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Abstract
This paper proposes new methodology for the detection and matching of salient points over several views of an
object. The process is composed by three main phases. In the first step, detection is carried out by adopting a new
perceptually-inspired 3D saliency measure. Such measure allows the detection of few sparse salient points that
characterize distinctive portions of the surface. In the second step, a statistical learning approach is considered to
describe salient points across different views. Each salient point is modelled by a Hidden Markov Model (HMM),
which is trained in an unsupervised way by using contextual 3D neighborhood information, thus providing a robust
and invariant point signature. Finally, in the third step, matching among points of different views is performed by
evaluating a pairwise similarity measure among HMMs. An extensive and comparative experimental session has
been carried out, considering real objects acquired by a 3D scanner from different points of view, where objects
come from standard 3D databases. Results are promising, as the detection of salient points is reliable, and the
matching is robust and accurate.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Recent advancement in research for digitizing and model-
ing 3D shapes has led to a rapid expansion of the number of
available 3D models [MSS∗06,SF06,FKMS05]. Such large
amount of data poses new challenges for many computer vi-
sion and pattern recognition applications such as 3D shape
retrieval [FKMS05], objects recognition [JH99, FHK∗04],
data reduction, and so on. In this context, matching of in-
teresting points is a relevant research topic devoted to the
detection of similarities between two or more shapes by
considering local information. Two main approaches have
been adopted in the literature for shape matching prob-
lem, namely, local and global approaches. Local match-
ing [SF06] is performed between sub-parts or regions of
the models. This is in contrast to the global shape matching
paradigm, where similarity is measured among entire mod-
els [FMK∗03].

Typically, the main steps that compose a 3D partial model
matching method are: (i) detection (ii) local description, and
(iii) matching [SF06]. In the detection step, 3D points with

high information content are extracted. In the local descrip-
tion step, interest points are described by including informa-
tion on their neighborhood area in a compact form, so that
a local contextualization of the interest points is provided.
Finally, point matching is carried out by defining an appro-
priate similarity measure among local descriptors. This latter
module separates all the interest points in a set of matching
points, organized as couples, and a set of uncorrelated points.

In this paper, we provide a novel 3D partial matching
framework, which deals with a set of partial views of the
same object acquired by a 3D scanner. Two main contribu-
tions can be highlighted: first, we propose a robust method
for the selection of a very small fraction of the whole set
of points, extracting those having a strong representative-
ness with respect to the others. To this aim, we define a
3D saliency measure, able to extract perceptually meaning-
ful interest points from 3D meshes. The proposed approach
is theoretically founded and it is inspired by the research
on saliency measure on images [IKN98, Lin94, Low04]. In
short, the source mesh is decomposed in multiscale repre-
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sentations, and salient points are then extracted by distill-
ing opportunely the results gathered on each scale level. The
idea is to find robust variations in the mesh which are reso-
lution invariant.

The second contribution consists in introducing a novel
local description of interest points based on Hidden Markov
Models (HMMs) [Rab89]. For each detected point, multidi-
mensional features are sampled along a 3D geodesic spiral
pathway, that lies in a neighborhood zone. Then, a HMM is
trained, for each detected point, using the related features in
an unsupervised way, providing a reliable model-based point
description. Subsequently, points matching among different
object views is performed by coupling corresponding inter-
est points using a HMM similarity measure. This provides
reliable performances in terms of correct matches and com-
putational time, as compared to state-of-the-art methods.

It is worth noting that the most of partial matching meth-
ods select the matched points by introducing some global
constraints, which depend by the contextual application.
For instance, in a registration framework, 3D points corre-
spondences are combined with global rigid constraint. This
strongly improves the matching by safely removing outliers
[FKMS05]. Unlike these methods, we focus on pure local
matching by dealing only with few carefully selected points.
This makes our framework versatile for different potential
applications such as 3D data categorization, deformable ob-
ject modelling, shape morphing, and so on.

The rest of the paper is organized as follows. Section 2 de-
scribes the state-of-the-art. Section 3 introduces our method
for salient points detection, while in Section 4 the HMM
framework for interest points description and matching is
detailed. Results are shown in Section 5 and, finally, con-
clusions are drawn in Section 6.

2. Related work

We organize this section as follows. First, we introduce the
state-of-the-art of interest points’ detection by focusing of
the notion of saliency. Second, we describe the literature for
points description and matching.

Salient points’ detection. The detection of 3D interest
points can be in general faced as extension of the cor-
respondent task performed on 2D images [Low04]. How-
ever, such extensions are not straightforward and very few
works have shown their effectiveness on both the domains.
Actually, while the point description and matching phases
are thoroughly addressed in literature, there are few meth-
ods oriented to the robust selection of interest points in the
3D domain. The simplest approach is to extract the points
by random [FHK∗04] or uniform sub-sampling [JH99] the
whole set of points, or by adopting a spectral-analysis ap-
proach [ZvKD07]. More recently, the interest point selec-
tion is focused by exploiting the notion of saliency on the

3D domain [LVJ05]. In the literature, well-founded no-
tions of 2D saliency are present which can be divided
in two groups. Both perform multi-scale analysis, collect-
ing for each scale filter responses that measure edges and
other features [Lin94, Low04, IKN98]. In the first group
[Lin94,Low04], named as “independent multi-scale”, all the
maxima detected over different scales are considered interest
points. In the second group [IKN98], named as “joint multi-
scale”, all the intra-scales features are combined in a single
saliency map where maxima are extracted. Both the groups
are motivated by perceptual theories: independent multi-
scale approaches assume that humans perform automatically
and independently a multi-scale analysis, paying more at-
tention to the scales where maxima are present [Lin94]. The
joint multi-scale approaches state that humans extract max-
ima after a natural native smoothing process, aimed at dis-
carding irrelevant maxima.

By focusing on the 3D domain, the concept of saliency
is not consolidated, and only few works are presented. In
[LVJ05], a definition of mesh saliency for mesh simplifica-
tion and best view point selection are introduced; the focus
is here on the joint multi-scale by considering the local cur-
vature as a discriminative feature. In [PKG03] a multi-scale
approach is proposed for the extraction of line-type features.
For each point, a measure of surface variation is introduced
by combining the eigenvalues of the local covariance matrix.
Then, the line-segments are selected by computing the per-
sistence of feature-points over different scales and by per-
forming hysteresis thresholding. A similar approach is pro-
posed by [GMGP05], for selecting the integral-volume de-
scriptors. In [GCO06], the authors improve part-in-whole
matching by introducing salient geometric features based on
curvature properties. In [SF06], an approach for the selec-
tion of distinctive 3D shape descriptors is described. After a
training phase, the retrieval performance of each descriptors
has been evaluated and only the most distinctive are retained.
In [WNK06], an interesting parallelism between the 2D and
the 3D realms is proposed only regarding the independent
multi-scale paradigm [Low04,WNK06].

Description and matching. Roughly speaking there are
two main approaches for model description and matching:
global and local [SF06, MBO05]. The global shape-based
approach consists in selecting a set of features that effec-
tively and concisely describe the entire 3D model, and in
introducing a distance function between the models descrip-
tions. See [FMK∗03] for an exhaustive survey on global
shape-based approach. The local feature matching paradigm
is instead oriented to the detection of part-to-part correspon-
dences by defining a descriptor (or signature) for each 3D
interest point. Spin images are introduced [JH99] by creat-
ing cylindrical projection of local sets of surface points rep-
resented as an image. In [FHK∗04] the authors propose the
concept of regional point descriptors for the 3D domain. Re-
gional point descriptors lie midway between the classes of
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global and local approaches, giving them the advantages of
both. In [KPNK03] the shape context is adapted to 3D points
distribution, inspired by the work proposed in [BMP02] for
the 2D domain. In [MBO06] a novel tensor representation
is proposed for robustly describing the points in the con-
text of the automatic pairwise registration of range images.
The effectiveness of the method is shown also dealing with
low resolution images. In [MPS∗03] the paradigm of blow-
ing bubbles has been introduced by combining local surface
properties at different resolutions. The main idea consists in
estimating not only the curvature of a vertex over neighbor-
hoods of variable size, but also in taking into account the
topology of the surface in that neighborhood. More exam-
ples of local feature matching with interesting analysis and
discussions, are reported in [MBO05].

In this paper we propose a local description and match-
ing framework based on HMM. Here, the novelty is the
introduction of a learning approach to model local geom-
etry variations. Few works propose HMM for shape match-
ing [BM04], and none of them address the 3D domain adopt-
ing a local approach.

3. Salient points detection

In our framework, we are dealing with 3D partial meshes re-
sulting from a scanning process; therefore, clutter, holes and
occlusions due to the acquisition procedure and to the sensor
noise poses us in a challenging setting. For this reason, we
choose the “joint multi-scale” paradigm, assuming it more
robust to noise. Note that the considered meshes are dense
and, although the density depends by the point of view, the
sampling is locally uniform.

Let M be a given mesh; as preliminary operation, we
remesh M at D different levels of decimation (the quadric
edge collapse decimation approach has been used [GH97]),
obtaining the 3D meshes Md ,d = 1, . . . ,D at different reso-
lutions. We call Md as octave-d mesh in order to remark the
fact that we consider a variation of resolution as a jump of
an octave in the scale space. Our salient points detection is
then composed of two main phases, namely intra-octave and
inter-octave phases.

Intra-octave phase. The intra-octave phase is based on the
processing of the 3D mesh Md and consists in three main
steps: (i) multiscale representation, (ii) 3D saliency measure
definition, and (iii) intra-octave points detection.
(i) Multiscale representation:
The first step, consists in applying N Gaussian filters on the
considered mesh Md , obtaining N multidimensional filter-
ing maps {Fd

i }, i = 1, . . . ,N. Gaussian filtering is applied as
follows: let g(v,σ) the Gaussian operator with standard de-
viation σ, applied on the vertex v ∈ Md . The neighborhood
region of v, over which the filtering is applied, is built by
expanding a n-rings search starting from v, and collecting
all those vertices displaced within a distance equal to 2.5σ.

This area can be considered as a good approximation of a
geodesic area of radius 2.5σ.
The Difference-of-Gaussians (DoG) operator is defined as:

Fd
i (v) = g(v,σi)−g(v,kσi) (1)

where σi is the value of the standard deviation associ-
ated to scale i and k is a constant equal to 2. We fix six
scales of filtering, corresponding to standard deviation val-
ues σi ∈ {1ε,2ε,3ε,4ε,5ε,6ε}, where ε amounts to 0.1%
of the length of the main diagonal located in the bounding
box of the model. Note that, as studied by [Low04], fixing a
constant factor k for DoG computation provides a close ap-
proximation to the scale-normalized Laplacian of Gaussian,
which is required for true scale invariance.
(ii) 3D saliency measure definition:
This step aims at obtaining a dense measure of mesh saliency
(i.e., associated to each vertex). Note that Fd

i (v) is a 3D vec-
tor which denotes how much the vertex v has been moved
from its original position after the filtering. In order to re-
duce such displacement in a scalar quantity, we observe that
in general the most significant (in a perceptual sense) mo-
tion of the vertices is along the direction perpendicular to
their local surface (i.e., along the normals). Therefore, we
project the vector Fd

i (v) to the normal n(v) of the vertex v.
In this fashion we obtain the scale map Md

i as:

Md
i (v) = ||n(v) · (g(v,σi)−g(v,kσi))||. (2)

Furthermore, this reduces the shrinking effect which rises
typically when Gaussian filter is applied to meshes [PKG03].
Moreover, according to the “joint multi-scale” paradigm,
each map is normalized by adopting the Itti’s approach
[IKN98]:

• normalizing the values in the map to a fixed range
[0, . . . ,R];

• finding the location of global maximum T ;
• finding all the other local maxima and computing their

average t̂;
• globally multiplying the map by (T − t̂)2 by obtaining the

final normalized scale map M̂d
i .

The effect of this normalization is to increase the evidence
of the highest peaks.
(iii) Intra-octave points detection:
We emphasize the above peaks enhancement, by introduc-
ing an adaptive inhibition-process on each normalized scale
map. From each vertex v ∈Md , we consider all the values of
the scale map M̂d

i observed on the neighborhood of v. If the
M̂d

i (v) is higher than the 85% of the values in its neighbor-
hood, the value is retained, otherwise M̂d

i (v) is set to zero.
Therefore, the inhibited saliency map is obtained by simply
adding the contribution of each inhibited scale map. Finally,
in order to detect salient points a non-maximum suppression
phase on the inhibited saliency map is performed: a point
is detected if it is a local maximum and its value is higher
than the 30% of the global maximum. Note that, after the
inhibition phase, the neighbourhood of a point is adaptively
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defined by expanding the local region while new non-zero
points are found. Fig. 1, shows a scheme of the intra-octave
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Figure 1: The scheme of the proposed intra-octave phase:
different gaussian operators g(·,σi) are applied to the
source mesh, then the scale maps are computed and nor-
malized. Finally the intra-octave salient points detection is
carried out.

phase. On the left are shown the meshes after the multiscale
representation, in the center the output of saliency computa-
tion is highlighted and, finally, the intra-octave salient points
detection is shown on the right.

Inter-octave phase. In order to improve the robustness
of the method to variation of mesh resolution an inter-
resolution validation process is carried out. We define five
levels of decimation d ∈ [0,h,2h,3h,4h], respectively, where
h = 0.20. Steps (i),(ii) and (iii) of the intra-octave phase are
carried out for each octave Md . Then, a majority criterion is
adopted for detecting the validated salient points, i.e., only
points appearing at least in three octaves are retained.

4. Hidden Markov description of interest points

The goal of this step is to build a compact description able
to summarize information related to interest points and to
their neighborhood area. Let us suppose that I interest points
have been extracted, and let us focus on point vi; around it,
we build a clockwise spiral pathway s(vi) connecting ver-
tices which lie at 1-ring distance, then at 2-ring distance and
so on, until a fixed geodesic radius r is reached. The radius
is fixed to be the 5% of the main diagonal of the bounding
box in which the 3D object lies. Connections among vertices
which lie on different ring distances are rearranged in order
to maintain the area covered by the spiral as regular as possi-
ble, obtaining thus a circular geodesic area around vi. If holes
are present on the mesh, no data is collected by jumping to
the next available point, as visible in Fig.2. Along this path-
way, we extract local point information [Pet02] composed by

r
s(v)

i

i

v

Figure 2: Interest point description: on the left, two inter-
est points are depicted with black dots with their respective
spiral pathways. On the top-right, a zoom on point vi, which
spiral pathway s(vi) is limited by the geodesic radius r. On
the bottom-right, a spiral built in presence of an hole in the
mesh; red dotted arrows give an idea of how the different
portions of the spiral are rearranged in a 1D array.

the saliency level, extracted in the previous step, the maxi-
mal and minimal curvature and the normal displacement be-
tween the local point and the salient point. Experimentally,
we saw that other local features, such as the Gaussian curva-
ture and the shape index, do not improve the description.
Once the data on the spiral s(vi) is acquired, we observed
that all its 5-dimensional entries {o}i form entities which in
principle could be quantized in few values, that occur repeat-
edly themselves along the spiral. For this reason, modelling
the spiral as a stochastic process, in which the different enti-
ties are thought as discrete states, is a reasonable choice. The
model more suited for this idea is the discrete-time Hidden
Markov Model (HMM) [Rab89]. A HMM can be viewed as
a Markov model whose states are not directly observable:
instead, each state is characterized by a probability distrib-
ution function, modelling the observations corresponding to
that state. More formally, a HMM is defined by the following
entities [Rab89]:

• S = {S1,S2, · · · ,SN} the finite set of (hidden) states; in our
case each state is associated to a particular local geometric
configuration that occurs along the spiral.

• the transition matrix A = {ak j}, 1≤ k, j ≤N representing
the probability of moving from state Sk to state S j,

ak j = P[Qt+1 = S j|Qt = Sk], 1 ≤ k, j ≤ N,

with ak j ≥ 0,∑N
j=1 ak j = 1, and where Qt denotes the state

occupied by the model at time t. Here, this matrix encode
how the different local configurations succeed along the
spiral.
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• the emission matrix B = {b(o|Sk)}, indicating the proba-
bility of emission of symbol o ∈ V when system state is
Sk; V can be a discrete alphabet or a continuous set (e.g.
V = IR), in which case b(o|Sk) is a probability density
function. In this paper we used a 5-dimensional Gaussian
HMM, i.e.

b(o|Sk) = N (o|μk,Σk) .

where N (o|μ,Σ) denotes a Gaussian density of mean μ
and diagonal covariance matrix Σ, evaluated at o, which
represent an entry of the spiral pathway; In our approach,
this distribution codifies how probable values on the spiral
are connected to a hidden state.

• π = {πk}, the initial state probability distribution,

πk = P[Q1 = Sk], 1 ≤ k ≤ N

with πk ≥ 0 and ∑N
k=1 πk = 1.

For convenience, we represent an HMM by a triplet of para-
meters λ = (A,B,π).

Learning the HMM parameters, given an observed se-
quence s(vi), is usually performed using the well-known
Baum-Welch algorithm [Rab89], which is able to determine
the parameters maximizing the likelihood P(s(vi)|λ). An
open issue is the correct choice of the number of hidden
states. In this paper, the HMM is trained in an unsupervised
fashion, using an improved version of the Baum Welch algo-
rithm. This procedure decides the number of states automat-
ically, following an Minimum Description Length (MDL)
principle customized for the HMM framework [BMF03]. In
practice, the idea is to perform the training section several
times, in a serial way, starting by using a large number of
states (e.g., 100 states). Each training session starts from a
”nearly good” situation, derived from the result of the pre-
vious training session by pruning the ”least probable” state
of the model, if necessary. After the training, using s(vi) as
training sequence, we generate the model λi.

In this way, the HMM gives a statistical encoding of
the interest point and its neighborhood, taking into account
for the uncertainty in the data. Actually, each HMM state
captures a particular geometrical aspect particularly evident
near vi. In practice, as shown in the experiments, the expres-
sivity of such a characterization is robust to 1)rotation 2)ir-
regular sampling (for example, due to holes in the mesh) and
3)resolution variation of the mesh over which the interest
point lies.

4.1. HMM-based matching

Let us suppose to have an object captured by a 3D scanner
from two different view-points, obtaining meshes M and M′.
On the mesh M we find I interest points, each one described
by one HMM, thus collecting I models λ1, . . . ,λi, . . . ,λI .
The same applies for mesh M′, where we find J interest
points, described by HMMs λ1, . . . ,λ j, . . . ,λJ .

The goal of the matching step is to find links between
points of the two views, such that for each point vi of M
two alternatives are possible: 1) there is only one point v j
in view M′ located in the same absolute position of vi w.r.t.
original 3D object or 2) such point v j does not exist. In case
1, we find a matching between vi and v j, otherwise we say
that point vi is unique for view M and M′. The same applies
for points {v j} of view M′. After the matching step, we thus
have a categorization of all the points ∈ M∪M′ formed by a
set of unique points and a set of matched points.

Such categorization is achieved by using the HMM de-
scriptions: the main ingredient is the symmetric similar-
ity matrix G, which is a I × J matrix where each element
gi j corresponds to a widely used HMM similarity measure
[Smy97]:

gi j =
LL(vi|λ j)+LL(v j|λi)

2
(3)

where LL(vi|λ j) indicates the log-likelihood of the data
forming the spiral pathway s(vi) given the model λ j , i.e.
logP(s(vi)|λ j).

If we consider the similarity measures as weights that
characterize links between points, the above categorization
can be formally cast as a maximum weighted matching
problem (MWMP). Roughly speaking, in this case MWMP
translates in selecting for each point of one view only one
weighted link to another point on the other view, such that
the summation of all the weights is maximal. In order to face
this problem, we adopt the classical flow algorithm proposed
in [CWC∗96].

At the end, we have a set of correspondences which in-
dicates similar local regions displaced on the views of the
meshes. Obviously, if I �= J, some points will remain un-
labeled; these points concur to form the set of the unique
points.

5. Experiments

In this section we explore thoroughly the effectiveness of the
phases of our local matching strategy. Our “standard” dataset
focuses on 8 models; 4 taken from the Stuttgart Range Image
Database (SRID) [HLLS01] and 4 selected from the Minolta
database [CF98]. Each model includes several range views:
we choose 6 distant views for each SRID models and 3 views
of the Minolta database models. For each considered view,
we produce a triangular mesh (see the first six rows of Fig.9
and the first three rows of Fig.10: below each 3D view, the
first number is the view-index, the second number locates
the view in the original database, the third one - in bold - is
the number of detected salient points).

5.1. Points detection

We investigate our interest points detection technique apply-
ing it to all the views of the experimental dataset, showing

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



U. Castellani et al. / Sparse points matching by combining 3D mesh saliency with statistical descriptors

also results gathered by other state-of-the-art methods. In
particular, we consider the umbilical points extraction pro-
cedure [Pet02] (UMB), the method proposed in [MSS∗06]
(MEIG), where points having highest minimum eigenvalue
in the scatter matrix are selected, and the method in [LVJ05]
(CURV), where the saliency map is defined starting from the
curvature map (in order to provide a point detection from the
saliency map we apply the intra-octave point detection step
to the output of [LVJ05]). In Fig.3, we report detection re-
sults on some views of our dataset. To evaluate the results

a)

b)

c)

d)

145 143 145 146

252 246 191 203

417 386 439 375

36 32 33 32

Figure 3: Detection results: each row shows the detection
results obtained on two Minolta 3D views (1–072, 2–108)
and on two SRID 3D views (4–99, 5–98), by using a) UMB
[Pet02], b) MEIG [MSS∗06], c) CURV [LVJ05], and d) our
method, respectively. Below on each view the number of ex-
tracted points is shown.

several meaningful considerations can be done. In general,
each point extracted by our method represents a particu-
lar and distinctive portion of the 3D view. Fewer and more
meaningful points are extracted than those produced by the

other techniques, which are tightly collapsed on the edges,
or diffused uniformly on the surface of the captured object.
Our method is able to detect most significant parts of the
subjects such as the eyes, the nastrils of the nose, the fingers
of the paws, and so on.

Note that for all the comparative methods, an accurate pa-
rameters’ tuning phase has been applied, in order to propose
the fairest comparison. Note also that our method does not
need of any tuning of parameters (few general parameters
are set globally for all the models of both the databases).
Moreover, using our method several detected points are in
correspondence among different views, facilitating the point
matching phase (see for example the paws of the animals in
Fig. 3).

5.2. Point Description

This section provides some insight on the robustness of the
HMM salient point description against changes in the 3D
mesh resolution. Here, we consider one view of the “Bunny”
model (view 4–99) at two different resolutions, i.e., M0 and
M0.6, respectively. In Fig.4, we show two close-ups on the
nose of the Bunny. The detection phase finds two salient
points in the same absolute position. Spiral pathways are au-
tomatically built, and two HMMs λH and λL are trained, for
the high and the low resolution, respectively. Four consid-
erations can be done: 1) the unsupervised learning process
produces in both cases 6 states; 2) the observation densi-
ties associated to each state permit to delineate a clear corre-
spondence (in a Malahanobis sense) between the states of the
different HMMs; 3) by means of this correspondence, transi-
tion matrices are equivalent, even if in λL the auto-transition
probabilities are higher, due to the minor length of the low
resolution spiral; 4) we plot the Viterbi path of the associ-
ated HMM along the two spirals: equal colors stand for cor-
responding states, in the sense explained before; indeed, it
is possible to see that corresponding zones are described by
equivalent states.

5.3. Point Matching

The validation accomplished in this section is the most
dense: actually, it exhibits results that witness the robust-
ness and accuracy of all the phases of the proposed frame-
work. Let us initially focus on the Bunny model, concentrat-
ing on the results obtained on a particular view pair, M and
M′ (Fig.5).
Among all the points detected we can identify those “posi-
tive” points P which have a real correspondence in the other
view (true correspondences have been evaluated by hand),
and the remaining “negative” points N which represent loca-
tions which have no correspondent in the other view. After
the matching, we can define TP (green circles with an outgo-
ing solid link) and FP (red circles with an outgoing dashed
link) as the numbers of points for which an exact or a wrong
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34

44
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Figure 4: Qualitative robustness of the HMM descriptions:
the Viterbi path of the HMMs built on the two different-
length spirals are plotted; equal color in different HMMs
corresponds to similar states (see text). For visual clarity,
a state-identifying number is positioned on the area which
exhibits mainly the presence of that state. Note that similar
states lie in corresponding areas.

correspondence has been found, respectively. In the same
fashion, we can define TN (green circles) as the number of
unique (see Sec.4.1 for a definition of unique) points found
and FN (red solid circles) the number of points detected
as unique for which a (correct) correspondence does exist.
Analyzing Fig.5, it is possible to see that: 1) a big amount of

M M’

Figure 5: Matching results: green circles with an exiting
solid link mean right correspondences found, red circles with
an exiting dashed link mean wrong correspondences found;
green circles and red solid circles mean correct and uncor-
rect unique points found, respectively.

interest points have been matched correctly, showing that the
salient point detection is robust to view-changes; 2) points
not in correspondence are mainly due to the different geo-
metric displacement of the views which occluded the parts;
3) on the left ear of the bunny, on M′, the mesh is incom-
plete, but nonetheless, a salient point has been detected, and

the HMM description has been able to capture and model
the geometric area near that point, associating it exactly to
the correspondent one on M.
In order to compactly summarize the performances of our
algorithm, we build the global matching index GB = (TP+
TN)/(P+N). This quantity expresses accurately the ability
of the system to capture the existent correspondences be-
tween views; the maximum value GB = 1 means that all the
right correspondences and unique points have been discov-
ered. The GB values are given as percentages, in order to
ease the understanding.

Another experiment suitable to show the robustness of our
model against changes in the mesh resolution is performed
simply by considering one view M0, and its decimated ver-
sions M0.2,M0.4,M0.5,M0.6,M0.7,M0.8, respectively. Thus,
our technique is applied. In Fig.6 matching results between
the original view M0 and the decimated one M0.6 are shown.
Please note that some salient points in the right view are
missing, due to the effective geometric change in the mesh.
Anyway, note that the remaining salient points are effec-
tively discovered by our method, and the points on the high-
res view not present in the low-res view are mostly detected
as unique points. On Fig.7, the GB value are presented for

Figure 6: Resistance against down-sampling of our tech-
nique: on the left, the original view M0; on the right, the
same decimated view M0.6. For the meaning of the points’
correspondences see caption of Fig.5.

each resolution. After the decimation level 0.7 the perfor-
mances fall drastically, mainly due to the fact that the geo-
metric aspect of the low-res view is greatly different from the
original one. After that, we consider all the models, and all
the views of our datasets (Fig.9-10 ), and, for each model, we
perform detection and description of the interest points on all
the views (6 for the SRID models and 3 for the Minolta mod-
els). Subsequently, we apply the matching algorithm, eval-
uating correspondences among all the possible couples of
views, given that model. For each couple of views, we calcu-
late the GB value, and we put all the values in a matrix form,
shown in Fig. 9, 7th row and Fig.10, 4rd rows. Note that,
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Figure 7: Resistance against down-sampling evaluation: the
GB values (on the y-axis) calculated by considering one view
and its decimated version by different levels are shown (on
the x-axis).

Bun Idea Pit Sc Din Rick TT Va
0

20

40

60

80

100

m
ea

n 
G

B 
va

lu
es

 (%
)

 

 

Figure 8: Global experiments. The circles represent the
mean GB values obtained by our technique, for each the
3D models. The triangles and the squared represent the re-
sults obtained using Spin Images and 3D Shape Contexts re-
spectively. The rings represent the mean GB values using the
view dataset with decimated views by a level 0.6. Note that
our technique applied on the “mixed” dataset overtakes both
the Spin Images and 3D Shape Contexts techniques applied
on the “standard” dataset.

intuitively, higher values are collected when two consecu-
tive views are taken into account. Additionally, for each 3D
model we calculate the mean GB value (mGB), reported in
the top right the GB matrices, and the minimum GB value (in
italic). Note that all the GB values are bigger than 70%. As
comparison, we perform the same extended matching exper-
iment by changing salient point descriptors, calculating for
all the salient points of all the views considered the related
spin images and 3D shape context, according to the method
described in [JH99] and in [KPNK03] respectively. We esti-

5--98--33

3--91--32

4--99--28

6--08--19

2--79--35

1--148--29

2--154--33

3--155--27

4--162--30

5--163--30

6--217--36

1--73--16

2--80--16

3--81--17

4--93--29

5--72--8

6--84--10

1--54--23

2--55--27

3--56--21

4--99--29

5--140--27

6--117--15

1 2 3 4 5 6

1
2
3
4
5
6 70%

mGB=85%

1 2 3 4 5 6

1
2
3
4
5
6 71.5%

mGB=89%

1 2 3 4 5 6

1
2
3
4
5
6 70.5%

mGB=83.5%

1 2 3 4 5 6

1
2
3
4
5
6 70.5%

mGB=89.5%

1--78--33

Figure 9: Matching results for SRID models: the first six
rows, the views of the 3D objects considered, for each view
we report the view index and the number of extracted salient
point (in bold); in the seventh row, (symmetric) matching
matrices, in which only the off-inferior diagonal elements
are present; the minimum GB value is shown in the corre-
sponding entry ij; brighter entries mean higher similarity
values; in the top/right the mean GB value achieved for that
3D model is reported; all the mean GB values are summa-
rized in Fig.8.

mate the free parameters (such as the support-size of the spin
images) in order to obtain the best results. Then, we adopt
the same policy adopted for the HMM descriptions, substi-
tuting to the HMM similarity measure the correlation value
among spin images or shape contexts. In Fig.8 the mean GB
values of the involved techniques adopted for each 3D model
are compared. Note that the proposed method clearly outper-
forms both the matching based on the spin image, and the
matching based on the shape context.

Finally, in order to summarize all the issues faced in this

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



U. Castellani et al. / Sparse points matching by combining 3D mesh saliency with statistical descriptors

1--072--27

2--108--32

3--144--36

1--144--35

2--180--35

3--216--27

1--000--21

2--020--28

3--340--23

1--032--19

2--040--23

3--048--20

1 2 3

1

2

3 75.5%

 mGB=93.5%

1 2 3

1

2

3 83.5%

mGB=94%

1 2 3

1

2

3 72%

 mGB=88.5%

1 2 3

1

2

3 70.5%

 mGB=85.5%

Figure 10: Matching results for Minolta models: On the first
three rows, the views of the 3D objects considered, for each
view we report the view index and the number of extracted
salient point (in bold); in the fourth row, (symmetric) match-
ing matrices, for which the same considerations made in
Fig.9 do hold.

section, we create a novel “mixed” dataset, in which for each
3D model we decimate by a level 0.6 the 1/3 of the present
views, maintaining the remaining views unchanged. Then
we apply our framework to all the models and all the views,
using our HMMs descriptors. The results, in terms of mean
GB, are reported on Fig.8.

5.4. Performance evaluation

In order to evaluate the feasibility of our technique on real
applications, we report the computational efforts spent on
the main involved steps. Table 1 summarises both the com-
putational complexity and the running times. Tipicaly, a
mesh is composed by 20K triangles. Points detection and
feature extraction are carried out for a single mesh where
V is the number of vertices and η is the mean size of the
neighborhood (tipically around 50 points but it changes with
σ). The HMM training and testing phases are performed for
each salient point. More in details, HMM training is related
to the computation of λ = (A,B,π), while HMM testing ad-
dresses the computation of LL(vi|λ j). The table refers to a
single point where N is the number of hidden states and τ
is the length of the sequence associated to that point. Note
that the training phase is repeated for several value of the
hidden states N. Then, the best value N is chosen according

to the MDL principle [BMF03]. Note further that the train-
ing is an off-line phase. The matching step refers to a pair
of meshes having I and J salient points respectively. It is re-
lated to the solution of the MWMP problem applied to the
similarity matrix G of Eq. 3. According to the MWMP al-
gorithm the matrix G is considered as a graph of X = I + J
nodes and E = I · J edges. Experiments have been carried

Step Complexity Run. times (sec.)
Points detection O(V ·η) 9.3

Feature extraction O(V ·η) 0.8
HMM training O(N · τ) 4.65
HMM testing O(N · τ) 0.08

Matching O(X · (E +XlogX)) 30.3

Table 1: Performances of the main steps of the proposed
framework. Running times are related to mean values.

out on a Intel Core 2 Duo, E6300, 1.86Ghz. Points detec-
tion and feature extraction have been implemented in C++,
while the HMM training, testing and the matching have been
developed in Matlab.

6. Conclusions

In this paper, a new approach for 3D points matching is pro-
posed. Few and sparse interest points are selected robustly
by exploiting visual saliency principles on 3D meshes. Then,
we propose a Hidden Markov model-framework that com-
bines at the same time points description, organized as a spi-
ral pathway around the interest point, and matching. There-
fore, a thoroughly experimental section is reported by an-
alyzing real partial views of 3D objects acquired by a 3D
scanner. Although such kind of data are particularly chal-
lenging because of noise, holes and occlusions, the proposed
results are very promising. The proposed detection method is
able to evidence the most significant parts of each view (i.e.,
eyes, nose, knee, and so on) in a more stable fashion with
respect to other techniques in the literature. Moreover, the
matching performance are always higher than 70%, which
means that our method safely detects the large majority of
the correspondences without any global constraint, outper-
forming similar methods, based for example on spin-images
or 3D shape context. Future work will address the exten-
sion of the proposed methodology to 3D object retrieval by
exploiting effective local-to-global representation of the in-
volved objects. Moreover, we will investigate the extension
of the proposed approach to general models, non necessarly
coming from a scanning process (i.e., CAD-like models).
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