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Abstract. In this paper we propose a Multiple Kernel Learning (MKL)
classifier to detect malformations of the corpus callosum (CC) and ap-
ply it in a pediatric population. Furthermore, we extend the concept of
discriminative direction to the linear MKL methods, implementing it in
a single subject analysis framework.
The CC is characterized using different measures derived from Magnetic
Resonance Imaging (MRI) data and the MKL approach is used to ef-
ficiently combine them. The discriminative direction analysis highlights
those features that lead the classification for each given subject. In the
case of a CC with malformation this means highlighting the abnormal
characteristics of the CC that guide the diagnosis.
Experiments show that the method correctly identifies the malforma-
tive aspects of the CC. Moreover, it is able to identify dishomogeneus,
localized or widespread abnormalities among the different features.
The proposed method is therefore suitable for supporting neuroradiol-
ogists in the decision-making process, providing them not only with a
suggested diagnosis, but also with a description of the pathology.

Keywords: magnetic resonance imaging, multiple kernel learning, brain
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1 Introduction

The Corpus Callosum (CC) is a thick white-matter (WM) bundle, made of myeli-
nated axons, connecting homotopic cortical regions of the two cerebral hemi-
spheres. It is the largest commissural structure, playing a fundamental role both
in motor and cognitive functions. On the midsagittal cerebral plane, it shows a
broad-arched shape, with variable thickness along its major axis. A wide range
of malformative patterns (i.e. complete or partial agenesis, hypoplasia, thinning,
thickening) can affect the CC and are frequently associated with different rate
of mental retardation and motor impairment.
? Corresponding author.
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The diagnosis of CC malformations is currently made with Magnetic Reso-
nance Imaging (MRI) by neuroradiologists trained to evaluate its shape. Several
features (i.e. area, length, curvature, thickness) are visually inspected in order
to detect possible alterations and malformative patterns. Although useful, such
approach suffers from the limitation of being subjective and only qualitative.

Automatic classifiers, such as Support Vector Machine (SVM), can be used to
support the diagnostic task providing mathematical tools to describe and classify
the CC. In particular, Multiple Kernel Learning (MKL) methods [1] efficiently
combine different descriptor functions, thus including all the different aspects of
the CC usually taken into account by the neuroradiologist. However, automatic
classifiers are usually developed as “black box” tools, that provide the subject
classification, but not a description or a list of the aspects that led the choice.

Several works have been proposed in literature to highlight and analyze the
discriminative information. They are usually based on the analysis of the separat-
ing hyperplane [6], on the kernel weight analysis for MKL [2], or on the analysis
of the neighborhood points in the feature or sampling space [4]. The common
aspect of these works is that they derive group differences. On the contrary,
starting from the work of Golland and colleagues [4] about the discriminative
direction analysis, we aim to develop a method tailored on the single subject,
able to highlight the specific features that guide the classification.

In this work, we use a MKL classifier to automatically discriminate between
malformed and normal CC. The MKL approach allows to efficiently combine dif-
ferent CC measures, as performed by neuroradiologists. In particular, we apply
the Group-Lasso MKL method [7], thus incorporating a feature selection proce-
dure in the classifier training. Finally, we extend the definition of discriminative
direction to the linear MKL methods and exploit it not only to provide the
subject diagnosis, but also a quantitative description of the CC malformations.

2 SVM and MKL

Given a set of observation xi ∈ Rn and labels li ∈ {−1; +1}, and a kernel
function K : Rn × Rn 7→ R the SVM methods build a classifier by implicitly
mapping the training data into a higher dimensional space and determining the
linear classifier that maximize the margin between the two labels. The separating
hyperplane w and the decision function f(x) can be derived from the training
data:

w =
N∑
i=1

αiyiΦK(xi) f(x) = 〈x ·w〉 =
N∑
i=1

αiyiK(xi,x) + b (1)

where the function ΦK : Rn 7→ F is the mapping function implicitly defined
by the kernel function K and the coefficients αi are computed while maximizing
the classifier margin.

The MKL technique [1] allows to deal with multiple features and/or multiple
kernels in the same classifier. The original kernel function K(xi,xj) is replaced
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by a new one Kη(xi,xj ;η), which is obtained combining different kernels. In
particular, for the linear -MKL methods its general formulation is [1]:

Kη(xi,xj ;η) =
P∑

m=1

ηmKm(xmi ,x
m
j ) (2)

where P is the number of different kernels and η ∈ RP contains the weight
associated to each kernel. In this conditions, the separating hyperplane and the
decision function become the linear combination of the individual kernel ones:

wη =
N∑
i=1

αiyiΦKη (xi;η) =
P∑

m=1
ηm ·wm (3)

fη(x) =
N∑
i=1

αiyi
P∑

m=1
ηmKm(xmi ,x

m) + b =
P∑

m=1
ηmfm(xm) (4)

In this study we employ the Group Lasso MKL (GL-MKL) method [7]. Its
advantage is that it allows an explicit tuning of the sparsity effect on the in-
volved weights by introducing a dedicated parameter p in model. When p = 1 a
competitive approach is introduced among features by emphasizing the selection
effect of MKL. Conversely, when p = 2 a cooperative approach is encouraged by
exploiting complementary information.

2.1 Discriminative direction for MKL

According to the original definition given in [4], the discriminative direction is
the direction (in the sample space) that affects the output of the classifier while
introducing as little irrelevant change as possible into the input vector.

Given a point in the original space x, the discriminative direction dx in-
troduces a displacement in the projection space F defined as dz = ΦK(x +
dx) − ΦK(x). The displacement can be decomposed into two components: its
projection onto w and its deviation from w:

p =
〈dz ·w〉
〈w ·w〉

·w e = dz − p = dz − 〈dz ·w〉
〈w ·w〉

·w (5)

Formally, the discriminative direction minimizes the divergence component
e, leading to the following optimization problem:

minimize E(dx) = ‖e‖2 = 〈dz · dz〉 − 〈dz ·w〉
2

〈w ·w〉
with ‖dx‖2 = ε

(6)

The elements of the optimization problem can be computed using the MKL
kernel function introduced in Equation 2:
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〈wη ·wη〉 =
P∑

m=1
ηm · 〈wm ·wm〉

〈dz ·wη〉 = ∇fKη (x)dx =
P∑

m=1
ηm · ∇fm(xm)

〈dz · dz〉 = dxTHKη (x)dx

(7)

Where ∇fKη (x) contains the gradient of the decision function fKη and
HKη (x) is one of the equivalent off-diagonal quarters of the Hessian of Kη.
∇fKη (x) is formally computed as the linear combination of the gradients

of the single kernel decision functions ∇fm(xm). However, if the single kernels
are independent of each other (i.e. they operate on separate components of the
input vector x), then the gradient of the whole decision function can be seen as a
concatenation of the gradients of the single ones. Following the same procedure,
the matrix HKη (x) is a diagonal matrix where the blocks on the main diagonal
contain the single kernel Hm(xm) matrices and the off-diagonal blocks are all
zero due to the reciprocal independence among kernels.

Substituting the elements in the eq. 6, the following problem relative to the
MKL discriminative direction is obtained

minimize E(dx) = dxT (HKη (x)− ‖w‖−2∇fTKη∇fKη )dx
with ‖dx‖2 = ε

(8)

its solution is the smallest eigenvector of matrix:

QK(x) = HKη (x)− ‖w‖−2∇fTKη∇fKη (9)

As in the original formulation, an analytical solution can be derived when
the matrix HKη (x) is a multiple of the identity matrix HKη (x) = cI. Given
the structure of HKη (x), this condition is satisfied when the matrix Hm(xm)
of each kernel satisfies the same condition, i.e. if an analytical solution exist
independently for each kernel included in the MKL classifier. In such case the
discriminative direction is obtained concatenating the solutions computed for
each kernel weighted by the corresponding kernel weights.

dx∗ = [η1 · dx∗T1 , η2 · dx∗T2 , .., ηP · dx∗TP ]T

ε(dx∗) = [η1 · ε(dx∗1)T , η2 · ε(dx∗2)T , .., ηP · ε(dx∗P )T ]T (10)

Analytical solutions for the discriminative direction problem have been pro-
vided in [4] for linear and radial basis function (rbf) kernels. In the case of linear
kernel the solution is exactly the hyperplane vector w, whereas for the rbf kernel
the solution is:
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dx∗ = − 2
γ

N∑
i=1

αiyie
− ‖x−xi‖

2

γ (x− xi)

ε(dx∗) = 2
γ −

‖∇fTK(x)‖2
‖w‖2

(11)

It is important to highlight that a zero error can not be achieved in the rbf
kernel case because it has no corresponding solution in the original space.

The discriminative direction can be used to draw a trajectory in the sampling
space that moves a given subject from one group subspace to the other one. The
integral of the trajectory provides a quantitative description of feature changes
required for that sample to change its classification. In our case, the integral of
the trajectory gives a measure of the degree of the malformation for each features,
allowing to infer not only on the diagnosis, nut also on the malformation degree
of the given subject.

Extended version of the original discriminative direction have been proposed
in literature to account for the underlying manifold structure of the shape de-
scriptor spaces [8] and their spatial relations [3]. MKL discriminative direction
can be extended also to these methods.

3 Materials and methods

The dataset includes 104 children (mean age and SD = 7.1± 2.2 years, male/female
= 68/36 ). The study was approved by the local Ethics Committee , the research
institute IRCCS ”Eugenio Medea” (Bosisio Parini, Italy), and parents of all the
participants provide their signed informed consent. Two experienced pediatric
neuroradiologists reviewed in consensus the MRI exams and identified 52 sub-
jects with a malformed CC and 52 subjects with a normal shaped CC.

MRI scans were acquired using a 3.0T Philips Achieva scanner with a 32
channels head coil. For CC evaluations and measurements a 3D fast field echo
T1-weighted sequence covering the entire brain was used (TR = 8.2 ms, TE =
3.8 ms, flip angle = 8, FOV = 210 x 210 mm2, matrix size = 210 x 210 x 170,
voxel size 1 x 1 x 1 mm3, turbo factor = 210, TI = 910 ms).

Images are pre-processed using the FMRIB Software Library (FSL). Briefly,
they are corrected for the magnetic field inhomogeneities, brains are extracted,
rigidly registered to the MNI atlas and the WM probability maps are computed.

The CC mask is extracted using an automatic segmentation method pro-
posed in [5]. From the CC mask, a 2D perimeter is computed using a β− spline
model on the midsaggital slice. Two well known anatomical markers are subse-
quently defined on the perimeter and identified as the points with the highest
perimeter curvature. The first marker is the rostrum vertex and it is localized
in the anterior part of the CC, the second one is the splenium vertex and it is
in the posterior one. The two anatomical vertices naturally divide the perimeter
into two sections, a superior and an inferior one. Subsequently, the CC skele-
ton is defined as the line connecting the two vertices and equidistant from the
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Fig. 1. A) Receiver operating characteristic of the classifiers. B) kernel weight estimates
obtained from the GL-MKL classifier with the leave-one-out procedure.

two perimeter sections. The local CC thickness is computed as the minimum
distance between the superior and the inferior sections of the perimeter mea-
sured on a straight line passing through a given point. The thickness profile is
obtained measuring the thickness on fifty points uniformly distributed along the
skeleton. At the end of the image processing the CC is characterized by the
following measures, reflecting the aspects usually considered by the neuroradi-
ologists: area, perimeter length, perimeter curvature, skeleton length, skeleton
curvature, distance between anatomical markers and thickness profile. We com-
pared different pipelines and software (eg: ANTs, FSL, SPM, CCseg, C8) for the
CC extraction and characterization. We present here the results obtained with
the most robust approach, especially in subjects with malformed CC.

A GL-MKL classifier is built using a different rbf kernel for each measure of
the CC. The classifier is trained to separate subjects into the two groups (with
or without CC malformations) identified by the neuroradiologists. A standard
SVM classifier with rbf kernel is also built for comparison purpose. In this case,
all features are concatenated to build a single feature table. The parameter
optimization for both classifiers is performed with the grid search approach,
whereas performances are evaluated using the leave-one-out procedure.

4 Results and discussion

GL-MKL performs better than the standard SVM both in terms of overall accu-
racy (87.5% versus 83.7%) and area under the Receiver Operating Characteristic
(ROC) curve (91.9 versus 90.1), see figure 1-A.

One of the GL-MKL advantages is the possibility to tune the weights asso-
ciated to the kernels, thus performing an implicit feature selection procedure.
In our case, each kernel is associated to a different kind of measure, thus an
analysis of the kernel weights allows to infer the discriminative power of the dif-
ferent measures. Figure 1-B reports the kernel weights computed using GL-MKL.
The thickness profile shows the largest weight, so it contains the largest part of
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Fig. 2. Examples of the discriminative direction analysis in two subjects with abnormal
CC for the four features with non-zero kernel weight. Red-blue color-code is used to
indicate whether the feature is greater (blue) or smaller (red) than expected. Color
intensity is proportional to the grade of the malformation. The “x” markers in the
middle panels report the rostrum and the splenium of the CC.

the discriminative information. Other useful measures are the distance between
the anatomical markers and the perimeter/skeleton curvatures. Conversely, area
and skeleton/perimeter lengths are associated to a zero kernel weight. However,
this does not mean that such measures contain no discriminative information,
but that, if present, it is redundant compared to the other measures. In this
experiment the best accuracy is obtained with the sparsity parameter p set to
1.5, reaching a trade off between the cooperative and the competitive approach
among kernels. Therefore, a zero weight associated to a specific kernel only im-
plies that that kernel does not impact the classifier decision function.

We perform the discriminative direction analysis to identify the specific ab-
normalities of the CC that guided the classification. Two examples are reported
in figure 2. In the first example (subject CC017) the discriminative direction
analysis highlights an irregular thickness profile and a short distance between
the anatomical markers. In particular, the thickness profile is larger than ex-
pected in the anterior and middle portion of CC, whereas it is much smaller
than expected in the posterior part. This example shows how the discriminative
direction analysis can detect dishomogeneus abnormal aspects even inside the
same kernel. Moreover, the color intensity is modulated using the integral of the
discriminative direction, giving a quantitative and easily interpretable descrip-
tion of the abnormal features. In subject CC017 the thinning of the CC profile in
the posterior region appears more severe compared to its anterior thickening or
to the distance reduction between the anatomical markers. This can be seen also
in the second example (subject CC128), where the color intensity shows that the
thinning of the profile is more severe posteriorly than in the other parts of the
CC. In this subject the perimeter and skeleton curvatures appear also focally
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irregular, indicating that the CC should be more arched than what it looks like.
This example shows that the discriminative direction analysis can detect both
widespread and localized malformations of the CC.

5 Conclusions

In this study we extend the concept of discriminative direction to the linear
MKL methods and apply it to a GL-MKL classifier which discriminate between
normal and malformed CC.

The GL-MKL approach allows a natural and efficient integration among dif-
ferent measures derived from the MRI images, reproducing the neuroradiologist
approach. Moreover, the kernel weight optimization performs an implicit feature
selection that discard redundant features and improve the classification accuracy.

The discriminative direction analysis highlights the discriminative features
for each single subject, thus providing a qualitative and quantitative description
of the key aspects of the CC abnormal shape. This is a powerful approach in
comparison to the common literature studies, which study the discriminative
information to infer group differences rather than focusing on the single subject.

This opens new perspective in the personalized medicine field, providing a
tool for the detection and analysis of the peculiar features of the single subject.
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