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This paper proposes a technique for the three-dimensional reconstruction of an
underwater environment from multiple acoustic range views acquired by a remotely
operated vehicle. The problem is made challenging by the very noisy nature of the
data, the low resolution, and the narrow field of view. Our main contribution is a new
global registration technique to distribute registration errors evenly across all views.
Our approach does not use data points after the first pairwise registration, for it works
only on the transformations. Therefore, it is fast and occupies only a small amount of
memory. Experimental results suggest the global registration technique is effective
in equalizing the error. Moreover, we introduce a statistically sound thresholding
(the X84 rejection rule) to improve ICP robustness against noise and nonoverlapping
data. c© 2002 Elsevier Science (USA)

Key Words: multiple views; registration; ICP; 3D reconstruction; acoustic imaging.

1. INTRODUCTION

In this paper we address the problem of the registration of many 3D point sets, coming
from an acoustic range sensor. Typically, the term registration is used for the geometric
alignment of a pair or more 3D data point sets, while the term fusion is used when one
wants to get a single surface representation from registered 3D data sets.

Our data come from a high frequency acoustic camera, called Echoscope [1], with a
typical resolution of 3 cm at 500 KHz. Speckle noise is typically present due to the coherent
nature of the acoustic signals. The final goal is to provide a 3D scene model to the human
operator(s) of an underwater Remotely Operated Vehicle (ROV), in order to facilitate the
navigation and the understanding of the surrounding environment.

The registration of two point sets is usually performed by the Iterative Closest Point (ICP)
procedure [2, 3]. ICP assumes that one point set is a subset of the other; when this assumption
does not hold, false matches are created that negatively influence the convergence of the
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ICP to the solution. In order to overcome this problem, many variants to ICP have been
proposed, including the search of closest points in the direction of the local surface normal
[3], the use of thresholds to limit the maximum distance between points [4], disallowing
matching on the surface boundaries [5], and the use of robust regression [6, 7]. In this
paper we use the X84 outlier rejection rule [8] to discard false correspondences. This is an
improvement over [4], because there are no free parameters and because it achieves a larger
basin of attraction.

A widely used approach to the registration of many views is to sequentially apply pairwise
registration until all the views are combined. Chen and Medioni [3], for instance, proposed
an incremental approach in which two views are registered and merged, building a metaview.
The next view is then registered and merged with the metaview and the process is repeated
for all the views. A similar approach was taken also by Masuda [9]. Jin et al. [10] proposed
to incrementally build a surface model onto which new views can be registered and already
registered views can be adjusted.

These schemes do not compute the optimal solution, because of the accumulation of reg-
istration errors, as pointed out by [11] and [12]. They do not use all the available information.
Multiview registration, instead, must exploit the information present in the unused overlap-
ping view pairs, distributing the alignment error evenly between every pairwise registration.
Bergevin et al. [12] registered multiple range images simultaneously, using an extended ICP
algorithm. They converted the sequential registration relationship into a star-shaped rela-
tionship and then imposed the well-balanced network constraint. A network of range views
is well balanced when the registration error is similar for all transformation matrices and
the transformation matrix between any two views is uniquely defined regardless of the path
chosen to link the views. Pulli [13] proposed to use the pairwise alignments as constraints
that the multiview step enforces while evenly diffusing the pairwise registration errors. In
such a way, computational time is reduced as well as memory storage. He introduces the
concept of a virtual mate to enforce the pairwise alignments as constraints. Eggert et al.
[14] use a force-based optimization in which incremental pose adjustments are computed
simultaneously for all point sets, resulting in a globally optimal set of transformations. In
[15], couples of range images are incrementally registered together with a final registra-
tion between the first and the last view, by using the inverse calibration procedure of the
range-finder.

Some works focus on computing the global registration given the correspondences (i.e.,
the N -view point set registration problem). In [16], a force-based optimization approach is
proposed. Assuming the points’ correspondences among the data sets are known, intercon-
nections using springs between corresponding points is simulated. Pennec [17] introduces
an iterative algorithm based on the concept of mean shape. Benjemaa and Schmitt [11]
use a quaternion approach similar to [18]. These techniques have been compared in [19],
and the result is that, not considering speed, Pennec’s method is the best one, whereas
[11] is the fastest. In a recent work, Williams and Bennamoun [20] proposed a new tech-
nique in which rotations are first computed iteratively, and then translations are obtained as
the solution of a linear system. The method has been integrated into a generalized multi-
view ICP.

All the multiview alignment methods need to keep data of all—or at least some—views
in memory at the same time, reducing drastically performance, especially when aligning
large data sets. Our global registration approach differs from all the others because we
enforce the constraints arising from the pairwise registration directly on the transformation
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matrices, without the need to go over data points again, after the initial pairwise registration
between all the overlapping views. The idea comes from [21] where it was applied to
the construction of planar mosaics from video (2D) images. Here we propose to extend
the technique to the registration of multiple 3D point sets. In our case we end up with a
nonlinear system of equations (because of the parameterization of the rotations) that we
solve with the Gauss–Newton algorithm. In the context of medical imaging Roche et al.
[22] proposed a similar method for the registration of 3D ultrasound images and magnetic
resonance images. This technique differs from ours in the formulation of the objective
function and in the representation of rotations. Following [11, 18, 23] we used quaternions
to represent rotations, because of their well-known good properties [24]. In the field of 3D
registration, the closest work to our is [13], because both are based on the simultaneous
satisfaction of constraints provided by the pairwise registration, and neither relies on the
solution of the N -view point set registration problem. Our work differs in the formulation
of the constraints which do not involve data points.

We would like to stress that none of the works on multiple views registration present in
the literature deal with the particular kind of 3D data we are using. In fact, (i) the resolution
is never better than some centimeters, unlike classical range data; and (ii) the motion of the
sensor is quite unstable and cannot be controlled with precision, so acquired images from
a fixed position may be different due to speckle noise and sensor floating.

2. ROBUST PAIRWISE REGISTRATION

Pairwise registration was addressed using the classical ICP algorithm [2] to which we
added an outlier rejection rule (called X84) in order to cater to nonoverlapping areas between
views.

2.1. Two View Point Set Registration

Let us suppose that we have two sets of 3D points, V i and V j , which correspond to a
single shape but are expressed in different reference frames. The registration consists in
finding a 3D transformation which, when applied to V j , minimizes the distance between
the two point sets. In general, point correspondences are unknown.

For each point yi from the set V j , there exists at least one point on the surface of V i that
is closer to yi than all the other points in V i . This is the closest point, xi . The basic idea
behind the ICP algorithm is that, under certain conditions, closest points are a reasonable
approximation to the true point correspondences. The ICP algorithm can be summarized as
follows:

(1) For each point in V j , compute the closest point in V i ;
(2) With the correspondence from step 1, compute the incremental transformation

(Ri, j , ti, j );
(3) Apply the incremental transformation from step 2 to the set V j ;
(4) If the change in total mean square error is less than a threshold, terminate. Else

goto step 1.

Besl and McKay [2] proved that this algorithm is guaranteed to converge monotonically
to a local minimum of the mean square error. As for step 2, efficient, noniterative solutions
to this problem (known as the point set registration problem) were compared in [25], and
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the one based on singular value decomposition was found to be the best in terms of accuracy
and stability.

ICP can give very accurate results when one set is a subset of the other, but results
deteriorate with outliers, created by nonoverlapping areas between views. In this case, the
overlapping surface portions must start very close to each other to ensure convergence,
making the initial position a critical parameter.

Modifications to the original ICP have been proposed to achieve accurate registration
of partially overlapping point sets [4–7]. We implemented a variation similar to the one
proposed by Zhang [4] using outlier diagnostics to limit the maximum allowable distance
between closest points.

2.2. Robust Outlier Rejection

As pointed out by Zhang, the distribution of the residuals for two fully overlapping sets
approximates a Gaussian, when the registration is good. The nonoverlapped points skew
this distribution: they are outliers. Therefore, good correspondences can be discriminated
by applying outlier diagnostics on the distribution of closest point distances ε. To this end,
we employ a simple but effective model-free rejection rule, called X84 [8], which uses
robust estimates for location and scale (i.e., the spread of the distribution) to set a rejection
threshold. The median is a robust location estimator, and the Median Absolute Deviation
(MAD), defined as

MAD = med
i

{∣∣∣εi − med
j

ε j

∣∣∣}, (1)

is a robust estimator of the scale. The X84 rule prescribes to reject values that are more than
k MADs away from the median. Under the hypothesis of Gaussian distribution, a value of
k = 5.2 is adequate in practice, as the resulting threshold contains more than 99.9% of the
distribution.

The X84 rejection rule has a breakdown point of 50%: any majority of the data can
overrule any minority. The computational cost of X84 is dominated by the cost of the
median, which is O(N ), where N is the size of the data point set. The most costly procedure
inside ICP is the establishment of point correspondence, which costs O(N log N ). Therefore
X84 does not increase the asymptotic complexity of ICP.

3. MULTIVIEW REGISTRATION

Assume that there are M overlapping point sets (or views) V 1 . . . V M , each taken from
a different viewpoint. The objective is to find the best rigid transformations G1 . . . GM to
apply to each set, bringing them into a common reference frame where they are seamlessly
aligned. Let Gi, j be the rigid transformation matrix (in homogeneous coordinates) that
registers view j onto view i , i.e.,

V i = Gi, j V j , (2)

where the equality holds only for the overlapping portions of the two points sets V i and
Gi, j V j . If we choose (arbitrarily) view k as the reference one, then the unknown rigid
transformations G1. . . GM are respectively Gk,1. . . Gk,M . As customary, we will take k = 1.
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These rigid transformations are not independent of each other, being linked by a composi-
tion relationship. We can therefore estimate the alignment G j of image V j on the reference
view (defined by the image V 1), by first registering V j onto any view V i and then using
Gi to map the result into the space of V 1:

G j = Gi Gi, j . (3)

This relationship can be used to compute Gi when all the matrices Gi−1,i . . . G1,2 are known,
by simply chaining them:

Gi =
i∏

j=2

G j−1, j . (4)

The global registration matrix Gi will map V i into the space of V 1 (the reference view).
As is well known, the combination of pairwise registration does not yield the optimal

result. For example, if Gk,i and Gi, j are optimal in the sense that they minimize the mean
square error distance between the respective sets, then Gk, j computed by composition does
not necessarily minimize the mean square error between views V j and V k . Moreover,
small registration errors accumulate so that views near the end of a sequence have a large
cumulative error.

3.1. Global Transformations Adjustment

In order to improve the quality of global registration, let us suppose we have locally
registered all spatially overlapping view pairs, in addition to those that are adjacent in the
image sequence. As the ROV moves back and forth, we can obtain good alignment also
between distant views in the temporal sequence.

The aim of the proposed method is to optimize the information coming from every
pairwise registration, obtained by the alignment of all the overlapped range images. The
innovative contribution consists in obtaining a global registration by introducing algebraic
constraints on the transformations, instead of data points.

We first perform pairwise registration between every view and each of its overlapping
views, thereby computing the Gi, j matrices whenever it is possible. By considering many
equations as (3), we can build a system of equations in which the Gi, j are known quantities
obtained by pairwise image registration, and the matrices G1,i = Gi (2 ≤ i ≤ M) are the
sought unknowns. By decomposing the homogeneous transformation matrices into rotation
and translation, as G = [R t

0 1
], Eq. (3) becomes:

{
R j = Ri Ri, j

t j = Ri ti, j + ti ,
(5)

where R is a rotation matrix and t is a translation vector. Although this system of equations
is essentially linear, a number of problems arise when formulating solutions that account
for the nonlinear constraints on the components of R. In order to respect these constraints,
the rotation matrices must be suitably parameterized, ending up with a system of nonlinear
equations.
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This nonlinear least squares problem can be cast as the minimization of the following
objective function

min
∑
i, j

((angle(Ri Ri, j (R j )�)/σα)2 + (‖Ri ti, j + ti − t j‖/σt )
2), (6)

where angle(·) is an operator that takes a rotation matrix and returns the angle of rotation,2

and σα and σt are normalization factors. Starting from the global registration obtained by
chaining pairwise transformation (Eq. (4)), a least squares solution is iteratively sought,
using a standard Gauss–Newton algorithm.

The estimated transformations G2 . . . GM are influenced by all the measured pairwise
transformations, and the registration error is distributed over all the estimated transforma-
tions. In this sense, the final registration graph is very close to a well-balanced graph as
defined in [12]. As the objective function includes only the matrix components, the com-
plexity of the proposed algorithm is independent on the number of points involved and
depends only on the number of available pairwise registrations.

3.2. Dealing with Rotations

One of the most convenient ways to represent rotations are quaternions. They have a
number of mathematical properties that make them particularly well suited to the require-
ments of an iterative gradient-based search for rotation and translation [24]. Rotations are
represented by unit quaternions. Instead of requiring the quaternion q = [u, v, w, s] to be a
unit vector, following [24], we enforce the constraint that the rotation matrix is orthonormal
by dividing the matrix by the squared length of the quaternion

R(q) = 1

q · q̄
Ru(q), (7)

where Ru(q) is the rotation matrix associated to the quaternion. This constraint is necessary
in general to ensure the gradient accurately reflects the differential properties of a change
in the quaternion parameters.

3.3. Summary of the Algorithm

Step 1. For each overlapping view pair, compute the pairwise registration matrix Gi, j ,
using ICP + X84. Accept Gi, j only if the final registration error is below a certain threshold;

Step 2. Compute a starting guess for each Gi by chaining pairwise transformations as
in Eq. (4);

Step 3. Solve the system of equations defined in Eq. (5) with Gauss–Newton.3 At each
step enforce orthogonality of the rotation matrix with Eq. (7);

Step 4. Apply the transformations Gi to the view V i , i = 2, . . . , M .

Registered sets of points must be fused in order to get a single 3D model. Surface re-
construction from multiple range images can be addressed as the problem of surface recon-
struction from a set of unorganized 3D points, disregarding the original 2.5D nature of the

2 Any (nonzero) rotation in 3D space has a unique representation as a rotation angle about an (oriented) axis.
3 We used the MATLAB lsqnonlin function, which implements a quasi-Newton method with a mixed

quadratic and cubic line search procedure, with numerical Jacobian.
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data. We used the algorithm by Hoppe et al. [26], for which a public domain implementation
exists.

4. RESULTS DESCRIPTION

In synthetic experiments we simulated the movement of an underwater ROV around the
external part of an offshore rig using the OpenGL library to generate synthetic range images.
Given a 3D model of part of the rig, range images were obtained by moving the (virtual)
camera and extracting the z-buffer for each view. In order to asses the final registration, we
made the last view to coincide with the first one.

In Fig. 1, we show an example of two point sets that Zhang’s ICP fails to align. Instead,
our ICP algorithm with X84 rejection rule recovers the correct rigid transformation.

As for the global registration, in order to evaluate the performance of our technique, we
computed the registration error of a view as the mean square distance between its points
and their closest points in the mosaic composed by all the already registered views (outliers
were discarded according to the X84 rule). The improvement over the chained pairwise
alignment is shown as a histogram depicting, for each view, the difference between the
registration errors of the two techniques (a positive value means an improvement of our
method).

Experiment 1 consists of a synthetic sequence of 29 range images. The benefit brought by
the global registration can be appraised in Figs. 2a and 2b. The histogram in Fig. 2c shows
that the global registration improves especially near the end of the sequence (as expected).

In Experiment 2, we generated a sequence composed by 37 range images. We wanted to
test the performance of the global registration algorithm in the presence of an incorrect pair-
wise registration (view 35). In this case the chaining of pairwise transformations inevitably
propagates the error. In our global multiview registration, thanks to the information coming
from the other pairwise transformations linking (indirectly) views 35 and 34, the correct
registration is achieved, and the error is distributed over the whole sequence. Figure 3c
shows the improvement obtained by the optimal global registration, which is concentrated
on view 35, as expected. The benefit brought by the global registration is also clearly visible
in Figs. 3a, and 3b and also in Fig. 4 where the reconstructed surfaces are shown for both
techniques.

In Experiments 3 and 4 we added Gaussian white noise with different standard deviation
(σ = 0.02 and σ = 0.045, respectively) to the synthetic images of Experiment 1. The relative
histograms are shown in Fig. 5.

FIG. 1. In (a) the two point sets are in the start position, (b) shows the result of Zhang’s ICP algorithm, and
(c) shows the result of ICP + X84.
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FIG. 2. Experiment 1. Alignment between view 1 and view 29 for chained pairwise registration (a) and global
registration (b). Histogram of the differences of the registration error (c). A positive value corresponds to an
improvement.

FIG. 3. Experiment 2. Alignment between view 1 and view 37 for chained pairwise registration (a) and global
registration (b). Histogram of the differences of the registration errors (c).

FIG. 6. Experiment 5. Alignment between first view and last view for chained pairwise registration (a) and
global registration (b). Histogram of the differences of the registration errors (c).
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TABLE 1

Average registration errors

Chained pairwise Global
Experiment registration registration % difference

1 0.24095 0.19258 20.1
2 0.28960 0.19630 32.2
3 0.36328 0.32936 9.3
4 0.50290 0.47200 6.1
5 15.47955 15.01574 3.0

Note. The synthetic and real images are not the same scale.

FIG. 4. Surface reconstruction using Hoppe and DeRose algorithm. Chained pairwise registration (a) and
global multiview registration (b).

FIG. 5. Histogram of the differences between the registration errors for the chained pairwise registration and
the global registration, in Experiments 3(a) and 4(b).
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TABLE 2

Misalignment between the last and the first view (cm)

Experiment Chained pairwise registration Global registration % difference

1 1.9584 0.1340 93.2
2 29.8662 0.1362 99.5
3 4.0279 2.1979 45.4
4 13.8420 11.1094 19.7

Real acoustic data were acquired by an underwater ROV using the Echoscope camera [1],
which outputs a 64 × 64 range image. The noise corrupts the acoustic signals and decreases
the reliability of the estimated 3D measures. Resolution depends on the frequency of the
acoustic signal (it is about 3 cm at 500 KHz): the higher the frequency, the higher the
resolution, and the narrower the field of view.

In Experiment 5 we used a sequence of 15 real acoustic range images that are partial views
of a tubular structure. Figures 6a and 6b show the overlay of the first and last views for both
pairwise registration and global multiview registration. Even if the images are rather noisy
and quite difficult to understand, it can still be noticed that our technique yields a better
alignment. The histogram shown in Fig. 6c confirms this improvement. The light worsening
at the beginning of the sequence is compensated by the good improvement near the end. A
more accurate evaluation is not possible in the real case because true correspondences (as
in synthetic experiments) are not known.

Tables 1 and 2 summarize the numerical results obtained in all the experiments. Table 1
reports the average (over the views) registration errors for both algorithms. In Table 2 a
more meaningful evaluation is obtained by calculating the registration error (misalignment)
between the first and the last view (which should coincide), knowing the correct point
correspondences.

Our global multiview registration algorithm always improves over pairwise registration.
When the noise level was increased in the experiments on synthetic data, our algorithm
continued to perform better. Improvements were also seen in the experiment involving real
data. The typical computing time in these experiments was 25 s for each pairwise registration
and about 3 min for the subsequent global optimization. The code was written in MATLAB
and run on a PII 350 MHz PC with Linux.

5. CONCLUSIONS

In this paper we propose a technique for 3D object reconstruction from multiple acoustic
range views, acquired by an underwater acoustic sensor. As data are noisy and of low
resolution, and the field of view is narrow, we want to provide the human operator(s) with a
synthetic 3D model of the scene, in order to facilitate the navigation and the understanding
of the surrounding environment. To this end, we address the problem of registering many
3D views, starting from pairwise registration between all the overlapping views.

Our contribution is twofold. First we modified Zhang’s ICP by introducing the X84
rejection rule, which does not depend on user-specified thresholds and is more effective
in achieving a larger convergence basin. Moreover, we proposed a new global multiview
registration technique to distribute registration errors evenly across all views. Our approach
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differs from all the others because we enforce the constraints arising from the pairwise
registration directly on the transformations, and we do not rely on the solution of the N -
view point set registration problem. The complexity of our technique does not depend on
the number of points involved, but only on the number of views.

The drawback is that the error is only spread among the views, but does not get reduced
significantly. Consequently, this technique is well suited for all the applications where speed
can be traded for accuracy.

Future work will be aimed at automatically detecting the degree of overlap between views
and introducing a weight for each term of Eq. (6), depending on the amount of overlap.
Moreover, we are starting to convert the software in C++ and to make some optimization
to the ICP implementation. At the end of the process we expect a speed-up of a factor 20
when running on a state-of-the-art computer.
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