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Abstract. In this paper, we exploit spectral shape analysis techniques
to detect brain morphological abnormalities. We propose a new shape
descriptor able to encode morphometric properties of a brain image or
region using diffusion geometry techniques based on the local Heat Ker-
nel. Using this approach, it is possible to design a versatile signature,
employed in this case to classify between normal subjects and patients
affected by schizophrenia. Several diffusion strategies are assessed to ver-
ify the robustness of the proposed descriptor under different deformation
variations. A dataset consisting of MRI scans from 30 patients and 30
control subjects is utilized to test the proposed approach, which achieves
promising classification accuracies, up to 83.33%. This constitutes a dras-
tic improvement in comparison with other shape description techniques.

1 Introduction

Brain morphology techniques using Magnetic Resonance Imaging (MRI) are
playing an increasingly important role in understanding pathological structural
alterations of the brain [1–3]. A typical approach is to investigate the presence of
morphological differences of selected brain structures between neuropsychiatric
patients and healthy controls [4, 3]. To this aim, methods for shape analysis can
be exploited in order to extract the geometric information which provides the
best statistical performance in separating the two populations (i.e., healthy and
non-healthy people)[5]. Classic approaches evaluate volumetric variations [4, 3]
to explain atrophy or dilation due to such kind of illnesses. Nevertheless, more
advanced shape analysis techniques have been proposed aiming at exploiting
new aspects of the shape such as spectral [6, 7], skeletal [8], or local geometric
properties [9]. A typical methodology consists of encoding such geometric prop-
erties into a descriptor which compactly represents the shape. In this fashion,
the comparison between shapes can be carried out by measuring the descriptors’
similarities in the descriptor space. Thus, the effectiveness of shape descriptors
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can be evaluated in terms of discriminativeness and robustness against shape
variations due to noise or deformations.

In this paper, we propose a new shape descriptor based on advanced diffusion
geometry techniques. Local geometric properties are encoded by the so-called
Heat Kernel [10] which exploits heat diffusion characteristics at different scales.
The general idea consists of capturing information about the neighborhood of a
point on the shape by recording the dissipation of heat over time from that point
onto the rest of the shape. In this way, local shape characteristics are highlighted
through the behavior of heat diffusion over short time periods, and, conversely,
global shape properties are observed while considering longer periods [10, 11]. So
doing, simply varying a single parameter (the time), it is possible to characterize
the properties of a shape at different scales. Therefore, local heat kernel values
observed at each point are accumulated into a histogram for a fixed number of
scales leading to the so-called Global Heat Kernel Signature (GHKS).
The method is inspired by [10] which proposed the Heat Kernel signature (HKS)
for a single vertex of a mesh. Here, we extend the HKS for the whole shape for
both surface mesh (i.e., external surface) and volumetric representation. The pro-
posed descriptor has several nice properties which are shared with very few other
work. GHSK allows for shape comparisons using minimal shape preprocessing,
in particular, no registration, mapping, or remeshing is necessary. GHKS is ro-
bust to noise since it implicitly employs surface smoothing by neglecting higher
frequencies of the shape. Finally, GHKS is able to encode isometric invariance
properties of the shape [10] which are crucial to deal with shape deformations.

The proposed descriptor has been tested in the context of the analysis of the
schizophrenia illness. A Region-of-Interest (ROI)-based approach [1] is employed
by studying the left-thalamus, which is known to be impaired by such disease
[2, 3]. Experiments, carried out on a dataset of 30 patients and 30 controls, lead
to promising classification results in distinguishing between the two populations
also in comparison with other methods.

The paper is organized as follows. In Section 2, we report previous specific
work, and the background material on shape diffusion procedures is described
in Section 3. The proposed method is detailed in Section 4, and experimental
results are shown in Section 5. Finally, conclusive remarks are drawn in Section 6.

2 Related work

Several work has been proposed for detecting alterations of the brain structure
by using advanced shape analysis techniques [6, 12, 9]. A common approach con-
sists of capturing global shape information from the (shape-)spectral domain [7,
6]. In [7], geometric properties are encoded by computing spherical harmonic
descriptors (SPHARM) on brain surfaces. Although results are interesting, the
method is not invariant to surface deformations and therefore it requires shapes
registration and data resampling. This pre-processing is avoided in [6, 12], where
the so called Shape-DNA signature has been introduced by taking the eigenval-
ues of the Laplace-Beltrami operator as region descriptor for both the external
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surface and the volume. Although global methods can be satisfying for some clas-
sification tasks, they do not provide information about the localization of the
morphological anomalies. To this aim, local methods have been proposed. In [9]
the so called feature-based morphometry (FBM) approach is introduced. Taking
inspiration from feature-based techniques proposed in computer vision [13], FBM
identifies a subset of features corresponding to anatomical brain structures that
can be used as disease biomarkers. Other approaches are able to combine both
global and local information. More specifically, a recent and important class of
methods has been introduced for generic object analysis which employs heat dif-
fusion procedures on 3D shapes [10, 11, 14, 15]. In this class of techniques, global
information is provided by the spectral parameters of the Laplace-Beltrami oper-
ator employed on 3D data, and local information is defined by the heat diffusion
at small scales. In [10], Sun et al. have proposed the so called Heat Kernel Sig-
nature(HKS): the main idea was to describe the diffusion from a point to itself
at several time instants. The HKS provides a natural and efficiently computable
multi-scale way to capture information about neighborhoods of a given point.
A similar approach has been proposed in [11] by introducing the so called Auto
Diffusion Function (ADF). The idea and formulation is the same as in [10], but
the procedure has been applied for object segmentation and skeleton extraction.
In order to obtain a global signature from local measures two main strategies
has been proposed [15, 14]. In [14] the well known Bag-of-features approach is
employed starting from the HKS value at each point of the shape. Coversely,
in [15] the global shape is camptured by computing the distribution of diffusion
distances among the points of the shape. In [14], a study on isometry-invariance
property of the geometric diffusion process is proposed in order to highlight the
differences between volume-isometry and boundary-isometry. In the former case,
the diffusion is computed at voxel level, whereas in the latter the diffusion is
computed only on the external surface.
Our approach extends the use of heat kernel on MRI data for classification
purposes on medical domain. The method proposed improves [7] since our de-
scriptor is isometry invariant. Moreover, differently than [6, 12], our approach
implements a multi-scale analysis to increase the discriminativeness properties
of the descriptor. Finally, the main idea of the heat kernel signature[10] to de-
scribe the diffusion from a point to itself at different scales has been revised to
work on global shape.

3 The heat diffusion process

Given a shape M as a compact Riemannian manifold, the heat diffusion on
shape6 is defined by the heat equation:

(∆M +
∂

∂t
)u(t, x) = 0; (1)

6 In this section, we borrow the notation from [10, 14]
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where u is the distribution of heat on the surface, ∆M is the Laplace-Beltrami
operator which, for compact spaces, has discrete eigendecomposition of the form
∆M = λiφi. In this fashion the heat kernel has the following eigendecomposition:

kt(x, y) =

∞∑
i=0

e−λitφi(x)φi(y), (2)

where λi and φi are the ith eigenvalue and the ith eigenfunction of the
Laplace-Beltrami operator, respectively. The heat kernel kt(x, y) is the solution
of the heat equation with point heat source at x at time t = 0, i.e., the heat value
at point y after time t. The heat kernel is isometric invariant, it is informative,
multi-scale, and stable [10]. In order to estimate the Laplace-Beltrami and the
heat kernel in discrete domains several strategies can be employed [14]. In the
following we describe the cases of surface meshes and volumetric representations.

Heat kernel on surface meshes. In the case of surface mesh only the bound-
ary of the shape is considered. In order to work on a discrete space, we estimate
the Laplace-Beltrami operator by employing linear Finite Elements Methods
(FEM) [12]. More in detail, given a triangular mesh composed by v1, · · · , vm
vertices, with linear finite elements the generalized eigendecomposition problem
[12] becomes:

AcotΦ = −ΛBΦ, (3)

where Λ is the diagonal matrix of the Laplace Beltrami eigenvalues λi, and Φ
is the matrix of corresponding eigenfunctions φi. The matrices Acot and B are
defined as:

Acot(i, j) =


cotαi,j+cotβi,j

2 if (i, j) ∈ E,
−
∑
k∈N(i)Acot(i, k) if i = j,

0 otherwise.

(4)

B(i, j) =


|t1|+|t2|

12 if (i, j) ∈ E,
−

∑
k∈N(i) |tk|

6 if i = j,

0 otherwise.

(5)

where E is the set of edges of the triangular mesh, αi,j and βi,j are the two angles
opposite to the edge between vertices vi and vj in the two triangles sharing the
edge (i, j), |ti| is the area of the triangle ti, and t1, t2 are the triangles that
shares the edge (i, j). Indeed, the heat kernel can be approximated on a discrete
mesh by computing Equation 2 and retaining the k smallest eigenvalues and the
corresponding eigenfunctions.

Heat kernel on volumetric representations. In the case of volumetric rep-
resentations, the interior part of the shape is also considered. The volume is
sampled by a regular Cartesian grid composed of voxels, which allows the use of
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standard Laplacian in R3 as the Laplace-Beltrami operator. We use finite differ-
ences to evaluate the second derivative in each direction of the volume. The heat
kernel on volumes is invariant to volume isometries, in which shortest paths be-
tween points inside the shape do not change. Note that in real applications exact
volume isometries are limited to the set of rigid transformations [14]. However,
also non-rigid deformations can faithfully be modelled as approximated volume
isometries in practice. Moreover, differently from spectral surface representation,
volumetric approach is able to capture volume atrophy. It is worth noting that,
as observed in [10, 14], for small t the heat kernel kt(x, x) of a point x with itself
is directly related to the scalar curvature s(x) [14]. More formally:

kt(x, x) = (4πt)−3/2(1 +
1

6
s(x)). (6)

Note that in the case of surface meshes s(x) can be interpreted as the Gaussian
curvature [10]. In practice, Equation 6 states that heat tends to diffuse slower at
points with positive curvature, and viceversa. This gives an intuitive explanation
about the geometric properties of kt(x, x) an leads the idea of using it to build
a shape descriptor [10].

4 The proposed Method

The proposed approach is composed of three main phases: i) data gathering, ii)
estimation of descriptors, and iii) classification.

Data Gathering. Quantitative data collection and processing in MRI based
research implies facing several methodological issues to minimize biases and dis-
tortions. The standard approach to deal with these issues is following well es-
tablished guidelines dictated by international organizations, such as the World
Health Organization (WHO), or codified by respected institutions, such as lead-
ing universities. All patients received a diagnosis of schizophrenia according to
the criteria of the Diagnostic and Statistical Manual of Mental Disorders [16].
In this work we employ a ROI-based approach [1]: only a well defined brain sub-
part has been considered. Specifically, we focus our analysis on the left-Thalamus
whose abnormal activity is already investigated in schizophrenia. Regions have
been manually traced by experts, according to well defined medical protocols.

Global Heat Kernel Signature. Once data are collected, a strategy to encode
the most informative properties of the shape M can be devised. To this end,
a global shape descriptor is proposed, which is inspired by the so-called Heat
Kernel Signature(HKS) defined as:

HKS(x) = [kt0(x, x), · · · , ktn(x, x)]. (7)

where x is a point of the shape (i.e., a vertex of a mesh or a voxel) and
(t0, t1, · · · , tn) are n time values. To extend this approach to the whole shape,
we introduce the following global shape descriptor:

GHKS(M) = [hist(Kt0(M)), · · · , hist(Ktn(M))], (8)
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where Kti(M) = {kti(x, x),∀x ∈ M}, and hist(·) is the histogram operator.
Note that our approach combines the advantages of [15, 14] since it encodes the
distribution of local heat kernel values and it works at multiscales. Figure 1
shows a schema of the proposed descriptor. Each point of the shape is colored
according to kti(x, x). Such values are collected into a histogram for each scale
ti. Finally, histograms are concatenated leading to the global signature.

Fig. 1. GHKS: Each point of the shape is colored according to kti(x, x). Such values
are collected into a histogram for each scale ti. Finally, histograms are concatenated
leading to the global signature.

Support Vector Machine Classification. These descriptors are simply eval-
uated using a Support Vector Machine (SVM), which is one of the most powerful
classifier for object recognition [17]. SVM constructs a maximal margin hyper-
plane in a high dimensional feature space, by mapping the original features
through a kernel function. Here, the input of the SVM are the set of GHKS
descriptors extracted for each subject. A learning by example approach is intro-
duced by adopting leave-one-out cross-validation procedure7.

7 A single sample is used as validation data, and the remaining samples as training
data. The procedure is repeated such that every sample in the dataset is used once
as validation data.
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5 Results

The proposed shape classification method is employed for Schizophrenia detec-
tion in Thalamic region. A dataset composed of 30 male patients and 30 male
controls has been evaluated. MRI scans were acquired using a 1.5 T Siemens
Magnetom Symphony Maestro Class, Syngo MR 2002B. After manual extrac-
tion of the ROIs both mesh surfaces and volumetric representations have been
recovered. The Laplace-Beltrami operator has been computed as described in
Section 3, for both representations, and the heat kernel has been computed. In
this work, we have used k = 200 eigenvalues, and we have scaled the temporal
domain logarithmically in n = 10 time values, as suggested in [10]. Finally, the
GHKS is computed by fixing 100 bins for each histogram. Therefore, for each
subject the final dimension of the GHKS is 10 · 100 = 1000. The classification
procedure is employed as described in Section 4. Several kernels have been eval-
uated, namely linear, polynomial (degree=3), and radial basis function (RBF).
We compare our descriptor with the so called ShapeDNA descriptor, recently
proposed by Reuter et al. [6, 12]. As mentioned above, the ShapeDNA has simi-
lar properties of our GHKS descriptor since it encodes the intrinsic properties of
the shape. Conversely, ShapeDNA does not deal with multiple scales and takes
into account of only global information. Table 1 shows the classification per-
formance of the considered approaches. The proposed GHKS descriptor clearly
outperforms the ShapeDNA descriptor8. Specifically, a drastic improvement is
observed when the volumetric approach is employed. In fact, volumetric GHKS
reaches the best accuracy (i.e., 83.33%), and it is stable by varying the type
of kernel employed. It is worth noting that also in the case of ShapeDNA, bet-
ter performances are observed with the volumetric procedure. Therefore, from
this study we can argue that volumetric approach is more suitable to deal with
natural shape variations that raise on brain subparts of different subjects. The

Method Linear-SVM Polynomial-SVM RBF-SVM

Surface GHKS 65.00% 66.67% 71.67%
Volumetric GHKS 81.67% 80.00% 83.33%

Surface ShapeDNA 50.00% 66.67% 70.00%
Volumetric ShapeDNA 50.00% 71.67% 73.33%

Table 1. Classification rates. The accuracy is computed by Leave-One-Out cross-
validation. Three kernels are evaluated and two methods are compared. Both surface
and volumetric representations are considered.

computational cost of the proposed GHKS descriptor is not high and effective:
the Laplace-Beltrami transform can be employed in around 10 seconds for a
mesh of about 3000 vertices. The same eigendecomposition on our volumetric

8 The same number of eigenvalues have been employed.
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data of 21× 37× 29 voxels takes around 25 seconds. Then, the computation of
final GHKS takes around a second for both the approaches9.

6 Conclusions

In this paper, a new shape morphometry approach is introduced to improve the
classification between normal subjects and patients affected by schizophrenia.
Our GHKS descriptor combines local shape properties into a global signature by
exploiting geometric diffusion procedure on MRI data. The approach proposed
outperforms previous work, namely ShapeDNA, it is easy to be implemented
and efficient. Both volumetric and surface approaches have been evaluated by
showing that in our study neuroanatomical variations between different subjects
are well modelled by volume isometries. From our experiments, we can highlight
the discriminativeness property of the thalamus by confirming the importance
of this region to figure out mental disorders, especially in schizophrenia. Future
work will address the localization of the disease on both surface and volume by
further exploiting the local properties of the heat kernel on MRI data.
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