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Abstract
In this paper we tackle the problem of automatically aligning an unordered set of range views. We propose a full
pipeline that goes from the scans to the complete 3D model. The emphasis is on the automation – no manual in-
tervention is require – and on the fact that no knowledge on the acquisition sequence is assumed. The contribution
is twofold: in the pre-alignment phase a voting scheme is proposed that discovers the overlapping relationship
among views; in the final refinement step we extend the Levenberg Marquardt-ICP to work with multiple views, in
order to solve for the absolute pose of all images simultaneously.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Three dimensional registration of range images acquired by
a 3D scanner is still a critical issue for reliably obtaining a
complete 3D model of objects or buildings [HH03, BM92,
Pul99]. In particular, when several scans (i.e., more than two
views) are involved and initial pose estimates are unknown,
the problem is called multiview surface matching. Three
main interrelated sub-problems need to be solved [HH03]:
i) determining which views overlap, ii) determining the rela-
tive pose between each pair of overlapping views, and iii)
determining the absolute pose of the views. Many works
have been proposed to address these issues but few of them
address all such three sub-problems at the same time. Sub-
problem i) aims at improving the automation of the pro-
cess. The output of this stage can be encoded in a adjacency
matrix that contains overlap information. Sub-problem ii)
is called in general pairwise registration. The ICP algo-
rithm [BM92] represents the gold standard for this problem.
As observed in [HH03], there is a mutual dependency be-
tween the overlap and relative poses. If the relative poses
are known the overlap can be easily computed, and vice-
versa. Therefore, in general these two phases are computed
in a cooperative fashion. Finally, once the adjacency matrix
is known and relative poses are available, Sub-problem iii) is
addressed by multiple view registration approaches [Pul99],
where the solution of the absolute pose estimations is com-
puted simultaneously for all views. In [HH03] the authors
focused mainly on the automation of the matching (i.e.,
Sub-problem 1) by proposing a graph-based optimization

process to determine the best view ordering. Similar ap-
proaches exploit local point signatures [KCB09, BSL11] to
obtain a robust pre-alignment. In [KMSRJ05] proposed to
address the automatic alignment as a location-recognition-
problem by integrating range data with 2D intensity images.
In [AMCO08] a fast and robust technique is introduced for
pairwise registration based on the alignment between copla-
nar and congruent 4-points sets randomly extracted from the
two views. To address Sub-problem 3, in [Pul99] a method
is proposed that uses the estimated pairwise transforma-
tions as constraints in a global multi-view step. More re-
cently, [TBC10] proposed a new global registration frame-
work based on the well-known Generalized Procrustes Anal-
ysis which is adapted to implement the ICP algorithm. In this
paper we address all the three aforementioned sub-problems
by proposing a multiview surface matching pipeline which
deals with both automation of the process and accuracy of
results. Our pipeline is composed by three stages: i) feature
points detection and description, ii) overlap estimation by
feature points matching, and iii) multiple view refinement.

2. Keypoint extraction and description

We adopt a feature-based approach which is composed of
two main phases: i) keypoint extraction, and ii) keypoint de-
scription.

2.1. Keypoint extraction

Keypoint extraction aims at detecting few and significative
feature points from the shape. To this aim we employ the
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method proposed in [CCFM08], that consists in three main
steps: (i) multiscale representation, (ii) 3D saliency measure
definition, and (iii) feature points detection. The multiscale
representation is obtained by applying N Gaussian filters on
the mesh Md , obtaining N multidimensional filtering maps
{Fd

i }, i = 1, . . . ,N. The neighborhood region of a vertex v,
over which the filtering is applied, is built by expanding a n-
rings search starting from v, and collecting all those vertices
displaced within a distance equal to 2.5σ , where σ is the
standard deviation of the Gaussian kernel. The Difference-
of-Gaussians (DoG) operator is defined as:

Fd
i (v) = g(v,σi)−g(v,2σi) (1)

where σi is the value of the standard deviation associated
to scale i. Six scales of filtering have been fixed, correspond-
ing to standard deviation values σi ∈ {1ε,2ε,3ε,4ε,5ε,6ε},
where ε amounts to 0.1% of the length of the main diagonal
located in the bounding box of the model. It is worth noting
that Fd

i (v) is a 3D vector which denotes how much the vertex
v has been moved from its original position after the filter-
ing, and this can be taken as a saliency measure. In order to
reduce the displacement vector Fd

i (v) to scalar quantity it is
projected to the normal n(v) of the vertex v. In this fashion
the scale map Md

i is obtained as:

Md
i (v) = ||n(v) · (g(v,σi)−g(v,kσi))||. (2)

Each map is then normalized by adopting the Itti’s ap-
proach [CCFM08] which increases the evidence of the high-
est peaks. A saliency map is obtained by simply adding the
contribution of each scale map. Finally, salient points are ob-
tained as maxima of the saliency map: a point is detected if
it is a local maximum and its value is higher than the 30% of
the global maximum.

2.2. Keypoint description

Keypoint description aims at attaching a descriptor to each
keypoint that must be: i) distinctive of the point, ii) invari-
ant to rigid transformations, and iii) resilient to as much
nuisances as possible (noise, clutter, partial views, sampling
rate, and so on.). We use spin-images [JH99], a well-known
surface representation that have been successfully employed
in shape matching and object recognition. There are three
parameters that control the generation of spin-images: bin
size, support distance, and support angle. Following [JH99]
the bin size have been set to 1.5 times the mesh resolution,
and the support angle to 75deg. On the contrary, the support
distance have been set to 1/10 of the size of the model, in
order to force the spin-image to be a local descriptor.

3. View Matching

The objective is to find a set of matching keypoints in any
pair of views. Keypoints have already been extracted (Sec-
tion leading to our 2.1) and a descriptor has been attached

(Section 2.2). The first step is to identify in a computation-
ally efficient way (linear in the number of views n) views that
potentially share a good number of keypoints, instead of try-
ing to match keypoints between every view pair, as they they
are O(n2). We follow the approach of [BL03] for 2D image
mosaicing. In this broad phase we consider only a constant
number of descriptors in each view (we used 300, where a
typical view contains thousands of keypoints). Then, each
keypoint descriptor is matched to its ` nearest neighbors in
feature space (we use ` = 6). This can be done efficiently
by using a k-d tree to find approximate nearest neighbors
(we used the ANN library†). A 2D histogram is then built
that registers in each bin the number of matches between the
corresponding views. Then, in the narrow phase every view
will be matched only to the m views (we use m= 8) that have
the greatest values in the 2D histogram. Hence, the number
of views to match is O(n), being m constant. The output of
this phase is a n× n preliminary adjacency matrix Â. Pre-
cise view-to-view matching follows a nearest neighbor ap-
proach, with rejection of those keypoints for which the ratio
of the nearest neighbor distance to the second nearest neigh-
bor distance is greater than a threshold (set to 1.5 in our ex-
periments). These matches are then use to compute the rigid
transform that aligns the view pairs using MSAC [TZ00].
Some view matches can be rejected at this stage, if MSAC
fails to compute a valid alignment or if the number ni of
remaining inlier matches between two views is less than a
threshold:

ni > 5.9+0.22n f (3)

where n f is the number of original matches. The deriva-
tion of the formula can be found in [BL03]. Finally, the
rigid transform between the two views is refined with It-
erative Closest Point (ICP) [BM92] on the whole set of
points (whereas before we were considering keypoints only),
and outlier points are singled out using a robust statistics
called X84 [CFM02]. The output of this matching step is a
n×n symmetric matrix A that contains in the entry (i, j) the
weight of the matching between view i and view j, where 0
means no matching, and 1 represent a 100% overlap (possi-
ble only in case of identical views).

4. Global registration

There are two stages of global registration: first a global
alignment is produced by combining the pairwise rigid trans-
formations found in the previous section; then this alignment
is refined with a multiview ICP that considers all the views
simultaneously (resembling a “bundle adjustment”).
Graph-based alignment. A weighted graph is constructed,
whose vertices are the views and edges links overlapping
views with weight from the matrix A, which represents the
adjacency matrix of the graph. Given a reference view cho-
sen arbitrarily, which sets the global reference frame, for

† Ann library is available at http://www.cs.umd.edu/ mount/ANN
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each view i, the transformation that aligns it with the refer-
ence view r is computed by chaining transformations along
the shortest weighted path from i to r. This is equivalent
to computing the (weighted) minimum spanning tree (MST)
with the reference view as root. The idea (as in [MFM04]) is
that this yield a global alignment of the views with the least
accumulation error among the solutions based on chaining
pairwise registrations.

Multiview LM-ICP. The graph-based alignment can be
further improved by defining a global registration schema
which estimates all the absolute poses at the same time. In
particular, we extend the LM-ICP [Fit03] to deal with mul-
tiple views simultaneously. Let be V 1, ...,V n the set of ac-
quired views. Let be a1, ...,an the set of parameter vectors
which encode the absolute poses. Give the binarized adja-
cency Ã whose entries Ã(h,k) = 1 if view V h can be reg-
istered to view V k, and Ã(h,k) = 0 vice-versa. Therefore,
every pair of views (h,k) leads to an aligned error between
view V h and V h into the global coordinate system:

E(ah,ak) =
Nh

∑
i=1

Ã(h,k)Dk
ε (T (ah,ak,dh

i )), (4)

where Dk
ε is the distance transform of V k, dh

i is a point of
view V h, and T (ah,ak,dh

i ) is the transform function which
maps dh

i to Dk
ε by the absolute poses ah and ak. Indeed, the

total error from all the overlapping views is defined as:

E(a1, ...,an) = ∑
(h,k)

Nh

∑
i=1

Ã(h,k)Dk
ε (T (ah,ak,dh

i )), (5)

The error is minimized with Levemberg-Marquardt, with
analytic Jacobian. Rotations are represented as quaternions
whose norm is set to unity at each iteration. Note that the dis-
tance transform requires the use of a large amount of mem-
ory, thereby imposing some limitations on the number of
views. On the other hand, distance transform can be avoided
by computing finite differences at the cost of a reduced speed
of the minimization procedure.

5. Results

In this section we report results for both synthetic and real
views acquired by a 3D scanner. The Bunny 3D model –
available from the Stanford 3D scanning repository – have
been used to create 24 synthetic partial views. Gargoyle
and Madonna are sets range images (27 and 196 views re-
spectively) courtesy of CNR-ISTI. All the parameters have
been kept fixed in all the experiments. Table 2 reports ro-
tation and translation errors for Bunny after graph-based
alignment and our multiview LM-ICP. The table shows that
the latter clearly improves on graph-based alignment. Fur-
thermore, in order to appreciate the advantage of multiview
LM-ICP a detail of Bunny is shown in Figure 1. A clear
misalignment can be observed for the graph-based alignment
method, whereas the same detail is correctly aligned by mul-
tiview LM-ICP. The results on real data are shown in Fig.2.

Table 1: Average closest points distance (in mm) before and
after LM-ICP.

Dataset Before LM-ICP After LM-ICP
Madonna 3.734 3.709
Gargoyle 0.460 0.459
Bunny 0.095 0.093

Table 2: Rotation and translation errors for both Graph-
Based alignment and Multiview LM-ICP.

Method Rot. err. (deg) Tran. err.
Graph-Based alignment 0.3899 0.0727
Multiview LM-ICP 0.0336 0.0054

The binarized adjacency matrices are shown in Fig. 3. Table
1 shows the accuracy evaluation before and after Multiview
LM-ICP. Since the ground truth is not available the regis-
tration error is computed as mean residual error. Note that
even if the improvement of Multiview LM-ICP is marginal,
it can be crucial to correct small disalignments, such those in
Fig. 1, which can affect the quality of the final reconstructed
model. A limitation of our proposed registration pipeline is
the efficiency of our current implementation in Matlab. For
instance it takes almost one day to register the 196 views of
Madonna.

6. Conclusions

In this paper we propose a fully automatic method for 3D
registration of multiple views. We have shown the effective-
ness of feature-based approach to improve the estimation of
views overlap, combined with a global view matching strat-
egy. In order to improve the final accuracy, a multiple view
registration is eventually carried out. Future work will ad-
dress the application of the proposed framework on large
scale scenarios.

Figure 1: Visual accuracy evaluation. Two views of Bunny
onto the global coordinates system. Graph-Based alignment
approach (top) and Multiview LM-ICP (bottom). We zoomed
to a detail of bunny face for which the advantage of Multi-
view LM-ICP is clearly shown.
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Figure 2: Reconstructed models. Starting pose (left), aligned views (center), and reconstructed models with Poisson (right).

Figure 3: The binarized adjacency matrices Ã. Gargoyle
(left) and Madonna (right).
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