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Abstract
In 3D object retrieval it is very important to define reliable shape descriptors, which compactly characterize
geometric properties of the underlying surface. To this aim two main approaches are considered: global, and
local ones. Global approaches are effective in describing the whole object, while local ones are more suitable
to characterize small parts of the shape. Some strategies to combine these two approaches have been proposed
recently but still no consolidate work is available in this field. With this paper we address this problem and propose
a new method based on sparse coding techniques. A set of local shape descriptors are collected from the shape.
Then a dictionary is trained as generative model. In this fashion the dictionary is used as global shape descriptor
for shape retrieval purposes. Preliminary experiments are performed on a standard dataset by showing a drastic
improvement of the proposed method in comparison with well known local-to-global and global approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

The recent improvements of 3D acquisition systems and the
large proliferation of 3D models increase the interest in 3D
shape retrieval methods [IJL∗05, FKMS05, TV04, LGF∗10,
LGB∗11]. A challenging issue is to elaborate a suitable
canonical representation of the objects to be indexed. In the
literature, this characterization is referred to as descriptor
or signature. In general, descriptors are global or local. The
former consist in a set of features that effectively and com-
pactly describe the whole 3D model [FMK∗03]. The latter,
instead, are collections of local features of relevant object
subparts (i.e. single points or regions) [SF06, CCM11].

In this paper we address the problem of defining a global
shape descriptor starting from a set of local point signa-
tures [SOG09, BK10, ASC11, CCM11]. The overall aim is
to obtain the advantages of the two approaches. From one
side we are able to compare global shapes rather than a set
of single points. From the other side, we exploit local infor-
mations which, in general, is more robust to noise and miss-
ing parts and more suitable to deal with partial objects. To
this aim a popular method is to introduce a sort of counting
approach by collecting local informations into a histogram
which leads to a local-to-global signature. Such examples
are distance shape distributions [FKMS05] or the bag of
words approach [BBGO11, TCF10, DK12].

With this work we propose to go beyond the bag of words
approach by exploiting recently proposed dictionary learn-
ing methods employing sparse coding techniques [MBPS09,
MBPS10]. Starting from a set of local signatures we learn
a dictionary which is able to summarize the most relevant
properties of such set. This leads to a more sparse repre-
sentation of the shape which is used for its description. We
propose this approach in a shape retrieval context. The idea
is to train a dictionary for each class of shape. Then, in the
query phase, a given shape is generated by all available dic-
tionaries and it is assigned to the class with less generative
error.

A well define shape retrieval pipeline is proposed by com-
bining effectively the most promising local shape descriptors
with the proposed local-to-global approach based on sparse
coding. The main steps are:

• Local descriptor computation by diffusion geometry sig-
natures [ASC11],

• Dictionary learning by sparse coding [MBPS09,
MBPS10],

• Shape matching by best generative signature estimation.

In particular, as local descriptors is employed the recently
proposed Wave Kernel Signature [ASC11] which already
shown its effectiveness for point-to-point matching. Then,
dictionary learning method is applied by using the Lasso

c© The Eurographics Association 2013.



D. Boscaini & U. Castellani / Local Signature Quantization by Sparse Coding

approach [Tib96]. Although such approach is quite popu-
lar in signal processing, to the best of our knowledge, only
recently it has been proposed in computer vision for 2D im-
age coding and very few work has been done in 3D domain
(e.g. [PBB∗13]).

Experiments are evaluated on standard dataset, i.e.
SHREC 2011 robustness benchmark [BBB∗11] and we
show a drastic improvement over both good global shape de-
scriptor, such as Shape DNA [RWP06], and standard local-
to-global approaches, such as shape distance distribution
[FKMS05].

The rest of the paper is organized as follows. Section 2
reports the state of the art by focusing mainly on the shape
descriptors which are related the the proposed work. Sec-
tion 3 describes the background for both sparse coding and
local descriptors, and it introduces the proposed local-to-
global approach. Section 4 reports the experimental results
by showing the performance of the proposed descriptor in
comparison with other methods. Finally, in Section 5, con-
clusions are drawn and future work is envisaged.

2. Related work

Ideal shape descriptors should satisfy some properties such
as discriminativeness, robustness to noise, invariance to
isometries and other shape transformations, compactness
and so on (see, e.g. [RWP06, Bro]). In the following we
briefly revise global, local, and local-to-global approaches.

2.1. Global approaches

Regarding global approaches, spectral methods are largely
employed [FKMS05, TV04]. For instance Shape DNA
[RWP06] computes the spectral decomposition of the
Laplace-Beltrami operator defined on the manifold repre-
sented by the shape and uses the truncated set of the com-
puted eigenvalues as global signature. This leads to a very ef-
fective descriptor which was successfully employed on sev-
eral applicative scenarios such as shape retrieval and shape
matching in medical domain [RWP06, LGB∗11].

2.2. Local approaches

Local descriptors are often employed for point-to-point cor-
respondences [FKMS05, TV04, CCM11]. A common ap-
proach is to collect local geometric properties on the point
neighborhood and accumulate these values on a multidi-
mensional histogram. Examples are Spin Images [JH99]
or Shape Context [BMP02, FHK∗04, KCB09]. Other ap-
proaches exploit probabilistic properties of the shape, e.g.
in [CCM11] Hidden Markov Models are adapted to work on
3D surfaces. Another very popular class of local descriptors
are based on diffusion geometry [SOG09,BK10,ASC11]. In
[SOG09] the so called Heat Kernel Signature (HKS) was in-
troduced which exploits the local surface properties at differ-
ent scales. Some extensions of HKS are proposed in [BK10]

to deal with scale invariance. Recently, in [ASC11], was pro-
posed the so called Wave Kernel Signature (WKS). It em-
ploys a different physical model being related with oscilla-
tion rather then diffusion processes.

2.3. Local-to-global approaches

Local-to-global approaches are therefore introduced to de-
fine a global signature from a collection of local descrip-
tors. A simple method consists of computing pairwise dis-
tances among points in the descriptor space and accumu-
late these distances into a histogram [FKMS05, BBM∗10].
More sophisticate techniques exploit probabilistic methods,
such as in [MGGP06], where a probabilistic fingerprint is
introduced. Being encouraged by feature-based methods de-
veloped in Computer Vision, several work employed the so
called bag of words paradigm [BBGO11, TCF10, DK12].
In [BBGO11] the bag of word descriptor is computed from
the set of local HKS signatures. In [TCF10] a region-based
approach is introduced where the visual words are defined
by region properties computed after shape segmentation.
In [DK12] authors extract the bag of words signature after
detection of feature points and by collection properties that
make the descriptor scale invariant.

In this paper we propose to exploit dictionary learning and
sparse coding approaches [MBPS09, MBPS10]. To the best
of our knowledge, such approach is very few adopted for 3D
shapes and only recently some methods have been proposed
,such as in [PBB∗13], for point-to-point correspondences of
non-rigid or partial shapes. Here, we propose sparse coding
method for local-to-global shape description.

3. Global shape descriptor by sparse coding

In this section we introduce: i) the general theoretical back-
ground of sparse coding, ii) local descriptors involved in our
method, and iii) the main contribution of the paper, i.e. how
to exploit the former approach to propose a global signature
from a set of local descriptors.

3.1. Background

When a machine learning approach is employed a general
issue to be addressed is the following [SS02]: given two
classes of objects xi, and a new object x, how can we as-
sign the unknown object to the right class? To distinguish
the objects belonging to a class from the others, we assign a
label yi to each object, i.e.

(x1,y1), . . . ,(xn,yn) ∈ X×{±1},

where the labels are chosen as +1 and −1 for the sake of
simplicity and X is some non-empty set containing the pat-
terns xi. Given some new pattern x ∈ X , we want to infer the
corresponding label y ∈ {±1}.
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To this end an interpolation on the given data, i.e.

min
f
‖yi− f (xi)‖2

2

is useless since it is not able to generalize well for unseen
patterns. A possible approach at this problem is suggested by
Tychonoff regularization theory and consist of a restriction
of the class of admissible solutions, i.e., a compact set.

Indeed, the previous problem can be reformulated as:

min
f
‖yi− f (xi)‖2

2 +λR( f ),

where

• ‖yi− f (xi)‖2
2 is the data term,

• R( f ) is the regularization term,
• λ > 0 is the so-called regularization parameter, which

specifies the trade-off between fidelity to the data in the
sense of `2 norm, as represented by the former term, and
simplicity of the solution, enforced by R( f ).

An example of regularization operator is R( f ) = ‖ f (m)‖2,
for some m∈N. This particular choice promotes the smooth-
ness of the solution.

Let we now address a slightly different problem. Now
suppose we have a sentence s and a dictionary D. We want
to explain the sentence s with words contained in D. This
problem could be formalized as

min
α
‖s−αD‖2

2,

the idea is that vector α picks up only the words that describe
the sentence s. In general, a dictionary is over complete:
there are a lot of words with the same or similar meaning.
For this reason we might be interested to consider the min-
imum number of words as possible. Regularization theory
help us also in this case. Indeed, if we consider the follow-
ing problem:

min
α
‖s−αD‖2

2 +λR(α), (1)

by choosing R(α) = ‖α‖1, we are promoting the sparsity
of the solution. In this case we refer as sparse coding and
the corresponding problem is known as Lasso formulation
[Tib96].

In general, as described in [PBB∗13], s could be though
as a generic signal and the interpretation of Lasso formula-
tion could be the following: many families of signals can be
represented as a sparse linear combination in an appropriate
domain, usually referred to as dictionary, so that s≈ αD. In
other words, the signal s could be generated by αD. Finally,
given the signal s and the dictionary D, the solution of the
unconstrained convex minimization problem of equation (1)
gives us the sparse vector α.

However in general the dictionary D is not available. We
therefor are interested in inferring both the vector α and the

dictionary D from the signal s. The problem becomes:

min
D

(
min

α
‖s−αD‖2

2 +λ‖α‖1

)
, (2)

In [MBPS09, MBPS10], problem (2) was solved employing
an alternating minimization method between the variables D
and α

i.

As a further step we should consider that n the more gen-
eral case, instead of a single signal s, we have a collection
of signals s = {si}i=1,...,N . Therefore, Equation (2) can be
generalized as:

min
D

1
N

N

∑
i=1

min
αi

(
‖si−α

iD‖2
2 +λ‖αi‖1

)
, (3)

where α = {αi}i=1,...,N is though as a collection of vectors.

3.2. Local shape descriptors

Since we want to employ sparse coding technique for shape
analysis, we need to extract a signal from the underlying ge-
ometry of a shapes that possibly be robust to non rigid defor-
mations. To this aim we consider as the signal a collection
of local descriptors collected at each vertex of the consid-
ered shape. In order to satisfy all the previous hypothesis,
properties of Laplace-Beltrami operator on the 2-manifold
represented by the shape are exploited.

In the context of diffusion geometry, the most popular lo-
cal descriptor is Heat Kernel Signature (HKS) [SOG09] and
its scale invariant version, SI-HKS [BK10]. They are based
on the properties of the heat diffusion process on the shape
governed by the heat equation.(

∂

∂t
−∆

)
u(x, t) = 0. (4)

For the signal processing perspective, we could say that the
solution u(x, t) of differential equation (4) at time t can be
expressed by the convolution of the impulse response ht(x, t)
by the initial data u0(x),

u(x, t) =
∫

ht(x,y)u0(y) dσ(y).

The kernel of this integral operator is called heat kernel and
it correspond to the amount of heat transferred from point
x to point y after time t. In particular, HKS represents the
autodiffusion process ht(x,x) centered in a vertex x of the
shape, at different time scales.

As described in [Bro], the heat kernel descriptor could be
thought as a collection of low-pass filters. This emphasize
of low frequencies damages the ability of the descriptor to
precisely localize shape features. A remedy to the poor fea-
ture localization of the heat kernel descriptor was proposed
by the so called Wave Kernel Signature (WKS) in [ASC11].
The authors proposed to replace the heat diffusion equation
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Figure 1: The dictionary Dc representing the class c of an horse, could be learned from the collection of local signatures of an
entire class of topological deformations of the horse null shape. Here is represented the pipeline of the proposed method: from
each deformed shape of Ni vertices we extract Ni WKS vectors of M components. Then we collected all this vectors in a single
matrix s and learn a dictionary Dc of L “words” that represent the class c up to all topological deformations considered.

(4), by the Shrödinger equation(
∂

∂t
+ i∆

)
v(x, t) = 0,

where v(x, t) is the complex wave equation. Changing only
slightly the differential equation that govern the process,
now the physical interpretation is very different: it represents
the average probability of measuring a quantum particle with
a certain energy distribution at a specific location. That is,
instead of representing diffusion, v has oscillatory behavior.

Letting vary the energy of the particle, the WKS encodes
and separates information from various different frequen-
cies. In terms of the former interpretation of HKS as a collec-
tion of filters, in [Bro] was noted that WKS can be thought
as a collection of band-pass filters. As a result, the wave ker-
nel descriptor exhibits superior feature localization. For this
reason, we chose to consider this local signature for oue ex-
periments.

3.3. Local-to-global descriptors

Once WKS descriptors are computed, we consider them as
the collection of signals s. Then, learning techniques de-
scribed in [MBPS09, MBPS10] are employed for solving
problem (3), i.e. learn the dictionary D. Here we consider
D as the global signature for each shape O. In this way we
have a matrix as a global signature of each shape Oi of a 3D
shapes database. The query phase could be done employing
the classical leave-one-out approach. That is, we could com-
pare the descriptor of the query shape with the descriptors of
all the other shapes in the database and assign to the query
shape the class of the shape whose descriptor generates the
smallest error.

Here we follow another way. It is worth noting that s could
be considered also as the collection of local signatures of
an entire class of shapes subjected to a non-rigid deforma-
tion, as shown in Figure 1. In this case, several deformations
of the same object can contribute in learning the dictionary.
More in details:

• {Oc
1, . . .O

c
k} are several instances of class c,

• k is the number of instances of the same class deforma-
tions,

• Dc represents the dictionary of class c,

Dc is trained by all signatures of the instances of the class
{Oc

1, . . .O
c
k}. If c represents a class of noise deformations of

the same shape, then Oc
i represents a noise deformation of

O and k the number of noise deformations of the shape O
present in c.

In order to deal with multiple classes of shapes (e.g. men,
cats, dogs, and so on) several dictionaries can be trained
{Dc1 ,Dc2 , . . .}, one for each available class. Then, in the
query phase, given a shape O and its collection of local sig-
natures s, we solve problem (1) for each dictionary Dci and
we obtain the vectors α

ci . At the shape O is then assigned
the class c such that

‖s−α
cDc‖= min

i
‖s−α

ci Dci‖. (5)

In retrieval applications, the principal advantage of this
method is that it allow to compare the signature of a query
shape only with the dictionary of the classes of the shapes
present in the database considered. Conversely, in the ma-
jority of the existing approaches, the matching is done be-
tween the query shape and all the instances of the database.
Another important advantage is that the dictionary encodes
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more instances of the same non-rigid deformation, making
the proposed signature a descriptor of the entire class of de-
formations rather than a single shape descriptor.

4. Results

The reported experiments are evaluated on the SHREC 2011
robustness benchmark. In particular the database is com-
posed of 12 different triangulated meshes from TOSCA
[BBK08] and Sumner [SP04] databases, that we consider as
null shapes, and their non-rigid deformations. For each null
shape reported in Figure 2, transformations were split into 9
different types:

• affine,
• big holes,
• micro holes,
• scale,
• down sampling (less than 20% of original points),
• additive Gaussian noise,
• shot noise,
• topology (welding of shapes vertices resulting in different

triangulation) and
• view,

as reported in Figure 3. Each triangular meshes has about
1500 vertices.

Each type of transformation appeared in five different ver-
sions numbered from 1 to 5. In all deformation types, the
version number correspond to the transformation strength
level: the higher the number, the stronger the deformation
(e.g. in noise transformation, the noise variance is propor-
tional to the strength number). For scale transformation, the
levels 1− 5 correspond to scaling by the factor 0.5, 0.875,
1.25, 1.625 and 2.

For each class of deformations, we have 60 shapes, 5 for
every null class. The entire database contains 552 shapes: the
540 deformed shapes and the 12 null shapes.

According to the pipeline proposed in section 3, we ex-
tract the WKS [ASC11] signature for each vertex of each
shapes. For the signature extraction we based on the Mat-
lab code freely available on http://vision.in.tum.de/
publications. In all our experiments the parameters were
fixed accordingly with [ASC11]. In particular we consid-
ered n= 200 eigenvalues of the Laplace-Beltrami operator, a
variance σ = 6(φ2−φ1) and we evaluate at M = 500 values
of energy e, where emin = logφ1+2σ and emax = logφn−2σ

and φi denotes the ith eigenvalue of the Laplace-Beltrami op-
erator.

Once local shape descriptors are computed, sparse coding
is employed for local-to-global descriptor. For the numeri-
cal solution of the optimization problem (1) and (3) we use
SPArse Modeling Software (SPAMS), an open-source op-
timization toolbox based on [MBPS09, MBPS10]. In all our
experiments we make the trivial choice λ = 1/2, and learned

a dictionary Dc of L = 500 “words” from each class, such
that D is a M×L = 500×500 matrix, where M is the length
of each WKS.

Finally we compare the performances of our method with
a global signature, namely Shape DNA [RWP06], and with
the well known quantization approach [FKMS05], that we
dubbed here as Signature Distance Distribution (SDD).

Shape DNA signature [RWP06] consists of the truncated
spectrum of the Laplace-Beltrami operator. For the appli-
cation of this popular global descriptor to retrieval scenar-
ios, we follow the suggestions reported in [LGB∗11]. More
specifically, we consider only the first 13 eigenvalues and
rescale the spectrum by the shape’s area to obtain the scale
invariance of the descriptor.

Signature Distance Distribution (SDD) is a way to quan-
tize a local descriptor for obtaining a global one. Once ex-
tracted local descriptors from the shape, the central idea of
this method is to exploit the obtained informations to build
up an histogram, that plays the role of a global descriptor. In
particular, the histogram takes into account the occurrences
of Euclidean distances of local signatures between every pair
of random points on the shape. In order to capture the under-
lying geometry, the random selection of points are repeated
several times. In this case, the random selection was repeated
10 times, in order to have about 104 distances between local
descriptors. The output is a histogram ables to discriminate
between different shapes, as reported in Figure 4.

Figure 4: Comparison between the SDD of the shapes of a
cat and a dog. In the former there is a peak approximatively
around the 20th bin, in the latter around the 40th bin.

For matching purposes, at each pair of shapes of the
same deformation category, we compute the `2 error be-
tween histogram’s occurrences vectors and consider correct
the matching with the minimum error. Since the method in-
volves a random procedure, Table 1 reports the mean of 5
runs of the algorithm.
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Figure 2: Null shapes of our database taken from TOSCA [BBK08] and Sumner [SP04] databases. From left to right we find
man, dog, cat, man, woman, horse, camel, cat, elephant, flamingo, horse and lioness. In all our experiment we consider correct
the matching between two men, cats or horses. As you can see, the camel and elephant shapes are created by pose transfer from
the galloping horse, and the lioness from pose transfer from the crouching cat.

Figure 3: Examples of deformations types considered in our database, taken from SHREC 11 robust benchmark. From left to
right we find the null shape, affine, holes, micro holes, scale, sampling, noise, shot noise, topology and view.

Comparison results are shown in Table 1. The proposed
method improves on all the deformation classes with respect
to SDD or Shape DNA. In particular it improves drastically
in the class of affine, big holes, topology and view deforma-
tions. It is worth noting that on view deformation the im-
provement with respect to Shape DNA was expected: in fact
a global descriptor fails to identify correctly partial views of
a shape. It is rather more interesting to observe that with this
kind of deformation our method clearly outperform SDD.
In noise and shot noise deformations our method performs
like Shape DNA although sparse coding approach consider
significantly more eigenvalues. It is a well known fact that
the firsts eigenvalues is related to shape’s lower-frequency
contents, meanwhile higher eigenvalues is related to higher-
frequency contents and manifest themselves as rough ge-
ometric features, i.e. shape details. Overall, the proposed
method shows a clear improvement over other methods, by
evidencing a more stable and robust behavior.

We notice also that our descriptor takes into account the
behavior of an entire class of deformations and this should
affect negatively the nearest neighbor performances. Indeed,

we believe that in nearest neighbor scenarios a shape de-
scriptor behave better that an entire descriptor of an entire
class of non-rigid deformations. The fact that results in Ta-
ble 1 are very promising, give us an idea of the goodness of
the method.

Figure 5 reports the dissimilarity matrix of the class of
noise deformations. Note that this matrix is not computed as
a classical dissimilarity matrix between shape descriptors.
In fact our method generate a class descriptor. Each column
represents a class of shape, in accordance to the shape rep-
resentation shown in figure above the matrix. We have omit-
ted the second instances of repeated classes as man, cat and
horse for a better visual result. Each row represents the mean
error between 5 non-rigid deformation and the underlying
null shape with respect to the dictionary of the respective
classes. In this particular case we have considered noise de-
formation. Blue colors represent small error values, red col-
ors represent high error values. It is interesting to note that
as expected man and woman classes has small error in com-
parison to other classes. This remark the similarity property
of the proposed descriptor.
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Table 1: Comparison between the Nearest Neighbor retrieved shape by SDD, Shape DNA and sparse coding approach.

Deformation
SDD Shape DNA sparse coding

corrects % corrects % corrects %

Affine 45/72 0.67 49/72 0.68 59/72 0.82
Holes 36/72 0.50 58/72 0.81 65/72 0.90
Micro holes 65/72 0.90 64/72 0.89 65/72 0.90
Scale 72/72 1.00 71/72 0.99 72/72 1.00
Sampling 67/72 0.93 69/72 0.96 72/72 1.00
Noise 71/72 0.99 72/72 1.00 72/72 1.00
Shot noise 70/72 0.97 72/72 1.00 72/72 1.00
Topology 58/72 0.80 55/72 0.76 72/72 1.00
View 11/72 0.15 16/72 0.22 49/72 0.64

Average 495/648 0.76 526/648 0.81 598/648 0.92

Figure 5: Class-signature dissimilarity matrix for noise de-
formations. Blue colors represent lower values, red colors
represent higher values.

Finally, in Figure 6 is reported an embedding in a 2D
plane of the proposed local-to-global signatures. The em-
bedding was performed through a multi-dimensional scaling
algorithm (MDS). This figure highlights the good similarity
properties of the proposed descriptor: man embedded signa-
ture is close to woman, and the same happens for cat and dog
embedded signatures.

Figure 6: Embedding local-to-global signatures in a plane
through MDS.

5. Conclusions

In this paper a new approach for local-to-global shape de-
scription is proposed. We have shown that sparse coding
methods are particular suitable to compactly describe a large
set of point-based descriptors. Although we use in our ex-
periment Wave Kernel Signature (WKS) only, our method
is versatile in encoding any other local descriptors in order
to inherit at the global level the desired properties of local
behaviour.

We have evaluated our approach on 3D shape retrieval in
the context of robustness against several shape deformations.
Our approach has shown its effectivness in dealing with such
deformations by drastically improve state-of-the-art meth-
ods. In particuar, thank to the sparsity constraint our method
is able to detect the most relevant information of a given
class of shapes and to ignore the irrelevant or confusing as-
pects which effect the correct shape retrieval.
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Future work will be address on the evaluation of more
advanced sparse coding methods in order to exploit discrim-
inative learning in shape retrieval domain.
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