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Abstract. We consider a Multiple Kernel Learning (MKL) framework
for nuclei classification in tissue microarray images of renal cell carci-
noma. Several features are extracted from the automatically segmented
nuclei and MKL is applied for classification. We compare our results with
an incremental version of MKL, support vector machines with single ker-
nel (SVM) and voting. We demonstrate that MKL inherently combines
information from different input spaces and creates statistically signif-
icantly more accurate classifiers than SVMs and voting for renal cell
carcinoma detection.
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1 Introduction

Cancer tissue analysis consists of several consecutive estimation and classifica-
tion steps which require intensive labor practice. The tissue microarray (TMA)
technology enables studies associating molecular changes with clinical endpoints
[6]. In this technique, 0.6mm tissue cylinders are extracted from primary tumor
blocks of hundreds of different patients, and are subsequently embedded into a
recipient paraffin block. Such array blocks can then be used for simultaneous
analysis of primary tumors on DNA, RNA, and protein level.

In this work, we consider the computer based classification of tissue from
renal cell carcinoma (RCC) after such a workflow has been applied. The tissue
has been transferred to an array and stained to make the morphology of cells
and cell nuclei visible. Current image analysis software for TM As requires exten-
sive user interaction to properly identify cell populations on the TMA images,
to select regions of interest for scoring, to optimize analysis parameters and to
organize the resulting raw data. Because of these drawbacks, pathologists typi-
cally collect tissue microarray data by manually assigning a composite staining
score for each spot. Such manual scoring can result in serious inconsistencies
between data collected during different microscopy sessions. Manual scoring also
introduces a significant bottleneck that limits the use of tissue microarrays in
high-throughput analysis.

* Corresponding author. tEqual contributors



2 Schiiffler, Ulag, Castellani, Murino

“ ) .
P e e
- A 4 Ay ,
= $ e T s .
- 'y ) .«
. ° N T | . A §
o i a
. * 3 . T - . »
#. T L
7 Y » 4 L
. o F i STE » *
¢ S b e PR L e PR

(Detection) ————— Segmentation ——— (lassification

Fig. 1. One keypoint in the automatic TMA analysis for renal cell carcinoma is the
nucleus classification. Nuclei are eosin stained and visible in the TMA image as dark
blue spots. We want to simulate the classification of cell nuclei into cancerous or be-
nign, which is recently done by trained pathologists by eye. The automatic approach
comprises nucleus detection on the image, the segmentation of the nuclei and the clas-
sification, all based on training data labeled by two human experts.

The manual rating and assessment of TMAs under the microscope by pathol-
ogists is quite unconsistent due to the high variability of cancerous tissue and
the subjective experience of humans, as shown in [4]. Therefore, decisions for
grading and/or cancer therapy might be inconsistent among pathologists. With
this work, we want to contribute to a more generalized and reproducible system
that automatically processes TMA images and thus helps pathologists in their
daily work.

For various classification tasks, SVM formulations involve using one data set
and maximizing the margin between different classes. This poses a restriction
on some problems, where different data representations are used. Combining
the contribution of different properties is important in discriminating between
cancerous and healthy cells. Multiple Kernel Learning (MKL) is a recent and
promising paradigm, where the decisions of multiple kernels are combined to
achieve better accuracies [1]. The advantage of this idea is to be able to utilize
data from multiple sources. In MKL, multiple kernels are combined (see Sec-
tion 3) globally. We also compare this idea with the usual classifier combination
where outputs of multiple classifiers are combined [7,9].

In previous work, an automated pipeline of TMA processing was already
proposed, concentrating on the investigation of various image features and as-
sociated kernels on the performance of a support vector machine classifier for
cancerous cells [12]. In this work, we follow this workflow and extend the nucleus
classification (Figure 1) by using MKL that combines information from multi-
ple sources (in our case different representations). By considering different types
of features, we show in Section 4 the importance of using shape features; our
results show that MKL reaches significantly better accuracies than SVM and
voting (VOTE) using the combination of multiple kernels.
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Our contribution is to show how information from different representations
can make this classification task easier: the MKL algorithm inherently combines
data from different representations to get better classification accuracies. Instead
of combining outputs of multiple classifiers, MKL uses an optimization procedure
where data from all sources are seen during training and optimization is done
accordingly. Our experiments demonstrate that although it is more costly to use
MKL, the increase in accuracy is worth its cost.

The paper is organized as follows: in Section 2, we introduce the data set
used in this study. We explain the methods applied in Section 3, and show our
experiments in Section 4. We conclude in Section 5.

2 Data Set

2.1 Tissue Micro Arrays

Small round tissue spots of cancerous tissue are attached to TMA glass plate.
The diameter of the spots is lmm and the thickness corresponds to one cell
layer. Eosin staining made the morphological structure of the cells visible, so
that cell nuclei appear bluish in the TMAs. Immunohistochemical staining for
the proliferation protein MIB-1 (Ki-67 antigen) makes nuclei in cell division
status appear brown.

For computer processing, the TMA slides were scanned with a magnifica-
tion of 40x, resulting in a per pixel resolution of 0.23um. The final spots of
single patients are separately extracted as three channel color images of size
3000x3000px.

In this study, we used the top left quarter of eight tissue spots from eight
patients. Therefore, each image shows a quarter of the whole spot, i.e. 100-200
cells per image (see Figure 2).

For training our models, the TMA images were independently labeled by
two pathologists [4]. From such eight labeled TMA images, we extracted 1633
nuclei-patches of size 80x80 pixels. Each patch shows a cell nucleus in the center
(see Figure 3). 1273 (78 %) from the nuclei form our datase, where the two
pathologists agree on the label: 891 (70 %) benign and 382 (30 %) malignant
nuclei.

2.2 Image Normalization and Patching

The eight images were adjusted in contrast to minimize illumination variances
among the scans. To classify the nuclei individually, we extracted patches from
the whole image such that each 80x80px patch has one nucleus in the center
(see Figure 3). The locations of the nuclei were known from the labels of the
pathologists. Both procedures drastically improved the following segmentation
of cell nuclei.
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Fig. 2. Left: One 1500x1500px quadrant of a TMA spot from a RCC patient. Right:
A pathologist exhaustively labeled all cell nuclei and classified them into malignant
(black) and benign (red).

2.3 Segmentation

The segmentation of cell nuclei was performed with graphcut [3]. The gray inten-
sities were used as unary potentials. The binary potentials were linearly weighted
based on their distance to the center to prefer roundish objects lying in the cen-
ter of the patch (see Figure 3). The contour of the segmented object was used
to calculate several shape features as described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80x80 pixel patch are
shown, each with the corresponding nucleus shape found with graphcut.

2.4 Feature extraction

For training and testing the various classifiers we extracted several histogram-like
features from the patches (see Table 1).
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Table 1. Features extracted from patch images for training and testing. Except the
PropP feature, all features are histograms normalized to sum up to one.

Shortcut|Feature Description
ALL Patch Intensity: A 16-bin histogram of gray scaled patch

FG Foreground Intensity: A 16-bin histogram of nucleus
BG Background Intensity: A 16-bin histogram of background
Lsp Local Binary Patterns: This local feature has been shown to bring con-

siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

CoL Color feature: The only feature comprising color information. The colored
patch (RGB) is rescaled to size 5x5. The 3x25 channel intensities are then
concatenated to feature vector of size 75.

Fcc Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point ([5]). The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.
Sia 1D-signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape
([5]). As feature, a 16-bin histogram of the signature is generated.

PrHoGc |Pyramid histograms of oriented gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches ([2]).

Prop Shape descriptors derived from MATLAB’s regionprops func-
tion: Area BoundingBox(3:4), MajorAxisLength, MinorAxisLength,
ConvexArea, Eccentricity, EquivDiameter, Solidity, Extent,
Perimeter, MeanIntensity, MinIntensity, MaxIntensity;

3 Methodology

In this section, we summarize the MKL framework behind our experiments. The
main idea behind support vector machines [14] is to transform the input feature
space to another space (possibly with a greater dimension) where the classes are
linearly separable. After training, the discriminant function of SVM becomes
f(x) = (w,P(x)) + b, where w are the weights, b is the threshold and &(x) is
the mapping function. Using dual formulation and the kernels one does not have
to define this mapping function @(x) explicitly and the discriminant becomes as
in (1) where K(x;, x) is the kernel.

f(z) = ZaiyiK($7 x;) +b. (1)

Using SVM with a single kernel would restrict us to use one feature set (or a
concatenation of all feature sets) and complicates the possibility to exploit the
information coming from different sources. As in classifier combination [7], we
can combine multiple kernels using different feature sets and use this information
to come up with more accurate classifiers [9]. The simplest way for this is to use
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an unweighted sum of kernel functions [10]. Lanckriet et al. [8] have formulated
this semidefinite programming problem which allows finding the combination
weights and support vector coefficients together. Bach et al. [1] reformulated the
problem and proposed an efficient algorithm using sequential minimal optimiza-
tion (SMO). Using Bach’s formulation, with P kernels, the discriminant function
becomes as in (2) where m indexes the kernel:

P N
flx) = Z TIm Z i yi K (2, 2:) + b . (2)
m=1 i=1

This allows us to combine different kernels in different feature spaces and this
is the formulation we apply in this work. Here, kernels are combined globally,
namely the kernels are assigned the same weights for the whole input space.

It has been shown by many researchers that using a subset of given classifi-
cation algorithms increases accuracy rather than using all the classifiers [11,13].
Keeping this in mind, we apply the same idea to incrementally adding kernels
to the MKL framework and compare the results.

The incremental algorithm works as follows: It starts with the most accurate
kernel (classifier) on the validation folds (leave-the-other-fold-out), and adds
kernels (classifiers) to the combination one by one. This procedure continues
until all kernels (classifiers) are used or the average validation accuracy does not
increase [13]. The algorithm starts with E® « (), then at each step ¢, all the
kernels (classifiers) M; ¢ E(~Y are combined with E¢~) to form 5! (S! =
E=D U M;). We select S%. which is the ensemble with the highest accuracy. If
accuracy of S%. is higher than Et=1 we set Et — S%. and continue, else the

algorithm stops and returns E(¢—1).

4 Experiments

4.1 Experiment Setup

The data of 1273 nuclei samples is divided into ten folds (with stratification).
We then train support vector machines (svl, sv2, svg, see below) and MKL us-
ing these folds. We also combine the support vector machines using voting and
report average accuracies using 10-fold CV. For the Gaussian kernel, ¢ is cho-
sen using a rule of thumb: v/D where D is the number of features of the data
representation. We compare our results using 10-fold CV ¢-test at p = 0.05. In
the incremental learning part, we apply leave-the-other-fold-out cross validation
(used for validation) to estimate which kernel and classifier should be added.

As a summary, we have 9 representations (ALL, BG, Cor, Fcc, Fa, Lsp,
PHOG, SiGg and PRrROP), three different kernels (linear kernel: svl, polynomial
kernel with degree 2: sv2, and Gaussian kernel: svg), and two combination algo-
rithms (MKL, VOTE).

The SVM accuracies with each individual kernel are reported in Table 2. The
best accuracy using a single SVM is 76.9 %. For most representations (except
PHOG and CoL), the accuracies of different kernels are comparable.
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Table 2. Single support vector accuracies (+ std) in %.

svl sv2 svg
ALL  70.0£0.2 71.6+2.9 72.0£3.2
Bc  70.0+£0.2 71.2+2.6 68.9+2.3
CoL 70.1£0.2 63.6£3.5 66.24+2.3
Fcc 70.0£0.2 70.0+0.2 67.4+£1.6
Fe  70.0+£0.2 70.0£3.2 70.5£3.5
LBp 70.0+0.2 66.9£3.0 68.7+4.4
PHOG 76.51+3.7 72.0£3.3 76.91+3.6
SiG 70.0+0.2 68.6+2.5 66.6+2.6
ProP 75.7£2.3 75.6£2.6 74.1+1.8

Next, we use the same kernel and combine all the feature sets we extracted.
As shown in Table 3 (top), we can achieve an accuracy of 81.3 % using the lin-
ear kernel, by combining all representations using the same kernel. This shows
that the combination of information from multiple sources might be important
and, by using MKL, the accuracy can be increased around 5 %. We observe
from the table also that when we use all kernels with sv2, we have a decrease
in accuracy compared to the single best support vector machine. This is anal-
ogous to combining all classifiers in classifier combination. If one has relatively
inaccurate classifiers, combining all may decrease accuracy. Instead, it might be
better to choose a subset. This also shows that medically, all the information is
complementary and should be used to achieve better accuracy. In Figure 4, we
plotted the weights of MKL when we use the linear kernel. As expected, the two
best representations PHOG and PROP have high weights. But the representation
LBP that has very low accuracy when considered as a single classifier increases
the accuracy when considered in combination. This shows that when consider-
ing combinations, even a representation which is not very accurate alone may
contribute to the combination accuracy. From this, we also deduce that these
three features are useful in discriminating between healthy and cancerous cells
and we may focus our attention on these properties.

On the bottom part of Table 3, the results using the incremental algorithm
are shown. We can see that we do not have an increase in accuracy compared to
the best single support vector machine. In fact, the incremental algorithm cannot
find a second complementary kernel which will increase accuracy when added to
the single best. In principle, we expect the incremental algorithm to have better
accuracies than combining all classifiers. We see this behavior for sv2. When we
consider svl, combining all kernels seems to be better than the subset selection
strategy. This might partially result from the fact that the incremental algorithm
could not find a complementary kernel, and partially from the optimization
formulation of MKL. In the incremental search, we discard kernels which do
not improve the overall accuracy. On the other hand, in MKL, every kernel is
given a weight and all kernels contribute to the solution of the problem. From
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Fig. 4. Combination weights in MKL using the linear kernel.

this, we can say that it is better to use MKL instead of combining outputs of
support vector machines using voting. We can also see the support of this claim
in Table 3. When we use voting, combining all classifiers is always worse than
the single best and always worse than MKL because the optimization procedure
does not see the data, but only combines outputs of all classifiers. On the other
hand, when we apply the incremental paradigm, we achieve better results than
MKL because there are complementary classifiers which increase the accuracy.

Table 3. MKL accuracies (in %). Top: accuracy (% std) of combining all kernels.
Bottom: accuracies calculated using the incremental algorithm, the number of ker-
nels/classifiers selected.

svl sv2 svg
MKL 81.31+3.6 72.0+3.3 76.9+3.6
VOTE 70.0+0.2 71.3£1.7 72.44+1.2
MKL 76.943.6, 1
VOTE 78.942.5, 4

4.2 Discussion

We have seen that MKL performs better than VOTE and SVMs with single
kernel, when all kernels are combined. This is because the optimization proce-
dure takes into account all data and gives weights to all kernels, so it can use all
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representations. On the other hand, when we apply the incremental algorithm,
classifier combination achieves better accuracies than combining all classifiers.
MKL combines the underlying feature sets to make a better combination. In this
work, we used three different kernels and two combination schemes to see how
the change of each parameter effects the classification accuracy. We see that,
when we use single support vector machines, all the kernels have comparable
accuracies. The importance of each kernel function increases when the combi-
nation is considered, and combining outputs is less effective than combining the
kernels themselves using optimization.

Also, we have seen that when we use the multiple kernel learning algorithm,
we gain 5 % in accuracy compared to SVMs with single kernel. Combining all
kernels here comes with a drawback. We have to use all kernels and extract all
the features when we have to use this model but the increase in accuracy might
be worth the cost. We see that when we use the incremental algorithm, we cannot
add any kernels, so we are stuck in a local minimum. When we combine classifiers
on the other hand, the incremental algorithm achieves more accurate results.
Nevertheless, the best results are obtained when we use all representations using
svl and this accuracy is the best result we have reached so far.

5 Conclusion

In this paper, we propose the use of the multiple kernel learning paradigm for
the classification of nuclei in TMA images of renal clear cell carcinoma. We
used support vector machines extensively through different feature sets in our
previous work. This study extends those works by using several feature sets in a
multiple kernel learning paradigm and compares the results with single support
vector machines and combining outputs of support vector machines using voting.

We have seen that MKL performs better than SVMs and VOTE in most of
the experiments. MKL exploits the underlying contribution of each feature set
and heterogeneity of the problem, and by using multiple kernels, achieves better
results than single kernels and voting of classifiers.

In this work, we used image based feature sets for creating multiple features.
In a further application of this scenario, the use of other modalities or other
features (e.g. SIFT) extracted from these images, as well as the incorporation of
complementary information of different modalities to achieve better classification
accuracy is possible. The incremental algorithm as implemented in this scenario
does not work as well as combining all kernels using MKL. As a future work,
we would like to implement other heuristics (decremental search, two step look-
ahead incremental search, floating search etc.) so that we can achieve better
accuracies without imposing too much cost on the system and using only a
few kernel combinations. We also would like to apply a local multiple kernel
combination framework which is analogous to classifier selection in ensemble
framework where the combination also depends on the input which puts forward
the inherent localities of the data sets and automatically divides the data set
into subsets within the optimization procedure.
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