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ABSTRACT
It is well proven that the functional electrophysiological be-
havior of in-vitro neuronal networks is influenced by the
structural connectivity. Thus, the automatic extraction of the
topology in large assemblies of interconnected neurons can
be a valuable tool for investigating the basic mechanisms
underlying high-level cognitive functions. In this paper we
propose a method for estimating the structural connectivity
of neuronal networks from multimodal datasets combining
high-resolution Multi-Electrode Arrays (MEA) and fluores-
cence microscopy. Probabilistic directional features are used
in a graph heat kernel framework to identify the structural
connectivity of the neuronal network. Electrode connectivity
maps are computed as weighted graphs in which the edge
weights represent the strength of the structural connection.

Index Terms— Structural Connectivity, Graph Heat Ker-
nel, Von Mises Density, Neuronal Networks, Multi-Electrode
Array

1. INTRODUCTION

Dissociated neuronal cultures, even if randomly connected,
show electrical activity patterns that are involved in the basic
mechanisms underlying high-level cognitive functions. These
functional properties result from the cooperative interaction
of single neurons, showing how the structural connectivity
can profoundly impact the electrophysiological activity [1].
This highlights the importance of understanding how neurons
are topologically interconnected in complex networks.

The Multi-Electrode Array technology (MEA) [2, 3], al-
lows for single-cell monitoring of the electrical activity of
sparse in-vitro neuronal networks by recording the neuronal
electrophysiological signal. In combination, high-resolution
fluorescence microscopy allows for the acquisition of the cor-
responding network morphology, depicting both neuronal nu-
clei and arborizations. This results in highly complex datasets
offering a quasi one-to-one mapping between recording elec-
trodes and interconnected neurons. Such multimodal datasets
require advanced computational approaches for inferring
structural and functional connectivity patterns. However, cur-
rent methods for the analysis of high-resolution MEA datasets
mainly involve techniques based on signal correlation used

to infer functional connections between electrodes [4]. In
these methods, the structural information coming from the
fluorescence microscopy image is often discarded because
of the high network complexity which makes any manual
assessment unfeasible. This yields to an increasing need for
automated methods capable of inferring the structural con-
nectivity in large images with thousands of interconnected
neurons.

Despite the high image resolution of current microscopy
technologies, neuronal arborizations usually appear very con-
fused, presenting intricate crossing branches which are often
very difficult to characterize, even for a human observer (see
Fig. 4). Traditional methods found in the literature [5, 6] usu-
ally address the segmentation of single neuron’s dendrites, ax-
ons and synapses (neuronal tracing [7]) from microscopy im-
ages, or are limited to very small assemblies where only the
connectivity with a neuron’s immediate neighbors is exam-
ined. In order to identify more complex behavioral patterns
and infer information at network-level processing, a broader
network connectivity analysis is required, which still repre-
sents a very challenging and quite unexplored task.

In this paper we address this task by proposing a novel
method for inferring the structural connectivity in neuronal
networks using high-resolution MEA and fluorescence mi-
croscopy multimodal datasets. In this setting, the structural
connectivity of the network can be described as a graph,
where nodes correspond to electrodes and edges represent
morphological connections, weighted by a strength factor.
The ultimate goal is providing a description of the network
topology in terms of electrode connectivity, which represents
a crucial step in relating the structural organization to the
functional signal. Indeed, as the MEA-recorded electrophys-
iological signal is electrode-oriented, representing the mor-
phology as a graph on electrodes can facilitate a joint analysis
of structural and functional connectivity patterns. The pro-
posed approach extracts maps of electrode connectivity using
a graph heat kernel method [8, 9] based on probabilistic direc-
tional features. Specifically, the approach aims at finding the
topological connectivity of a neuronal network by estimating
a weighted graph representing the structurally interconnected
electrodes and the strength of each connection. The method



(a) (b) (c)

Fig. 1: Partition of the fluorescence image. (a) Results of the nuclei detection and electrode array reconstruction obtained as described in [3]. Circles and crosses show the neuronal
nuclei, white and magenta squares are the reconstructed electrodes. (b) The binary mask for the electrode grid. (c) The final partition obtained by Watershed Transform.

exploits the regular MEA layout to partition the fluorescence
image into patches and extract probabilistic features based on
Mixtures of Von Mises distributions describing the underly-
ing arbor architecture. The obtained features are then used in
a graph heat kernel framework to obtain connectivity maps,
as described in Section 2.2.

The remainder of the paper is organized as follows. A
detailed description of the proposed method is provided in
Section 2. Section 3 shows the experimental results. Finally,
conclusions and future work are outlined in Section 4.

2. PROPOSED METHOD

As the high-density MEA technology provides a single-cell
resolution, a direct mapping between neurons and electrodes
can be extracted from the fluorescence image [3]. This is
done by first locating the neuronal nuclei and reconstructing
the electrode array partially visible on the image background,
i.e. determining the location of each electrode (Fig. 1a). The
recovered electrode grid is then used to partition the image
into a lattice from which the probabilistic features will be ex-
tracted. In particular, electrode location and size are used to
compute a binary mask of the electrode grid (Fig. 1b). The
Watershed Transform [10] is then applied to obtain a partition
of the image into a number of small patches, each correspond-
ing to a single electrode area (Fig. 1c). We assume the patch
size being small enough to describe the underlying arboriza-
tions by a combination of line segments.
Afterwards, a probabilistic directional feature is extracted at
each image patch, locally representing the neuronal arbor ar-
chitecture. As this information directly affects the degree at
which electrodes are structurally interconnected, such local
features are then used to define a global weighted adjacency
matrix expressing the probability of two adjacent electrodes
being structurally connected (see Section 2.2). Finally, the
obtained adjacency matrix is used within a graph heat kernel
framework to compute an electrode connectivity map.

2.1. Probabilistic Directional Feature

We want the local directional feature to characterize the pre-
dominant arbor orientations in a probabilistic fashion, i.e.
providing, for each electrode, the probability of connection
in every possible neighboring direction. Such a probabilistic
feature is obtained by firstly approximating the underlying
network structure as a set of ni line segments, extracted at the
i-th image patch by using a gradient-based Hough Transform

(HT). Thus, the i-th patch will be assigned the set of segments
sk:

Si = {sk(Ψ, A, B, ν)}k=1,2,...,ni , (1)
where Ψ = (ρ, θ) are the support line parameters in the
Hough space, A and B are the two segment endpoints and ν
is the Hough vote. Hough votes are globally normalized to
make them comparable among different patches. Based on
set Si, a Von Mises Mixture (VMM) model is defined for each
patch, in order to obtain a probabilistic representation of local
arbor architecture. Von Mises distributions are particularly
suitable for directional statistics, representing a probability
density defined on the circumference [11]. The generic Von
Mises distribution is defined as:

V(θ;µ, κ) =
eκ cos(θ−µ)

2πI0(κ)
, 0 ≤ θ < π, (2)

where µ is the mean, κ is the concentration and I0 is the mod-
ified Bessel function of the first kind of order 0. The VMM
model is formulated by the mixture:

VMM(θ) =
∑M

i=1
wiVi(θ), (3)

with wi being the mixture proportions, such that 0 ≤ wi ≤
1 and

∑M
i=1wi = 1.

In our case, the VMM construction can be described as
follows. Given a segment s ∈ Si with endpoints A and B,
we consider its support line intersecting the patch boundary
at two points, named A′ and B′. We denote with dAA′ and
dBB′ , respectively, the euclidean distances between the two
pairs of points (A,A′) and (B,B′) (see Fig. 2). Since the seg-

Fig. 2: Construction of the Von Mises Mixture (VMM) model. Model parameters
are determined on the basis of the line segments detected by the Hough Transform.

ment s can be considered as the evidence of a real structural



connection in the image, the two distances dAA′ and dBB′ can
be interpreted as a measure of the uncertainty in determining
the orientation of the arbor defined by s. In other words, the
bigger the distance dAA′ (dBB′), the higher the uncertainty
of the arbor crossing the patch boundary exactly at point A′

(B′), i.e. having an arbor orientation defined by the angle θA
(θB). Therefore, the orientation of a segment can be prob-
abilistically modeled as a mixture of the two following Von
Mises distributions:

VA(θ;µA = θA, κA ∝ dAA′) (4)
VB(θ;µB = θB , κB ∝ dBB′) (5)

with mixture proportions πA = πB = ν̃/2, where ν̃ is the
normalized Hough vote. Hence, for a patch with n segments,
the VMM will consist of 2n components, as shown in Fig. 3.

Once the VMM model has been defined, the last step
in constructing the probabilistic directional feature consists
in discretizing the probability density of the mixture so as
to obtain a measure of connectivity among adjacent patches.
This discretization process computes the area under the p.d.f.
in each of the 8 circumference sectors corresponding to the
8 neighboring directions and results in a histogram H indi-
cating the probability of each patch (electrode) being con-
nected with its neighbors, according to a 8-neighborhood sys-
tem (Fig. 3).

Fig. 3: Probabilistic directional feature representation. The segments detected by
the HT are used to build the VMM model shown in the inner circle. The second circle
shows the circumference sectors for the feature discretization (in different gray levels,
numbered from 1 to 8). The third circle shows a heatmap for the pointwise p.d.f. val-
ues. Finally, the outer circle shows the histogram feature describing the probability of
connection in each of the 8 neighboring directions.

2.2. Graph Heat Kernel

Given a graph G = (V,E), where V is the set of nodes and
E ⊆ V × V is the set of edges, the heat diffusion on G is
defined by the heat equation [9, 8]:(

LG +
∂

∂t

)
u(t, x) = 0; (6)

where u(t, x) is the heat distribution at time t and LG is the
Graph Laplacian operator [12]. In particular LG = D − A,

where A is the adjacency matrix defined on graph G [12],
andD is the diagonal degree matrix whose diagonal elements
are given by D(i, i) =

∑
j∈V A(i, j). According to spectral

graph theory [9], the heat kernel has the following eigende-
composition [8]:

kt(x, y) =

∞∑
i=0

e−λitφi(x)φi(y), (7)

where λi and φi are the ith eigenvalue and eigenvector of the
Graph Laplacian, respectively.
The heat kernel kt(x, y) is the solution of the heat equation
with point heat source at x at time t = 0, i.e. the heat value
at point y after time t [9]. In particular, the heat kernel en-
codes information about the distribution of path lenghts and
therefore node affinities on the graph which, in our work, is
defined on the grid of electrodes. The output of the heat ker-
nel is a matrix indicating the electrode connectivity in terms
of amount of heat propagated after time t and is normalized
to obtain the final connectivity map.

In our work, the weighted adjacency matrix A is obtained
from the probabilistic directional feature, by defining each el-
ement A(i, j) as the histogram value for the edge connecting
electrode i to electrode j. In other words, given an electrode i,
we consider the histogram Hi extracted at the corresponding
patch and set the 8 entries of matrix A matching its neighbors
as the probabilities of connection defined by the histogram.
Since the feature extraction process generally results in non-
symmetric histogram values among neighboring electrodes,
the matrixA is symmetrized by computingA′ = (AT+A)/2,
i.e. by averaging the histogram values in the two edge direc-
tions.

It is worth noting that in the heat kernel computation the
time parameter t plays a crucial role. Short-time periods keep
the heat close to the starting node, while conversely longer
periods let the heat exploring a larger portion of the graph.

3. RESULTS

The proposed method was evaluated against ground truth
(GT) data, as shown in Fig. 4. Due to the subjectivity and
error-proneness of ground truth acquisitions, five experts
were asked to annotate 10 different datasets by indicating
pairs of structurally connected electrodes. A final estimate
of the ground truth was then obtained by adopting a voting
strategy. From the analysis of the acquired GT it was possible
to assess an average agreement between experts of 85%.

The best value for the time parameter t of the heat kernel
framework was estimated on different runs of the algorithm
by computing the Precision-Recall performance at times t =
1, 2, 3, 5, 10, 20, 50 (Fig. 5). At low t values the heat prop-
agates for a shorter time interval, hence the algorithm can-
not explore the whole space of connections. This results in a
higher number of false negatives (lower recall) because some
longer-distance structural connections are not detected. On
the other hand, with a high t value false positives increase
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Fig. 4: An example of connectivity graphs obtained with the proposed method (best viewed in color). (a) The ground truth showing structurally connected electrodes with straight
lines (cyan). (b) The weighted graph obtained at t = 10. Electrode connections are color-coded with a heat colormap and their widths are proportional to the link strength.

and the precision drops off. In our case, the value of param-
eter t basically reflects the number of steps performed by the
algorithm for exploring the discretized electrode-based fea-
ture space, where the graph is defined on a regular grid. From
our experiments, in datasets with a 9 × 9 electrode array, a
time interval equal to 10 or 20 suffices to successfully explore
the whole space, obtaining the best F1-score.

Table 1 shows the algorithm performance for each dataset
and the average Precision-Recall obtained at t = 10.

Dataset Precision Recall
1 71% 83%
2 59% 84%
3 39% 81%
4 89% 48%
5 86% 86%
6 72% 68%
7 50% 74%
8 75% 75%
9 75% 54%
10 61% 76%

Mean 68% 73%

Table 1: Performance of the proposed
method for the 10 datasets at t = 10.

Fig. 5: Precision-Recall and F1-score
performances at varying Time parameter.

4. CONCLUSIONS

In this paper we have presented a new method for the au-
tomatic estimation of the structural connectivity in multi-
modal datasets of in-vitro neuronal networks. The proposed
approach takes advantage of a graph heat kernel frame-
work based on probabilistic directional features to provide
a weighted graph of connectivity defined on the electrode
grid. Results show that, despite of the high dataset complex-
ity, the algorithm performs quite well, also considering the
average experts’ agreement on the GT data.

Future work will address a joint analysis of the extracted
structural information and the electrophysiological signal in
order to infer relationships between structural and functional
connectivity in neuronal networks.
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