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Abstract

Imagine an object such as a paper sheet being waved in front of some sensor. Recon-

structing the time-varying 3D shape of the object finds direct applications in computer

animation. The goal of this paper is to provide such a deformation capture system for

surfaces. It uses temporal range data obtained by sensors such as those based on struc-

tured light or stereo. So as to deal with many different kinds of material, we do not

make the usual assumption that the object surface has textural information. This rules

out those techniques based on detecting and matching keypoints or directly minimizing
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color discrepancy.

The proposed method is based on a planar mesh that is deformed so as to fit each

of the range images. We show how to achieved this by minimizing a compound cost

function combining several data and regularization terms, needed to make the overall

system robust so that it can deal with low quality datasets. Carefully examining the

parameter to residual relationship shows that this cost function can be minimized very

efficiently by coupling nonlinear least squares methods with sparse matrix operators.

Experimental results for challenging datasets coming from different kinds of range

sensors are reported. The algorithm is reasonably fast and is shown to be robust to

missing and erroneous data points.

Keywords: Deformable Models, 3D Registration, Levenberg-Marquardt, Bending En-

ergy, Motion Capture.

1 Introduction

Capturing time-varying surface deformations is an important problem which has been re-

cently tackled thanks to the advances in realtime range sensors engineering [1, 2, 3]. A

range sensor gives images where the intensity of a pixel is to be interpreted as its depth.

Research on deformable models is active in fields such as computer graphics for 3D morph-

ing and animation [4], medical image processing for data alignment and segmentation [5, 6],

and computer vision for e.g. contour detection [7], face synthesis and expression recognition
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[8].

The aim in this paper is to provide an effective system that allows one to capture the

deformation of a physical surface being smoothly waved, such as the page of a book being

turned, in front of a range sensor. As opposed to most of the existing methods [9, 10,

11, 12, 13], we do not use keypoint tracks [9, 10, 12] or optical flow [11, 13]. Instead,

we only use the range images. This has the advantage that the method is independent of

the appearance of the surface. In particular, those textureless surfaces that defeat existing

methods are handled. We have to face the two problems of reconstructing the observed

surface at each time instant, and registering the reconstructed surfaces. While most of the

existing approaches bypasses the first problem [14, 15, 16, 17], the one we propose solves

both simultaneously. We target applications such as 3D data compression, augmented reality

and computer animation, all requiring an accurate registration of the range point clouds over

time, as well as a reconstruction of the underlying surface. As an example, videos can be

synthesized from the captured deformations and a user-provided texture map. The advantage

of using range data is that real 3D deformations are obtained, as opposed to a 2D flow field

in the monocular image registration case, see e.g. [18]. The input data is a sequence of range

images and a coarse boundary of the surface of interest. The whole process is highly robust,

filling in possible holes in the range data and detecting erroneous points, while establishing

reliable registration even for flat areas that usually defeat shape based registration methods.

We model the surface with a mesh as [18, 19] do for 2D image registration.

Our framework is implemented through two main lines of contributions extending our
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previous work [20]. First, we show that the problem is well-modeled by using a mesh that

is deformed to fit each point cloud. This model allows us to write a cost function whose

global minimum is the sought after solution. This cost function has several data and penalty

terms. The data terms incorporate surface to data points distances and boundary information.

Furthermore, it explicitly embeds amin operator, thus avoiding the traditional two steps in

ICP-like (Iterated Closed Point) algorithms through distance transform. The penalty terms

include spatial, i.e. surface-related, and temporal smoothness as well as inextensibility of

the surface, if applicable. The data terms are robustified in order to deal with missing and

erroneous points. Second, following [21], we use the Levenberg-Marquardt algorithm to

minimize the error function. A careful analysis reveals that the Jacobian matrix involved

in the normal equations to be solved at each iteration is highly sparse, for all the data and

penalty terms we use. This makes tractable and fast the estimation of dense deformation

fields.

Roadmap. Section 2 describes the state-of-the-art. The problem statement is given in

Section 3, and the minimization strategy is described in Section 4. Experimental results are

reported in Section 5. Finally, conclusions are drawn in Section 6.

2 Previous Work

We review existing work on surface motion capture and non-rigid shape registration.
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Surface motion capture. Several works have been proposed in computer graphics on

surface deformation modeling, especially for cloth motion capture [9, 10, 11, 12, 13]. In

[10] a calibrated multi-camera setup is proposed to observe real-time cloth deformation.

SIFT keypoints are used to identify a pattern printed on the cloth. The keypoints are tracked

in the video thanks to a seed-and-grow approach adapted to the deforming geometry. In [9],

quad marked surfaces are tracked by using a multi-baseline stereo system. Markov Random

Fields models are used to introduce additional assumptions on the surface appearance and

neighborhood consistency. In [12] the authors use a color-coded cloth texture for reliably

matching circular features between different camera views. In [13], a direct estimation of

the deformable motion parameters is proposed for range image sequences. The range flow

is estimated by introducing depth constraints to the 2D displacements. Similarly in [11], the

optical flow is computed from frame to frame using the depth.

Nonrigid shape registration. The registration of 3D point clouds is a challenging topic

mainly tackled in the framework of ICP for rigid scenarios [21, 22]. However, researchers

have recently addressed the case of deformable objects. Roughly speaking the literature on

nonrigid registration can be divided into two main categories. The first one directly uses the

point clouds. The second one abstracts the point clouds with some probabilistic model.

In [14] the authors propose to jointly compute the correspondences and the nonrigid

transformation parameters between two point clouds. The algorithm uses the Expectation-

Maximization (EM) paradigm. It combines the soft-assign and deterministic annealing

5



within a robust framework. Thin-Plate Splines (TPS) are used for representing the spa-

tial mapping. Nonrigid alignment is proposed in [23] to account for errors in the point

clouds, obtained by scanning a rigid object. The authors use TPS to represent the nonrigid

warp between a pair of views, that they estimate through hierarchical ICP [22]. Medical

applications are proposed in [5, 6]. In [6], MR brain scan registration is performed by a

modified Newton method over a hierarchical spline-based optical flow representation. In

[5], a localized Radial Basis Function (RBF) is proposed, making a point to depend only on

its neighboring centers.

Probabilistic approaches [15, 16, 17] are based on modeling each of the point sets by

a kernel density function [24]. The (dis)similarity among such densities is computed by

introducing appropriate distance functions. Registration is carried out without explicitly

establishing correspondences. In [15], the authors propose a correlation-based approach

[24] to point set registration by representing the point sets as Gaussian Mixture Models

(GMMs). A closed-form solution for theL2 norm distance between two Gaussian mixtures

makes fast computation possible. In [17], registration is carried out simultaneously for

several 3D range datasets. The method proposes an information-theoretic approach based

on the Jensen-Shannon divergence measure. In [16], nonrigid registration is treated as a

Maximum Likelihood (ML) estimation problem by introducing the Coherent Point Drift

(CPD) paradigm. Smoothness constraints are introduced based on the assumption that points

close to one another tend to move coherently over the velocity field. The proposed energy

function is minimized with the EM algorithm.
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The proposed approach. Our method draws on the strengths of some of the above men-

tioned approaches. It combines a deformable surface represented by a mesh with an ICP-like

registration method that takes spatial and temporal smoothness into account, as well as the

range image data and boundary information, required to prevent the computed surface to

shrink or slide arbitrarily. The optimization is performed very efficiently using a distance

transform of the range image.

3 Problem Statement

3.1 Surface Representation

The range sensor provides a sequence of range images that we interpret as 3D point clouds

Di with li points each:

Di =




dx
i,1 dy

i,1 dz
i,1

...
...

...

dx
i,li

dy
i,li

dz
i,li




.

The reconstructed surface at timei is represented by ageometry image[25]. The modelM

is organized as threeR × C matrices, representing the deformation of a regular flat grid.

Each matrix is reshaped in a single vector of sizeµ = RC, giving Mi as:

Mi =




mx
i,1 my

i,1 mz
i,1

...
...

...

mx
i,µ my

i,µ mz
i,µ




.
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In practice, the number of data points is much larger than the number of model points,

i.e. li À µ. Upon convergence, our algorithm determines for each model point if there is a

corresponding point in the current point cloud. Points may be missing because of occlusions

or corrupted sensor output. This approach has the advantage that it naturally gives the

reconstructed surface by interpolating the mesh points. Point cloud registration is obtained

by composing the deformation fields.

3.2 Cost Function

Our cost function combines two data and three penalty terms:

e(M) = eg(M) + λbeb(M) + λses(M) + λtet(M) + λxex(M), (1)

whereλb, λs λx andλt are weighting parameters. Note that we drop the frame indexi for

clarity purposes, and denoteMi asM andMi−1 asM̃ .

The data terms are used to attract the estimated surface to the actual point cloud. The

first termeg is for global attraction, while the second oneeb deals with the boundary. These

terms must account for possible erroneous points by using robust statistics. The penalty

terms arees, et andex. The two first ones respectively account forspatial smoothnessand

temporal smoothnesses. The third one penalizes thesurface stressand is related to the

non-extensibility of the surface, and therefore to material properties of the surface.

This cost function is minimized in an ICP-like manner, as described in the next section.

All the five terms are explained below in details.
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Data term: global surface attraction. This term globally attracts the model to the data

points in a closest point manner [22]. In order to avoid the traditional two steps arising in

ICP-like algorithms, we explicitly embed themin operator in this data term, as suggested in

[21]. DenotingEM andED the sets of boundary points in the model and in the data, we get

the following data term, integrating the model to data points matching step:

∑

m∈M\EM

min
d∈D\ED

‖ d−m ‖2, (2)

whered andm are3−vectors respectively representing a data and a model point. It is worth

noting that, as opposed to [21], our unknowns are not the rigid motion parameters (i.e., the

classical roto-translations) but correspond to the wholenonrigid motion fieldin M .

An outliers rejectionstrategy is introduced by defining a robust functionw. Following

theX84 rule [26], functionw discards (i.e., it puts their residual to zero) those correspon-

dences which residual error differs by more than5.2 MAD (Median Absolute Deviation)

from the median. The value5.2 corresponds to about3.5 standard deviations, which in-

cludes more than 99.9% of a gaussian distribution. Therefore, (2) is modified so as to get

the following robustified data term:

eg(M) =
∑

m∈M\EM

w

(
min

d∈D\ED

‖ d−m ‖2

)
. (3)

Data term: boundary attraction. This term attracts boundary model points to boundary

data points. It is defined in a similar manner to the global attraction term (3) except that the
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sum and min operators are over the boundary points:

eb(M) =
∑

m∈EM

w

(
min
d∈ED

‖ d−m ‖2

)
. (4)

Note that the detection of boundaries points in the range image is out of scope of the pa-

per. In Section 5 we describe some ad hoc boundary detection methods for the proposed

applicative scenarios.

Penalty term: spatial smoothness. This term discourages surface discontinuities by pe-

nalizing its second derivatives, as an approximation to its curvature. According to the defi-

nition of the geometry image [25], the modelM is a displacement field parameterized1 by

(u, v) with u = [1 . . . R] andv = [1 . . . C], i.e.,M(u, v) = [Mx(u, v),M y(u, v),M z(u, v)].

The spatial smoothness term can thus the taken as the surface bending energy:

es(M) =

∫

R

∫

R

(
∂M2

∂2u

)2

+ 2

(
∂M2

∂u∂v

)2

+

(
∂M2

∂2v

)2

du dv.

Using a finite difference approximation for the first and second derivatives [19], the bending

energy can be expressed in discrete form as a quadratic function ofM :

es(M) = vect(M)>Kvect(M), (5)

whereK is a3µ×3µ, highly sparse matrix, andvect(M) is the vectorization operator which

rearranges matrixM to a vector.

1Recall that the model points lie on a grid.
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Penalty term: temporal smoothness. This defines a dependency between the current and

the previous point clouds,M andM̃ :

et(M) =‖ M − M̃ ‖2 . (6)

This makes the surface deformation smooth over time and can be used within a sequential

processing approach. It is obviously not used on the first frame of the sequence.

Penalty term: non-extensibility. This term discourages surface stretching. It favors the

mesh vertices to preserve their distance with their local neighborhood [27]:

eX(M) =
∑
m∈M

∑

k∈N (m)

(‖ m− k ‖2 −L2
m,k

)2
, (7)

whereLm,k are constants which are computed at the first frame after robust initialization

andN (m) is the neighborhood of the mesh vertexm, with #N (m) = 8.

4 Minimization Procedure

The above described cost function (1) is a sum of squared residuals nonlinearly depending

on the unknowns inM . In order to minimize this cost function, we use a nonlinear least

squares optimization algorithm, namely the Levenberg-Marquardt (LM) algorithm. We ex-

tend the LM-ICP approach proposed in [21] to deformable objects. LM requires one to

provide the partial derivatives of the residuals through a Jacobian matrix.

The Hessian matrix2 H = J>J +λI must be inverted at each LM iteration, the problem

2We use ‘Hessian matrix’ for the damped Gauss-Newton approximation to the true Hessian matrix.
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is not tractable if the number of model points is too high (if the deformation field is too

dense). The Jacobian matrix stacks the individual Jacobian matrices for all the five terms in

the cost function:

J> =
(
J>d J>b J>s J>t J>x

)
.

whereJµ×3µ
d , JEB×3µ

b , J3µ×3µ
s , Jξ×3µ

x , Jµ×3µ
t , are related to the global attraction, bound-

ary attraction, spatial smoothness, temporal smoothness and non-extensibility terms respec-

tively, andξ = #N (M). For instance, a grid with15 × 20 points has a Jacobian matrix

with 3760 · 900 elements (µ = 300, EB = 66, ξ = 2194). It is worth noting that the most

expensive Jacobian computation isJd since it requires the estimation of closest points at

each iteration. As suggested in [21], we solve this step with thedistance transform: the

distance between data points and a set of points lying on a discrete volumetric grid is pre-

computed by defining a properdistance fielddata structure. In this fashion, the closest point

computation in carried out in one step for all points [21]. Therefore, the Jacobian matrixJd

is estimated by finite differences on suchdistance fieldswhich remain constant through the

minimization.

One advantage of the proposed approach is that the Jacobian matrixJ is very sparse. We

thus use the sparsity to speed up each iteration using the technique in [28]. In particular, we

use the sparse Cholesky factorization package [29] included in the Matlab routines3. Figure

1 shows a plot of the Jacobian matrixJ3760×900 (left), and the corresponding Hessian matrix

H (right). Dark points show non zero entries. The sparsity of the Jacobian and Hessian

3More precisely, we use the ‘mldivide’ matlab function
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Figure 1: Example of Jacobian (left) and Hessian (right) matrix patterns: dark means non-

zero. The size of these matrices is3, 760 × 900 and900 × 900, so they respectively have

3, 384, 000 and 810, 000 entries. They however have only25, 626 and 46, 716 non-zero

entries.

matrices is clearly evidenced.

5 Experiments

Two kinds of experiments have been set up. In the first one, a structured-light 3D scanner4

is used for scanning different deformations of a paper sheet. In the second experiment, the

sensor is a passive-stereo system5 which allows us to acquire a sequence of 3D point clouds

4Data courtesy of Johnny Park from Purdue University (http://web.ics.purdue.edu).
5Data courtesy of eVS (http://www.evsys.net).

13



in realtime. The deformation of a portion of a blanket is modeled.

Initial conditions determine an estimate for both the model position, and the grid size.

In practice, a correct starting grid allows LM to converge, as well as to determine the pa-

rametersLm,k in (7). In the absence of any texture information, i.e., in experiment 1, we

detect them as strong depth discontinuities in the range image. In experiment 2, we use the

intensity information to segment the boundary. The result is however quite noisy, but our

system handles it thanks to its robustified data terms.

Experiment 1: paper sheet from a structured-light scanner. Several scans have been

carried out while bending the paper. The sensor provides accurate and high-resolution 3D

point clouds. The initial orientation of the grid is estimated by fitting a plane to the data.

By projecting the points to the plane, both the grid size and boundaries are easily computed.

There is no temporal dependency between the scans since they show totally different paper

deformations. The temporal smoothness constraintet is thus inhibited.

Figure 2 shows three examples. Images on the top row visualize the model and data

before surface fitting. Boundary points are highlighted. In the first example (Figure 2.a), the

deformation is mainly on the horizontal boundary. In the second one (Figure 2.b), the paper

is bent from the top-right to the bottom-left corner. In the third one (Figure 2.c), the defor-

mation is basically spread to the whole paper. Images on the central row show the result

of our robust fitting. The registration is accurate for both the interior points and the bound-

ary. The recovered meshes are smooth as expected. Finally, three synthetic reconstructions
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are shown on the bottom row. Any texture can be overlaid onto the model, for rendering

realistic paper deformation from arbitrary points of view. Figure 3 shows the paper sheet

reconstruction with different textures.

(a) (b) (c)

Figure 2: The paper sequence. Three examples of point clouds with the grid mesh super-

imposed at the starting position (top) and after model fitting (middle). Boundary points are

evidenced. The reconstructed model is shown with a new texture (bottom).

Finally, since the same grid is fit on all the images, the correspondences between differ-

15



Figure 3: Textured views. Once the surface deformation is captured, any image can be used

as a texture.

ent frames are recovered as a by-product (i.e., the corresponding points are those lying on

the same grid position). In this manner, it is possible to synthetically interpolate the inter-

mediate frames between two or more reference images. Figure 4 shows some intermediate

frames between the actual scanned images shown in Figures 2.a, 2.b and 2.c respectively.

Here, intermediate grids are recovered by simple linear interpolation between corresponding

mesh vertices. More sophisticated interpolation schemes incorporating the non-extensibility

penaltyex could be used so as to make the surface behave similarly to a real paper sheet.

Experiment 2: blanket from a stereo system. A long sequence of point clouds is ac-

quired for the second experiment. The sensor acquires the images at25 FPS (frames-per-
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Figure 4: Synthetically interpolated views. Images are generated by linear interpolation

between Figures 2.a, 2.b and 2.c respectively.
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second), and provides both intensity (i.e., 2D) and 3D information. The quality of the 2D

images is very low, and the range data is noisy. Moreover, the sensor can operate only on a

very limited field of view (i.e.,30 cm3). We use a blanket as the object of interest. Figure

5.a shows a picture of the blanket. Note that although 2D correspondences are recovered

by the stereo system between the left and right images, the 2D correspondences between

the frames contiguous in time are not reliable due to the distortions introduced by the sur-

face deformation. In this experiment, we aim at observing the blanket deformation only on

the portion delimited by the dark square. Figure 5.b shows the 3D point cloud. There are

many spurious points especially on the boundaries, and the scene is not easily recognizable.

We use the intensity image6 for selecting automatically our region of interest (i.e., the dark

−160 −140 −120 −100 −80 −60 −40 −20
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−100

−80

−60

−40

−20
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590

600

610
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630
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(a) (b)

Figure 5: The blanket sequence: intensity image of the blanket (a) and the 3D point cloud

(b).
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square), from which we recovered both the 3D data and the boundary. Figure 6.a shows

the image-boundary extracted by standard image processing techniques, while Figure 6.b

depicts the 3D data (i.e., the selected point cloud and 3D boundary). The sequence is made

(a) (b)

Figure 6: Data extraction: 2D boundary (a) and selected 3D data (b). 3D boundary is

highlighted with dark color.

of 100 point clouds. Model initialization is carried out for the first cloud only. Each iteration

uses the output of the previous one as an initial condition. Figure 7 shows a selection of the

output sequence. For each frame, is visualized: 1) the intensity image, with the extracted

2D boundary and the 2D projection of the estimated model, and 2) the point cloud - after

the region of interest selection, evidencing both the 3D boundary and the grid. The blanket

is handled from the bottom-left and upper-right corners, respectively. On the early frames,

6The intensity is the left image of the stereo-pair, which is associated to the disparity map. Indeed, there is

a mapping between the 2D and 3D information. Note that we do not use intensity information for fitting.

19



the blanket is gradually bent toward the square center, then it is strongly stretched, moving

the corners far from each other. Finally, in the late frames, random deformations are gener-

ated especially around the corners. Some frames are particularly challenging. In frame (c)

a strong shrinking is evidenced on the top-right corner. In frame (f) a wide hole appears on

the top-right side. In frames (h) and (i) data boundaries are clearly wrong on the bottom-left

side. Results are satisfying since the fitting is correct for the whole sequence. The mesh

grids are well superimposed on data points maintaining a smooth shape. Nevertheless, the

projections of the grids to the 2D images confirm the accuracy of the registration. Finally,

after the mesh fitting, a dense set of accurate deformations is available. We used them to

synthesize a movie rendered as if it was projected to a deforming screen. We project every

frame of the movie to a model of our sequence7. Some frames are shown in Figure 8.

Performance evaluation. For both experiments, a model of size15 × 20 is used. We

have seen that a higher value ofλb is necessary (i.e.,λb = 1.5) for a correct convergence

of the algorithm to the optimal solution. The other terms are set almost equally to1. The

distance transform parameters are important: the size of the voxels trades off speed and

result accuracy. Here, we have divided the volume into36× 36× 18 voxels.

Table 1 shows the running times of both the proposed experiments. For each experiment

we highlight the time spent for pre-processing (i.e., grid pre-alignment and the computation

of constantsLm,k), the total energy computation, the mean number of LM iterations, the total

7We loop over the extracted100 models.
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

(g1) (g2) (h1) (h2)

(i1) (i2) (j1) (j2)

Figure 7: Blanket sequence:10 selected frames. For each frame the 2D intensity (·,1) and

the 3D data (·,2) is visualized. The grid models are shown in the 3D space as well as their

projection in the 2D image.
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time for each frame and the total time of the whole experiment. Note that the computational

cost of one LM iteration is very similar for both experiments. This is due to the fact that it

depends only on the chosen grid size, being independent on the amount of input data. The

computational cost of pre-processing instead depends of the total number of points and thus

the first experiment takes a longer time.

The method has been implemented in Matlab on a Pentium M 1.86GHz. Note that since

the pre-processing is carried out only for the first frame of the sequence it strongly affects

the total time of the first experiment (for which only single frames are processed) while

being less relevant for the second experiment.

Experiment Pre-process (s) Energy (s) # LM iter Time per frame (s) # frames Total time (s)

Exp. 1 19.36 2.22 11 24.42 1 43.78

Exp. 2 15.24 2.34 7 16.34 100 1649.34

Table 1: Performances of the main steps of the proposed framework. Running times (sec.)

and iterations are mean values.

6 Discussion

We proposed a new approach for capturing the deformation of 3D surfaces from range im-

age or 3D scans. As a surface model, we deform a generic geometry image, which is aligned

with the observed data points. A cost function is devised that combines a priori information,

such as spatio-temporal smoothness, and observations. Both non-extensibility and boundary
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Figure 8: Synthesized movie: some selected frames. Each frame of the movie is projected

to the reconstructed model by simulating a deforming video screen.
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attraction terms are crucial for disambiguating this intrinsically ill-posed problem. The op-

timization phase is solved with the Levenberg-Marquardt algorithm, while taking advantage

of the sparsity of the Jacobian and Hessian matrices.

Results are promising since the performances are satisfying for the analyzed cases. The

method has been tested onto two kinds of datasets, thereby evidencing the versatility in

dealing with different sensors. In the first experiment, the source data was accurate and the

estimated models was according to what we expected. In the second experiment, a whole

sequence of 3D point clouds has been processed. This has allowed us to capture cloth defor-

mations without using any markers nor special projected patterns. Although data was very

noisy, especially around the boundary, the method performed robustly. We discussed the

behavior of our algorithm in the presence of holes and broken boundary. Moreover, since

the captured deformation depends only on the size of the chosen grid, the proposed method

allows one to use an arbitrary level of deformable details in the captured surfaces. We also

highlight that the method is easy to implement and that it is reasonably fast. Finally, some

graphical results were shown for generating new synthetic deformations, and for chang-

ing the appearance of the original surface, as well as for synthesizing a deforming video.

This shows the usefulness of the method for computer animation. Several applications are

made possible by the proposed method, includingi) cloth motion capture, with no marker

or pattern,ii) dense augmented reality for special effects such as a liquid spreading on a

deformable surface andiii) surface completion and interpolation in the presence of miss-

ing or erroneous frames. The main limitation regards the hypothesis to work on planar-like
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surfaces. The extension to shapes with more complex topology will be addressed in future

work.
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