., in noise transformation, the noise variance is propor-
tional to the strength number). For scale transformation, the
levels 1-5 correspond to scaling by the factor 0.5, 0.875,
1.25, 1.625 and 2.

For each class of deformations, we have 60 shapes, 5 for
every null class. The entire database contains 552 shapes: the
540 deformed shapes and the 12 null shapes.

Comparison results are shown in Table 1. Note that we
show shape-to-class strategy only since results are already
quite satisfactory. In practice, the table shows the retrieval
performance in terms of recognition accuracy obtained in a
Nearest Neighbor principle. For this set of experiments we
employed WKS signatures as local shape descriptor. The pro-
posed sparse coding method clearly improves on the most of
the deformation classes with respect to SDD, Shape DNA,
or BoW. Only for affine transforms sparse coding performs
slightly worse than BoW. In particular, it improves drasti-
cally in the class of big holes, topology and view defor-
mations. It is worth noting that on view deformation the
improvement with respect to Shape DNA was expected: a
global descriptor fails to identify correctly partial views of
a shape. The interesting facts with this kind of deforma-
tion is that our method evidently outperforms with respect
that SDD which is a basic local-to-global approach. In noise
and shot noise deformations it performs like Shape DNA
although sparse coding approach consider significantly more
eigenvalues. (it is a well known fact that the first eigenval-
ues are related to shape’s lower-frequency contents, mean-
while higher eigenvalues is related to higher-frequency con-
tents and manifest themselves as rough geometric features,
i.e. shape details). Bag of words approach performs well
as expected but overall the proposed sparse coding method
shows better results, by evidencing a more stable and robust
behavior.

@ Springer
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Fig. 4 Class-signature dissimilarity matrix for noise deformations.
Cold colors represents lower values, hot colors represent higher value

Figure 4 reports the dissimilarity matrix of the class of
noise deformations. Note that since we used shape-to-class
strategy the matix is not a classical dissimilarity matrix
between shape descriptors. Here, each column represents
a class of shape while each row represents the mean error
between the generative errors of shapes belonging to the
same class (i.e., 5 non-rigid deformations and the underlying
null shape). In this experiment we have omitted the second
instances of repeated classes as man, cat and horse for a bet-
ter visual result. Cold colors represent small error values, hot
colors represent high error values. It is interesting to note that
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Fig. 5 Precision and Recall curves for each transformation

man and woman classes has small error with respect to other
classes, this remark the similarity property of the proposed
descriptor.

In order to further evaluate the retrieval performance we,
show precision and recall curves for each transformation
(Fig. 5). To compute this curve a shape-to-shape strategy
is carried out. This performance confirmed the behaviour
already observed in Table 1. Figure 6 reports the precision
and recall curves for the overall experiment. As expected our
method performs clearly better than others and overall BoW
is superior than ShapeDNA and SDD.

6.3 SHREC 07 partial shape retrival
SHREC 2007 partial shape retrieval dataset is composed of

a training set of 400 models grouped into 20 classes [37].
Every model is represented as a watertight manifold mesh.

05

recall

05
recall

06 07 08 0.9 1 02 03 0.4 06 08 09 1

Figure 7 shows all 400 models of the 20 classes. Note that
the dataset is challenging since there is a strong intra-class
variability. Furthermore, there is a query set composed of
30 models each one obtained by combining subparts of the
training set. In particular, for each query model a ground-truth
classification is provided by defining which class is highly
relevant, marginally relevant or non-relevant. Figure 8 shows
the composite models of the query set.

In order to evaluate the retrieval performance the so-called
Normalized Discounted Cumulative Gain curves are com-
puted [37]. For this experiment we evaluated the shape-to-
shape strategies since there is a strong intra-class variabil-
ity and therefore the shape-to-class approach is likely to
fail. Both the local shape signatures, namely WKS and LD-
SIFT, are considered and combined with both sparse cod-
ing and Bag of Words quantization procedure. This leads to
the following cases: (i) Sparse-WKS, (ii) Sparse-LD-SIFT,

@ Springer



D. Boscaini, U. Castellani

1

overall
T

S e

0.6

c
o
(7]
‘3 05f
o
=
[s%
041
03
02
—6— sparse coding
0.1} —w— BoW H
—g— shapeDNA
—w— SDD
0 L I 1 1 L L L T I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

recall

Fig. 6 Precision and recall curves of all transformations

(iii)) BoW-WKS, and (iv) BoW-LD-SIFT. Figure 9 shows the
performance of the evaluated methods. Results show a clear
improvement of the sparse coding quantization method in
comparison with the standard Bag of Words approach when

the same local signatures are employed. Note that for these
experiments the robust matching approach is carried out in
order to reject the non-dominant part of the shape (i.e., out-
liers) from the overall error matching computation. In partic-
ular, a rejection rate of 50 % is employed by assuming that
the dominant shape is at least the half of the whole shape.
Overall, the LD-SIFT descriptor performed better than
WKS. There are two important differences between these
methods. LD-SIFT is a fully local method since the descriptor
is computed by collecting information from only the neigh-
borhood of the feature point. Conversely, WKS is based on
the spectral shape computation which is influenced by the
whole shape. Moreover, LD-SIFT adopot a feature-based
approach, i.e., only few interesting points are considered for
the global signature construction. WKS instead uses all the
shape vertices. Therefore, for this scenarios, since the com-
posite shapes can change drastically the global shape with
respect to their single shape components, it is reasonable
that a fully local method like LD-SIFT performed at best.
Finally, we compared results with other methods pro-
posed in literature for SHREC 07 partial shape retrival. Other
than our sparse coding approaches we evaluated the method
introduced by Toldo et al. [36], and methods proposed for

Fig. 7 SHREC 2007 partial
shape retrieval dataset
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Fig. 10 NDCG curves on SHREC 2007 partial shape retrieval data.
Comparison with other methods

the original SHREC 2007 contest [37], namely Cornea 1
and 2 [25], and ERG 1 and 2 [25]. Finally, we show the
performance of the ShapeDNA method in order to evalu-
ate a fully global method. In [36], a more sophisticated bag
of words techniques is introduced considering a hierarchi-
cal approach. Moreover, the bag of words were computed
from region descriptors after a shape segmentation proce-
dure. In Cornea 1 and 2 [25] a skeleton-based approach is
introduced, while in ERG 1 and 2 [25] the methods are based
on the Extended Reeb Graph in order to decompose the whole
shape in topologically connected subparts.

Figure 10 shows the performance of the experiments. The
Sparse-LD-SIFT method clearly outperformed other meth-
ods. Sparse-WKS is comparable with Toldo’s method. In
general, global methods like ShapeDNA are not suitable for
this context. Also perfomance obtained with skeleton-based
methods are not very convincing. Methods based on Reeb
Graph performed better but still are not comparable with
more recently proposed approaches.

7 Conclusions

In this paper a new approach for local-to-global shape
description is proposed. We have shown that sparse coding
methods are particular suitable to compactly describe a large
set of point-based descriptors. In particular we compared our
method with the bag of words approach which represents the
state of the art for extending local descriptors to the whole
shape. We have evaluated our approach on 3D shape retrieval
on some standard datasets in order to evaluate the proposed
approach on different challenging scenarios. We have shown
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that our sparse coding method is quite robust to strong shape
deformations due to noise, holes and so on. Moreover our
method was successfully able to deal with partial and com-
posite objects aiming at obtaining the benefit from both local
and global approaches.

In particular, we evaluated our local-to-global approach
starting from two different local shape descriptors. In both
the cases our sparse based method outperformed other quan-
tization methods. We expect that, given a new local descriptor
that improves the local encoding, we can employ the same
sparse coding approach and therefore improves the local-to-
global description.

Future work will address the evaluation of more advanced
sparse coding methods to further improves the local-to-global
encoding. In particular our aim is to exploit discriminative
learning in the training of the dictionaries in order to intro-
duce further constrains that can improve the shape retrieval
performance. Moreover, other constraints can be introduced
into the sparse coding problem to take into account of spatial
relationships of local parts.

Acknowledgments We would like to thank Alex and Michael Bron-
stein for useful suggestions and fruitful discussions.
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