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Abstract. This paper exploits the embedding provided by the counting
grid model and proposes a framework for the classification and the analy-
sis of brain MRI images. Each brain, encoded by a count of local features,
is mapped into a window on a grid of feature distributions. Similar sam-
ple are mapped in close proximity on the grid and their commonalities in
their feature distributions are reflected in the overlap of windows on the
grid. Here we exploited these properties to design a novel kernel and a
visualization strategy which we applied to the analysis of schizophrenic
patients. Experiments report a clear improvement in classification accu-
racy as compared with similar methods. Moreover, our visualizations are
able to highlight brain clusters and to obtain a visual interpretation of
the features related to the disease.

1 Introduction

Neuroanatomical methods using Magnetic Resonance Imaging (MRI) are largely
used to understand the structural brain changes due to a certain disease [6]. A
common approach is to discover morphological abnormalities between neuropsy-
chiatric patients and healthy controls in some areas of the brain [5, 6]. Pattern
recognition techniques are playing an important role to perform statistics at an
individual level on a multivariate feature space [9, 3].
In this paper, we exploit counting grids (CG) [8] for the effective analysis of
MRI brain images. We described each brain, as a “bag” of local features cz rep-
resented by cortical thickness values collected from the left temporal lobe8 [6].
Then we employ the counting grid model, illustrated in Fig.1. It consists of a
2 dimensional grid, where each cell is represented by a probability distribution

? Corresponding author.
8 Each cz represent the amount of thickness level z. See Sec. 4
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over the features z, and where each brain is mapped in a window on this grid,
based on how much each feature in the bag cz agrees with the amount of fea-
tures z present in the window. The learning algorithm for the grid ensures that
similar samples are mapped close by, with their windows likely to intersect; the
commonalities of feature distributions can be found in the intersection of the
windows.

This paper builds upon this geometric reasoning and it proposes a framework
for the classification and analysis of brain MRI images based on the properties
of the counting grid outlined in the previous paragraph. As first contribution,
we propose a robust strategy to learn the model, aimed at dealing with the
reduced number of training samples that typically occurs in the medical do-
main. Then, we introduce a generative kernel based on the diffusion distance
in the counting grid space which reached 83% accuracy in the classification
of schizophrenic patients. Furthermore, as a third contribution, we propose a
visualization framework to help an expert to discover implicit information in
high-dimensional medical data. More specifically in Sec.4, we will show that
the embedding provided by CGs represent a natural framework to perform i)
subject-based and ii) feature-based analysis. For i) the learning algorithm maps
subjects with similar characteristic in close proximity on the CG, making it
possible to visualize clusters with specific characteristics. For ii) it is possible
to analyze which features are more important for the involved disease using the
gradients of the learned distributions on the grid and label embedding. Our find-
ings confirm that the main cause of the disease is related with cortical thickness
reduction [6].

2 The counting grid model and multiresolution learning

Data samples are often represented as bags of features without particular order
[2, 3]. Each t-th observation is characterized by a vector – often called count vec-
tor {ctz} – containing the number of occurrences or the amount of each feature z.
The counting grid model, recently introduced in [8], is a generative model for such
representations. In this model, individual distributions over words are arranged
on a grid (see Figure 1) and each one is relatively sparse, with only a few features
having significant probability of occuring. More precisely, a counting grid πi,z
is a set of normalized counts of features indexed by z, on a 2-dimensional9 dis-
crete grid. The CG is indexed by i = (x, y), where x ∈ [1 . . . Ex], y ∈ [1 . . . Ey].
E = Ex×Ey describes the extent of the counting grid. Since π is a grid of distri-
butions,

∑
z πi,z = 1 for every location i on the grid. Figure 1 is an illustration

of the CG geometry. A given bag-of-features, represented by its counts {cz} is
assumed to follow a distribution found in a window (and not a point) of the grid.
In particular, using a window of dimensions W = Wx×Wy, each bag can be gen-
erated by first selecting a position i on the grid and then by placing the window
in the grid such that i is its upper left corner. Then, all counts in this window are

9 N-dimensional in general, here we focus on 2 dimensions.
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Fig. 1. a) The counting grid geometry. b) πi,ẑ, the amount for a feature ẑ related
to high cortical thickness across the grid. The bar plot on the right represents the
variation of the amount of ẑ while shifting of 1 grid location, from window ’A’ down
to window ’C’. Bars correspond to the sum of the expression of ẑ in a window of size
W = 5 × 5 (e.g., hk,ẑ =

∑
i∈W πi,ẑ, see Section 2)

averaged to form the histogram hi,z = 1
Wx·Wy

∑
k∈Wi

πk,z, and finally a set of

features in the bag is generated. The window floating over the grid captures well
a slow and smooth evolution of the features, which for example is often found
among samples with the same phenotype.
This process is described by Fig. 1b where we show the counting grid πẑ for
a particular feature ẑ (a “slice”). Here, we show with the bars on the left the
expected amount of ẑ in several windows W sliding down from position A to
the bottom part of the grid (i.e., along column 22 - see Figure 1b). Some other
windows are also evidenced and they refer to the three windows A,B and C as
shown in the left panel; as visible the amount of feature ẑ in the window, corre-
spond with the amount of the feature present in the bags cz, which is highlighted
with the red color in the left panel.

To learn the model, we notice that the position of the window i in the grid
is a latent variable given which the probability of the bag of features {cz} is

p({cz}|i) =
∏
z

hczi,z =
∏
z

(
1

Wx ·Wy
·
∑
k∈Wi

πk,z)
cz (1)

where Wi indicates the particular window placed at location i (see Fig.1a, win-
dows marked with A, B and C).

Computing and maximizing the log likelihood of the data turns to be an in-
tractable problem; therefore it is necessary to employ an iterative EM algorithm.
Starting from a random initialization of the counting grid π, the E-step aligns all
bags of features {ctz} to grid windows, to match the bags’ histograms, inferring
qti ∝ exp

∑
z c

t
z · log hi,z, i.e., where each bag maps on the grid. In practice, qti
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is a probability distribution over the locations of CG and, after learning, it is
equal to 1 if sample t maps to location i. In the M-step the model parameter,
i.e., the counting grid π, is re-estimated. For details on the learning algorithm
and on its efficiency, the reader can refer to the original paper [8].

Multiresolution Learning: In the context of MRI brain image analysis,
datasets are usually small, and the algorithms to learn generative models are
prone to overfitting.
To alleviate this issue we propose multiresolution learning. Starting with a win-
dow size Winit = E − 1, at each step, we learn the model using the algo-
rithm described in [8] for 10-20 iterations. Then we decrease the window size
W(s+1) = W(s) − 1, and repeat the procedure using π(s) the counting grid at
resolution s as initialization for resolution s + 1. This process is repeated until
we reach the desired size of W, when we let the learning algorithm run until
convergence.
This procedure helped avoid local minima. Discussing the theoretical motiva-
tions goes beyond the scope of this paper, however empirically we found that
the classification results (see Sec. 4) obtained by learning the grid using mul-
tiresolution learning outperformed the standard procedure [8], with a p-value of
1.2e−5 (ANOVA Test, considering all complexities).

3 Diffusion kernel on the counting grid geometry

In the last years, hybrid generative discriminative paradigms have been proposed
for classification [11, 1]. The idea is to firstly learn a generative model, and then
use some of its by-products a features for a discriminative classifier. This usually
yields better accuracy than the standard Maximum Likelihood approach. Here,
we propose a generative kernel which exploits the geometric reasoning of the
underlying generative model. We observe in fact that by construction, each point
in the grid depends on its neighborhood, defined by W. Indeed, we propose to
consider this aspect when comparing two samples by their difference. In more
detail, given two samples t and u and their mapping on the counting grid qt and
qu, we propose to propagate their difference ∆0 = qt − qu as:

∆s = ∆0 ∗ φ(i, s), (2)

where φ(i, s) is a box function defined by s. The idea of this propagation process
is to capture the fact that samples close to the grid share feature content, thus
are in some way similar. In fact, the size s can be naturally defined as the size
of the Counting Grid window W.

The proposed generative kernel is defined as:

k(qt, qu) = e−ρ||∆
s||1 (3)

where ρ is the standard bandwidth parameter of the Gaussian Radial Basis
(RBF) kernel. We call our kernel Diffusion CG kernel10 since there is a clear

10 See [10] for a formal demonstration on the validity of the proposed kernel.
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analogy with the diffusion distance introduced in [10] for histogram comparison.
Here, we differ from [10] since, in order to be coherent with the counting grid
estimation process, φ(.) is a box function rather than a Gaussian. Moreover, the
size s of the box takes a fixed and known value, and therefore we can avoid
the integration over all the scales like in [10]. Finally, in order to implement
the hybrid generative-discriminative scheme the proposed generative kernel is
employed with a Support Vector Machine (SVM) [4] as a discriminative classifier.

4 Classification and Analysis of Schizophrenic patients

Clinical Data The study population used in this work includes 42 patients
with schizophrenia (21 male, 21 female) and 40 age-matched controls (19 male,
21 female). Diagnoses for schizophrenia were corroborated by the clinical con-
sensus of two psychiatrists. MRI scans were acquired using a 1.5 T Siemens
Magneton Symphony Maestro Class, Syngo MR 2002B. A coronal 3D MPR se-
quence was acquired11 covering the entire brain. The FreeSurfer software12 has
been used to analyzed MRI images. Following the standard processing pipeline
two meshes are built: one of the boundaries between the grey matter and the
white matter and one between the grey matter and the cerebrospinal fluid. The
cortical thickness is then computed as the shortest distance from each vertex to
the complementary surface. The 3D meshes were also automatically divided into
gyral based regions of interest (ROIs) following [5] and grouped in macro-ROIs
referred to the principal lobes. In this study, we focus the analysis on the whole
left temporal lobe since Schizophrenia affects a wide area of the brain usually
not concentrated in a single region [6].

Finally, the thickness values observed on the left temporal lobe are accumu-
lated into a histogram by defining 25 bins spanning the range 0-6 mm. Indeed,
according to CG paradigm our words are the thickness values of each bin and
the count is the histogram itself.

MRI image classification. We compared our method with: i) two baselines
using SVMs with linear and histogram intersection kernels on {ctz} [4], ii) Nearest
Neighbor in the Counting Grid space using the mapping positions unequivocally
identified by qti as in [8] , iii) the generative-discriminative approach based on
topic models of [3], and iv) a SVM with RBF kernel on the euclidean embedding
(in 2D) produced by Locally Linear Embedding (LLE) [12]. Results are shown in
Figure 2 where, as in [8], we identify the CG complexity by its capacity κ = E

W .
We evaluate the accuracy using Leave-One-Out protocol by computing the av-
erage of 10 repeated tests to be robust against the CG training procedure. We
considered CGs of 10 different complexities defined by grid size E = [3× 3, 6×
6, . . . 30× 30] and window size W = 2× 213.

11 TR = 2,140 ms, TE = 3.9 ms, flip angle = 15◦, FOV = 176 x 235 mm2, matrix size
= 384 x 512 x 144, voxel size 0.45 x 0.45 x 1.25 mm3, TI = 1,100 ms

12 version 4.3.1 http://surfer.nmr.mgh.harvard.edu/
13 Larger windows yielded to slightly lower results up to W = 5× 5
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Fig. 2. a) Classification accuracies (logarithmic scale is used for the x-axis). The pro-
posed kernels strongly outperforms all the competitors. For [3], the capacity on the
x-axis represents the number of LDA topics. b) Euclidean embedding based on LLE
(best result) c) Embedding (on a grid) provided by Counting Grid (best result)

In all the experiments we estimate the SVM and RBF parameters C and ρ by
adopting the standard protocol described on the libSVM web page14. We imple-
mented the method in Matlab starting from the code of CG public available15.

Figure 2 shows clearly how the proposed approach outperforms the competi-
tors [8, 3, 12], reaching an accuracy over 83%. We used permutation testing to
evaluate the probability of getting accuracies higher obtained during the cross-
validation procedure by chance [7]. We permuted the labels 500 times without
replacement (for each of 10 complexities tried), each time randomly assigning
patient and control labels to each subject and repeated the crossvalidation pro-
cedure. Then, we counted the number of times the accuracy for the permuted
labels were higher than the ones obtained for the real labels. Dividing this num-
ber by 500× 10 we derived a p-value of 5.3e−4.
Finally, the panels b) and c) of Figure 2 depict the embedding produced by
CG and LLE (in correspondence of the best classification result). The former
highlights two clusters of patients and it looks visually better. Moreover, being
the samples arranged on a dense space of features (i.e.., each position of the
grid is a distribution over the features z), we can exploit the CG embedding to
investigate how features vary when moving from areas more visited by patients
to regions characterized by a higher presence of controls. This is the goal of the
next section.

Exploiting the dense feature embedding. Once the learning phase is carried
out, one can embed onto the counting grid any other phenotype yt of the samples,
discrete or continuous, like age, sex, label, etc. The resulting embedding may
serve for diagnosis support and are obtained as follows:

γi =

∑
t

∑
k|i∈Wk

qtk · yt∑
t

∑
k|i∈Wk

qtk
(4)

14 http://www.csie.ntu.edu.tw/cjlin/papers/guide
15 http://www.alessandroperina.com/
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Fig. 3. a) Mapping position of the samples and the relative label embedding b). c)
Variation in the features moving from patients to controls.

In practice, for each sample, the value of yt is copied in the window identified
by qti , and the average across the samples is taken.
Figure 3.b the label embedding is shown, i.e., yt ∈ {1 = control ,−1 = patient }.
Noticeably, even if the labels are not used during the learning phase of the gener-
ative model, the embedding clearly exhibits some structures, separating patients
and controls. This suggests that CG are actually suitable to describe the latent
structures generating the data. Figure 3.b clearly shows how patients and con-
trols are clustered. In particular, the patients cluster in two groups by revealing
that patient group is characterized by a larger variation probably due to different
patterns. As further analysis we show how the cortical thickness (e.g., our fea-
ture) varies between patients and controls. Firstly, we compute the gradient of
the label embedding, ∇γi, which returns information about where and how the
classes are separated on the embedding. In Figure 3.b we draw some arrows to
highlight the regions with highest gradient in moving from patients to controls,
i.e., the borders between the classes. Secondly, we compute how much the rele-
vance of each thickness value z varies along such borders. To capture this idea
mathematically we compute the directional derivatives of πz,i in the direction of
the gradient of the label embedding ∇γi and sum over all the locations i in the
grid we can compute a feature score for every z:

Sz =
∑
i

Sz,i =
∑
i

〈∇γi,∇πz,i〉 (5)

In practice, we expect to observe a high value Sz if the locations of strong
variations of the feature relevance correspond to the areas with a transition
between patients and controls. In other words there is a simultaneous variation
of both features relevance and classes that makes the feature strictly related
to the disease. The value of Sz is shown in Figure3c and it can be interpreted
as the variation of the thickness histogram between patients and controls. It
is clearly highlighted that features associated to low thickness values decrease
moving from patients to controls suggesting that the pathology is characterized
by thickness reduction on patients.
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5 Conclusions

In this paper we propose a novel approach to analyze brains by exploiting the
Counting Grid model. We highlight how CG can naturally reveal relations be-
tween subjects by showing that patiens and controls form well separated clusters.
In particular, patients are lying on larger areas of the CG by evidencing a strong
intra-class variability in Schizophrenic subjects. Moreover, CG can be used to
evaluate the importance of involved features in order to better understand the
disease. For instance, as expected, in our study it is clearly evidenced a re-
duction of cortical thickness in patients. In future work we plan to study the
heterogeneous aspects of Schizophrenia by investigating the relations between
the involved features and the detected clusters of patients on the CG.
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