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Abstract—Memcached is a popular component of modern
Web architectures, which allows fast response times for serving
popular objects. In this work, we study how memory partitioning
in Memcached works and how it affects system performance in
terms of hit rate. Memcached divides the memory into different
classes proportionally to the percentage of requests for objects
of different sizes. Once all the available memory has been
allocated, reallocation is not possible or limited, a problem called
“calcification”. Calcification constitutes a symptom indicating
that current memory partitioning mechanisms require a more
careful design.

First, using an experimental approach, we evaluate how
memory is assigned to the different classes, and quantify the
impact of calcification on the hit rate. We then proceed to design

and implement a new memory partitioning scheme, called PSA,
which replaces that of vanilla Memcached. With PSA, Memcached
achieves a higher hit rate than what is obtained with the
default memory partitioning mechanism, even in the absence of
calcification. Moreover, we show that PSA is capable of “adapting”
to the dynamics of clients’ requests and object size distributions,
thus defeating the calcification problem.

I. INTRODUCTION

Modern Web architectures are designed to provide low
latency response times to thousands of requests per second
originated by a large number of clients trying to access,
for example, a complex Web page. To achieve such goal, a
common solution is to keep a large fraction of the data served
by a website in main memory. In this context, Memcached
[1] is a popular and well-integrated component of such Web
architectures: it is a key-value store that exposes a simple
API to store and serve data residing in the DRAM of a
machine. Thanks to its simplicity and efficiency, Memcached
has been adopted by many companies, such as Wikipedia,
Flickr, Digg, WordPress.com, Craigslist, and, with additional
customizations, Facebook and Twitter.

Recent studies [2], [3] have mainly focused on the through-
put achieved by Memcached, i.e., how fast Memcached can
serve data to satisfy a request. Every operation, in fact, requires
to lock the memory, therefore even multi-threaded approaches
may not be able to exploit efficiently the memory.

In this work, instead, we consider a different problem: we
study how memory allocation performs in Memcached. By
design, Memcached partitions the memory dedicated to store
data objects into different classes; each class is dedicated to
objects with a progressively increasing size, which takes into
account the typical size distribution of web data objects. When
a new object – that is, an object that was never requested before

– has to be stored, Memcached checks if there is available
space in the appropriate class, and stores it. If there is no
space, Memcached evicts a previously stored object in favor
of the new one. In this context, a common metric to determine
the performance of Memcached – as for any other caching
mechanisms – is the hit rate, defined as the number of requests
that can be served directly from memory over the total number
of requests received by the Web server.

Essentially, in Memcached, memory allocation is the pro-
cess of assigning portions of the memory to each class:
memory is granted to a class based on the requests received
for objects belonging to that class. Once all the available
memory has been allocated, memory reallocation – that may
be triggered by a change in the statistical properties of the
requested objects – is not supported.1 Such a strict approach
to memory allocation raises a problem often referred to as
calcification [4]. Clearly, if the statistical properties of the
objects (i.e, the distribution of the object sizes) that are stored
in Memcached does not change over time, then calcification
does not affect performance, because the baseline eviction
policy currently implemented in Memcached works well for
storing “hot” objects. However, if the statistical properties of
object sizes change over time, calcification has a direct impact
on the hit rate achieved by Memcached – this problem has
been reported by Twitter [5] and Facebook [6].

The straightforward solution to calcification is to allow
Memcached to reassign memory previously allocated to a
given class. Although memory reallocation may appear as a
simple problem to solve at a first glance, we identify a number
of challenges in doing so. How can the system detect whether
calcification has occurred? What can be used as an indication
that a class needs to be granted more memory than another
class? How much memory should be reallocated from one
class to another class? How often should the system evaluate
memory allocation and proceed with reallocation?

The above questions suggest that, rather than focusing
on calcification alone, it is reasonable to analyze the overall
process of memory allocation: is the proportional allocation
method implemented in Memcached the best approach to
address memory assignment? Despite the clear consequences
on hit rate, this problem has received little attention in the
literature.

Our contributions: In this paper we analyze the memory

1Starting from version 1.4.11, Memcached now provides a mechanism
to reallocate the memory. However, the reallocation algorithm is extremely
conservative, therefore reallocation is rare; see III-B for the details.



allocation mechanism of Memcached. We take an experimental
approach and evaluate how memory is assigned to the different
classes, and quantify the impact of calcification on the hit rate.
In our experiments, we use the latest version of Memcached
and Twemcache – a custom version developed at Twitter that
includes a series of policies to address the calcification problem
– and we generate the objects according to the size distribution
provided by Atikoglu et. al. [6].
We then set off to design a new memory allocation scheme to
replace that implemented in vanilla Memcached: the gist of our
mechanism is to measure the absolute values of cache misses
as an indication that a class needs more memory; the memory
required by a problematic class is taken from the class that
would suffer the least, would its memory be reallocated. We
implemented our new memory allocation mechanism – which
is computationally efficient and lightweight – and compare
its performance to both vanilla Memcached and Twemcache,
using the same experimental approach outlined above.

Our results indicate that the memory allocation mecha-
nisms of both Memcached and Twemcache are far from being
optimal. With our scheme, the hit rate in the absence of
calcification is higher than that of both Memcached and Twem-
cache, which underlines the importance of memory allocation
in general. In addition, we show that whereas the calcification
problem has a non negligible effect on Memcached, our
mechanism is capable of “adapting” memory allocation to
the dynamics of clients’ requests and object size distributions,
making it practically oblivious to calcification.

The rest of the paper is organized as follows. In Sect. II we
provide the necessary background to understand how memory
allocation works in Memcached and we discuss related work.
In Sect. III we overview a variety of countermeasures to
the calcification problem currently available in the state of
the art. In Sect. IV we describe our experimental setup and
we provide the experimental results for vanilla Memcached
and Twemcache. We describe our mechanism in Sect. V, and
we show the experimental results obtained using a modified
version of Memcached based on the new memory allocation.
In Sect. VI we present our effort to produce and distribute
a common benchmarking suite for the evaluation of memory
management schemes for Memcached, and we conclude the
paper in Sect. VII.

II. BACKGROUND

A. Memcached

Memcached is a key-value store that keeps data in the
DRAM, i.e., data is not persistent. Clients communicate with
Memcached through a simple set of APIs: Set, Add,

Replace are used to store data, Get or Remove are used
to retrieve or remove data. Although it is well known that, in
scale-out Web application, a series of Memcached servers can
be configured in a shared-nothing setup, whereby each server
takes care of a subset of data objects using consistent hashing
[6], in this work we focus on a single instance of a Memcached
server.

Memcached has been designed to be extremely fast: not
only it stores the data in the DRAM, but it also organizes
the memory dedicated to storing data objects to simplify its
management [2]. Every operation, in fact, requires memory

locking:2 therefore, data structures must be simple and their
access time should be kept as small as possible. Memory
management in Memcached plays an important role: next, we
focus on important technical details.

The basic unit of memory is called a slab and has fixed
size, set by default to 1 MB. A slab is logically sliced into
chunks that contain data items (objects3) to store. Note that
chunks are statically assigned to a slab, i.e., one chunk (the
physical memory) can not be moved from one slab to another.

The size of a chunk in a slab, and consequently the number
of chunks, depends on the class to which the slab is assigned.
A class is defined by the size of the chunks it manages. Sizes
are chosen with a geometric progression: for instance, Twitter
uses common ratio 1.25, and scale factor 76, therefore the sizes
of the chunks in class 1, 2, 3, . . . , are 76, 96, 120, . . . Bytes
respectively. An object is stored in the class that has chunks
with a size sufficiently large to contain it. As an illustration,
using the classes defined at Twitter, objects with sizes 60 Bytes,
70 Bytes, and 75 Bytes are all assigned to class 1, while objects
with sizes 80 Bytes and 90 Bytes are assigned to class 2.

The total available memory to Memcached is allocated to
classes in a slab-by-slab way. The assignment process follows
the object request pattern: when a new request for a particular
object arrives, Memcached determines the class that can store
it, checks if there is a slab assigned to this class, and if the slab
has free chunks. If there is no free chunk (and there is available
memory), Memcached assigns a new slab to the class, it slices
the slab into chunks (the size of which is given by the class
the slab belongs to), and it uses the first free chunk to store
the item.

When all slabs have been assigned to the classes – that
is the whole available memory has been allocated – and a
class receives a request for a new item currently not stored
in Memcached (and there is no free chunks), the new object
replaces (evicts) a previously stored object: the eviction policy
used in Memcached is the Least Recently Used (LRU). The
LRU policy is applied on a per-class basis: in fact, items in
other classes are stored in chunks of memory with different
sizes, and chunks can not be moved.

In summary, the memory organization used in Memcached
(slabs, chunks, classes) has been designed to favor manage-
ment efficiency (fixed number of classes, fixed number of
chunks is a slab assigned to a specific class). An alternative
approach to the one described above, which would allocate
“any” available memory on a per-request basis, would incur
in performance bottlenecks (e.g., the eviction needs to take into
account the size of the item to be evicted, so that there will be
enough room for the new object) and memory fragmentation.

B. Related Work

The analysis of cache performance has been the subject
of many past studies. In this paper we consider specifically
Memcached, therefore we first focus on the literature about
such a system. Even if Memcached is widely used, the study
of its performance has received only little attention. Atikoglu
et. al. provide in [6] a set of measurement results from a

2Note that memory locking is required even in case of a Get, since access
time statistics need to be updated.

3Throughout the paper we will use the terms “object” and “item” inter-
changeably.



production site – in our experiments we will use these statistics
to generate our workload. Nevertheless, the paper does not
analyze and compare the different eviction policies, and it does
not consider the impact of memory partitioning on the hit rate.

Gunther et. al. [7] highlight that Memcached has scalability
issues, since threads access the same memory, therefore locks
prevent the exploitation of the parallelism. For this reason,
a number of works [2], [3] consider the performance of
Memcached in terms of response time and request throughput,
proposing a set of mechanisms and data structures to decrease
the overall latency. Again, these works do not consider explic-
itly the impact of the memory partitioning on the hit rate as
we do. Nishtala et. al. [8] study scalability problems, i.e., how
to manage a multi-server architecture, but they do not study
the eviction policies and memory partitioning.

As for the general literature on caches (not focused on
Memcached), there exists a vast amount of works: caches,
in fact, have been used at different levels – CPU caches [9],
browser caches [10], Web caches and proxies [11], DNS caches
[12], and Content Delivery Networks [13] – and each level is
characterized by different problems.

Among these works, CPU caches need to solve similar
problems to ours. In a CPU cache, many processes share
the memory space, and a single process may “pollute” the
cache with its data [14], which has a negative impact on
performance. Similarly, in Memcached different classes share
the memory, and the space taken by a class may hurt the
performance of other classes and therefore the overall hit rate.
The solution adopted for CPU caches [14]–[16] are based on a
common idea, in which the memory partitioning process tries
to balance the number of misses among the processes. Our
memory partitioning scheme has been inspired by these works,
i.e., we have adapted these schemes to the specific context of
Memcached.

In the other types of caches (e.g., Web, DNS) memory
partitioning does not represent an issue: such works [10], [11],
[17] are mainly focused on the impact of the eviction policies
when managing objects with different sizes. In Memcached,
instead, eviction is done on a per-class basis, and objects within
a class have the same size.

III. OBJECT POPULARITY AND SLAB CALCIFICATION

We now describe in detail the occurrence of the calci-
fication problem, which is mainly due to object popularity
dynamics (that is, variations in the statistical characteristics
of the requested objects). As discussed earlier, calcification
may decrease the cache hit rate, that is the number of requests
that can be satisfied through the cache over the total number
of requests. In addition, we present the countermeasures to the
calcification problem currently available in the literature.

A. Popularity Dynamics

Given a finite set of objects, and given an interval of time
∆T , we define the popularity of an object as the ratio of the
number of requests for such an object and all the requests
received during ∆T . Clearly, object popularity varies across
different objects: this is the reason to use a cache in the first
place. In addition, the popularity of a given object may vary
over time: this is due, for example, to time of the day effects,

or exogenous events such as (a set of) objects being featured
on an external and influential web site or blogging platform.

If the popularity of objects changes rapidly, the maximum
achievable hit rate of the cache may be far from an ideal value.
To explain this, we model popularity dynamics by considering
the removal or the addition of items in the object space: a
removed object is an object with popularity equal to zero, and
a new object is an object whose popularity switches from zero
to a finite value. If the number of requests during subsequent
time intervals ∆T remains constant (R requests per ∆T ), and
N objects are added to the object space (i.e., they switch from
zero popularity to a finite value because they are requested at
least once during ∆T ), then the maximum hit rate achievable
is equal to (1.0−N/R) · 100%: in fact, N out of R requests
will be for new objects not included in the cache, therefore at
most R−N out of R requests can be found in the cache.

In Memcached, the allocation of the slabs to each class
depends on the popularity of the first “wave” of objects that
is sufficient to fill-up the cache, considering an empty cache
at startup; in particular, the memory is assigned proportionally
to the popularity of the different classes, where the popularity
of a class is given by the sum of the popularity of the objects
in the class. Once an appropriate portion of memory has been
assigned to a class, it will remain always associated to such
class (unless the server is restarted).

We note that, despite object popularity dynamics, the
popularity of a given class may remain constant, therefore the
allocation made by Memcached may not negatively impact
the hit rate as object popularity evolves over time. Instead,
problems arise when the class popularity changes over time:
this happens when the statistical properties of the requested
objects change (e.g., larger objects become more popular).
Since slabs can not be reassigned to a different class to accom-
modate requests/popularity dynamics, the memory allocation
computed by Memcached cannot “follow” this change, i.e., the
fixed memory allocation is not proportional to the new class
popularity. This is usually referred to as slab calcification [5].

Slab calcification has a negative impact on the hit rate. If
the popularity of a class decreases, then the class has more
space than necessary, and the improvement in the hit rate is
marginal – its popularity is in any case decreasing. On the
other hand, when the popularity of a class increases, the space
in the cache for that class is limited (because before it was
less popular), and the hit rate significantly decreases.

B. Current Solutions to Slab Calcification

Slab calcification has been observed in real world deploy-
ments. In the following, we summarize the current solutions
or the best practices that aim at solving this issue.

Cache Reset: This is the simplest solution, i.e., every T
seconds all the objects are removed from the cache. In a multi-
server setting, the Reset has to be coordinated, so that the
impact on the hit rate is limited. Currently there is no imple-
mentation of this policy within Memcached, i.e., the server
should be restarted with an external intervention (automatic,
such as a script, or manual). The abrupt interruption of the
service may cause some problems, since open connections
are lost. Moreover, once restarted, there is a transitory period
before the cache becomes full again and, consequently, the
hit rate momentarily decreases. Finally, such a technique may



impose a strain on back-end servers and the database layer,
which suffer a spike on the number of requests to serve.

Memcached Automove: Starting from version 1.4.11, Mem-
cached introduced the possibility to move slabs among classes.
Every 10 seconds the systems collects the number of evictions
in each class: if a class has the highest number of evictions
three times in a row, it is granted a new slab. The new slab
is taken from the class that had no eviction in the last three
observations. As stated by the designers of this policy, the
algorithm is conservative, i.e., the probability for a slab to be
moved is extremely low (because it rare to find a class with
no eviction for 30 seconds).

Twitter random eviction: Twemcache [5] allows administra-
tors to select a set of eviction policies explicitly designed to
solve the slab calcification problem; with random eviction, for
each Set, if there is no free chunk or free slab, instead of
applying the class LRU policy, the server chooses a random
slab (that can belong to any class), evicts all the objects in
such a slab, reassigns the slab to the current class (by dividing
the slab into chunks of appropriate size), and uses the first free
chunk to store the new object – the remaining free chunks will
be used for the next Set requests. This policy allows slabs
to be reallocated among classes to follow request dynamics.
However, since the eviction procedure is executed on a per-
request basis and since slab eviction implies the eviction of all
its stored objects, we believe the random eviction policy to be
too aggressive. Our experiments confirm such claim.

Twitter slab LRA eviction: Twemcache provides also an
alternative policy to overcome the limitation of the random
policy. For each Set, if there is no free chunk or free slab, the
server chooses the least recently accessed slab (that can belong
to any class), evicts all the objects in such a slab, reassigns the
slab to the current class, and uses the first free chunk to store
the new object – the remaining free chunks will be used for
the next Set requests. The access time of a slab is updated
each time an object in such a slab is accessed. The policy aims
at a dynamic slab-to-memory assignment, letting the slabs to
be assigned dynamically to the classes, but the eviction of
multiple items may have a negative impact on the hit rate.

Next, we study the effectiveness of existing policies to
mitigate the impact of calcification, through a series of ex-
periments executed in a simple, yet representative testbed. In
our results we omit the Memcached Automove policy, since
we have verified that, in our experimental setup, no slab has
been moved.

IV. ESTABLISHING BASELINE PERFORMANCE

We now study the performance of Memcached and Twem-
cache in terms of hit rate achieved by each system. Next, we
describe the experimental setup we use to obtain our results,
and we properly define object characteristics and popularity.
In our experiments, we first proceed by defining a baseline
scenario in which there is no calcification; then, we introduce
popularity dynamics and quantify the impact of calcification as
well as the effectiveness of current countermeasures available
in the literature.

A. Experimental Setup

Testbed configuration: We use a simple, yet representative,
Web architecture that is illustrated in Fig. 1. A single client
issues requests for objects that are permanently stored in a

database server. An application server receives the requests
from the client; the server checks if the requested object is
stored in the cache, i.e., it sends a Get to Memcached; if
Memcached returns the object, the application server sends it
to the client, otherwise it retrieves the object from the database
and sends it to the client. When an object is retrieved from the
database, it is stored in Memcached: this can be done either by
the application server or the database itself – in our testbed the
application server takes care of it. Note that in our experiments,
we set the cache size to 1 GB.

Fig. 1. An illustration of the testbed used in our experiments: this is a simple,
yet representative, configuration involving a single application server, database
and Memcached instance.

Object Characteristics: In our experiments, the database
is populated with Q = 14 Millions objects, whose size is
randomly drawn from a Generalized Pareto distribution, as
described by Atikoglu et. al. in [6]. Since our objective is
to study the ill effects of calcification, we prepare two kinds
of experiments.

In the first experiment, we use a single object size distri-
bution for all objects in Q: a (truncated) Generalized Pareto
distribution with location θ = 0, scale ϕ = 214.476 and
shape k = 0.348238. We anticipate that in this experiment,
slab calcification does not occur, despite object popularity
dynamics.

In the second experiment, the object space Q is partitioned
in two equal sets. The size of Q/2 objects is generated
according to a (truncated) Generalized Pareto distribution with
the same parameters used in the first experiment. The size
of the remaining Q/2 objects follows a (truncated) Gener-
alized Pareto distribution with different parameters: θ = 0,
ϕ = 312.6175 and k = 0.05. These latter parameters induce
an object size distribution with the same mean but different
variance with respect to the first half of the object space (we
will explain in Sect. IV-D the reason for this choice). The
particular manner in which we build the object space for the
second experiment, in addition to popularity dynamics, induces
slab calcification.

Finally, note that in all experiments, the minimum and the
maximum object sizes are set according to the default values
of Twemcache.

Object Popularity: In our experiments – as it commonly
happens in real-life setups – the client issues requests for
objects according to their popularity. Next, we describe how
we model4 object popularity dynamics.

4Object popularity dynamics is also influenced by time-of-day effects. In
this work, we neglect such effects. An alternative approach to what we present
here would be to use real-life traces of client requests, but we are not aware
of any publicly available traces to do so.



Fig. 2. Intuitive illustration explaining how the object selection process (left)
and object popularity over time (right) are intertwined.

First, we neglect requests arrival times: we only consider
the order of their arrivals. As such, time is slotted in discrete in-
tervals, which essentially indicate the total number of requests
received so far by the application server. This simplification is
a direct consequence of how caching works.

Now, let Q indicate the size of the object space (as defined
above), R the total number of requests, and ǫ a constant value
between 0 and 0.5 (in our experiments, we set ǫ = 0.15).
We assume that the probability for a request to select a
particular object follows a Normal distribution with mean µt

and standard deviation σ (in our experiments, σ = 625000).
Note that the mean µt is a function of time: namely, it depends
on the t-th request (while the standard deviation remains
constant). Essentially, the probability for a request to select
an object to retrieve is characterized by a distribution whose
mean shifts over time, from an initial position and with a
certain speed (see Fig. 2, left). The initial position of the mean
is equal to Qǫ, while the last position is equal to Q(1−ǫ). The
“shifting speed” is constant, therefore we have the following
relation:

µt = Q

(

(1− 2ǫ)
t

R− 1
+ ǫ

)

, t = 0, 1, 2, . . . ,R−1 (1)

We are now ready to define object popularity, and describe
how it evolves over time. Let Φ(x) be the Cumulative Distribu-
tion Function (CDF) of the standard Normal distribution (mean
ad standard deviation equal to zero and one respectively); then,
the probability that an object i is selected by a client request
is given by5 the following expression:

pi(µt, σ) = Φ

(

⌈i− µt⌉

σ

)

− Φ

(

⌊i− µt⌋

σ

)

(2)

Expression 2 indicates that object popularity over time
follows a (discretized and truncated) Normal distribution with
its peak when the difference between i and µt is minimal, and
standard deviation σ (see Fig. 2, right).

Experiment description and metrics: Our experiments are
built as follows. The client generates R = 200 Millions
requests, selecting objects with a probability that depends
on their popularity as described above. For each request, the
application server registers a hit if the object is in the cache.
To produce our results, we consider intervals of R requests

5For notation simplicity, we use here the CDF of the Normal distribution.
Nevertheless, during our experiments, we have used the CDF of the truncated

Normal distribution, since the support (the objects) is finite. Note also that the
parameter ǫ – which is used to compute µt – makes the effects of truncation
negligible: the initial position of the request distribution is different from zero.

(R = 500′000) and compute the aggregate hit rate in such
intervals. With the settings described above, the maximum
achievable hit rate is approximately 95% (cf. Sect. III-A).

In the following, we also report a number of internal
statistics collected automatically by both Memcached and
Twemcache. This is done by taking “snapshots” of the internal
state of such systems, which report the number of hits,
misses and objects stored in the cache, for each class. In our
experiments, the application server is instructed to take such
snapshot every 20 Million requests.

B. On the Relation Between the Hit Rate and the Experiment
Parameters

The hit rate is influenced by many factors: it depends, for
instance, on the ratio between the cache size and the sum of
the sizes of all the objects in each set, but this dependency
is not linear. In general, it is not possible to come up with
a proper mathematical model to explain the sensitivity of the
hit rate to the different system parameters. As such, rather
than the absolute value, it is interesting to study the relative
performance of the different schemes. For this reason, we
use the exact same sequence of requests for each scheme.
The same is true for the calcification: it is not possible to
understand the impact of the parameters on the loss of the
hit rate due to calcification, but we can observe that there is
indeed calcification and how the schemes react to it.

We would like to stress the fact that, in the following, we
present a set of representative results. During our experimental
campaign, we perform several runs for the same experiment
using different seeds to generate (i) the objects that populate
the database, (ii) the object popularity and (iii) the order of
the requests; in all the cases we have obtained always similar
qualitative results. Therefore the observations made in this
work are valid for a wide rage of configurations, not shown
here for space constraints.

C. Baseline results, with no calcification

In the first set of experiments, we use a single ob-
ject size distribution for all objects stored in the database
(cf. Sect. IV-A). As anticipated, although object popularity
varies over time according to the model described above,
the popularity of the classes allocated by both Memcached
and Twemcache remains constant. Therefore, slab calcification
does not occur. Hence, the results we present here indicate
the performance achieved by each system, which we use as a
baseline.

Next, we consider four system configurations: Memcached,
Memcached with the reset policy, Twemcache with the random
eviction policy, and Twemcache with the slab LRA policy.
Fig. 3 shows the results, in terms of hit rate over time.
Note that we do not explicitly use time on the x-axis: as
discussed in Sect. IV-A, request arrivals and the notion of time
are intertwined. Hence, we display the percentage of client
requests that arrive to the application server.

Fig. 3 indicates that, for Memcached, after an initial period
necessary to fill the cache, the hit rate becomes stable at a
value of roughly 84%. The system behaves as expected, i.e.,
for a given configuration, the hit rate is not influenced by object
popularity, as long as class popularity is constant.
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Fig. 3. Hit rate over time in the absence of calcification: the size of the requested objects has been drawn from a single distribution.

In case of the Reset policy, we impose a cache reset
four times during the experiment. At each restart, there is a
transitory period necessary to fill the cache, after which the hit
rate reaches the stable value as for Memcached (with small
variations of ±0.25%). Note that each time we restart the
cache, the arrival pattern of the requests is different from the
previous period; the fact that the hit rate, after the transitory
period, remains constant confirms that the hit rate is not
affected by the request arrival pattern.

The random eviction policy in Twemcache achieves a
lower, and extremely variable hit rate, when compared to
vanilla Memcached. As we anticipated in Sect.III-B, the evic-
tion of randomly selected slabs may be too aggressive, because
an individual slab may contain many popular items. As such,
using Twemcache in conjunction with the random eviction
policy has a negative impact on the hit rate. Our experiments
also show that the slab LRA policy in Twemcache, while it
performs better than the random eviction, obtains a smaller hit
rate than vanilla Memcached. Similarly to the random eviction
policy, the slab LRA technique is counterproductive when slab
calcification does not occur.

Next, we discuss in more detail our baseline results by
inspecting the internal state of Memcached and Twemcache
with the slab LRA policy. Fig. 4 illustrates the number, per
class, of client requests, objects stored in the cache, and
cache misses. Since the object size distribution per class grows
exponentially, we use a logarithmic scale in our plots. Clearly,
request distributions are equal for both Memcached and Twem-
cache. Note also that, in Memcached, both the number of
object and miss per class are approximately proportional to
the number of client requests.

We observe that Fig. 4 helps in understanding the ill
behavior of Twemcache with the slab LRA policy. This policy,
in fact, evicts the slabs based on their access times. Since slabs
belonging to the higher classes have less objects (per slab),
their access frequency will be smaller than slabs belonging to
the lower classes, which store one or two order of magnitude
more objects (per slab). Therefore slabs of the higher classes
will be evicted more frequently than the other classes, and the
overall effect is that the number of objects stored in each class
is not proportional to the number of client requests for that
class.

D. Results with calcification

We now turn our attention to the problem of slab calci-
fication. As described in Sect. IV-A, the object space Q is
partitioned in two equal sets, each with different parameters
that determine the “shape” of object size distributions. Recall
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Fig. 4. Snapshot of the Requests, Misses, and Objects distribution as
measured by Memcached, for single object size distribution.

that the two object sets have the same mean size: this has
been done to establish a fair comparison of the performance
achieved by client requests for the whole object space. As
explained in Sect. IV-B, in fact, the hit rate is influenced by
many factors: if we compare sets populated with objects of
different mean sizes, then the hit rate would be affected by both
the slab calcification problem and the different mean sizes. As
such, our methodology isolates the problems induced by slab
calcification from other “external” factors.

Our experiments are built as follows. We induce three
phases in the request arrival pattern: in the first phase, the
client sends requests for the first set of objects; in the second
phase, objects of the second set are increasingly requested; in
the third phase only objects of the second set are considered.
Note that this methodology does not undermine the validity
of Eqs. 1 and 2. Indeed, we chose the size of the first R/2
objects as drawn from the first size distribution; the size of
the remaining R/2 objects is selected according to the second
size distribution. The three phases discussed above are a direct
consequence of the way we model object popularity dynamics
(cf. Sect. IV-A). In summary, our experiments entail a variation
in class popularity which, as we explained before, is the main
culprit for the slab calcification problem.

Fig. 5 reports, similarly to what discussed in the baseline
scenario without calcification, the variations of the cache hit
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Fig. 5. Hit rate over time with calcification: the size of the requested objects has been drawn from two different distributions.

rate over time/requests, for the four system configurations
described above.

With vanilla Memcached, the impact of slab calcification
on the hit rate is evident, with a loss of 4%. As the client
asks for more and more objects with sizes that have been
drawn from different distributions, the hit rate decreases pro-
gressively. The graph represents exactly what would happen to
the hit rate in case of a change of the object size distribution,
and how much would be the loss.

The Reset policy mitigates the effects of slab calcification.
During the transition among object sets (the three phases
described above) the hit rate is affected by different object
size distributions: this is clearly visible in the third “wave.”
However, once the transition is over, Memcached can restore
the hit rate to a similar value to that of the first phase. In
practice, Memcached works as if there were no change in
the statistical properties of the object size distributions, and
adapt to the new request patterns. Clearly, each reset action
provokes a transitory phase in which the cache is filled, which
affects the achieved hit rate. From the practical standpoint, the
Reset policy requires an automatic method to determine reset
events, for otherwise a manual or periodic intervention would
be required.

Our results indicate that Twemcache with random eviction
is not affected by the slab calcification problem, since its
behavior is equivalent to that observed in Fig. 3. As for
Twemcache with slab LRA policy, our experiments highlight
that calcification has a negative impact on the hit rate. The
reasons underlying these result are elusive and require more
experiments on Twemcache alone, a study that falls outside the
scope of this work. In any case, the two Twemcache eviction
variants under-perform vanilla Memcached (with calcification)
and may be unstable.

We now inspect, similarly to the baseline case, the internal
state of each system configuration we studied: Fig. 6 compare
the number of requests, misses and stored objects for Mem-
cached and Twemcache with the random eviction policy. Note
that this graph represents the internal state of both systems in
the last phase of the experiment.

First, we note that the number of requests across different
classes has a different shape with respect to what shown in
Fig. 4, because the object size distribution is different. Now,
in vanilla Memcached the number of stored objects is not
proportional to the requests, because the memory partitioning
is that obtained during the first phase of the experiment and
cannot adapt to any changes in object size distribution. With
the random eviction policy in Twemcache, instead, and the
number of stored objects is proportional to the requests, which
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Fig. 6. Snapshot of the Requests, Misses, and Objects distribution as
measured by Memcached, for two object size distributions.

essentially solves the calcification problem. However, the hit
rate achieved in this case is low (i.e. the number of misses is
high) because of the aggressive slab eviction mechanism.

V. A NEW MEMORY PARTITIONING MECHANISM

Memcached partitions the memory proportionally to the
number of requests to each class. Besides the calcification
problem, we now study whether such a partitioning mechanism
can be re-factored, to achieve both a higher hit rate in general,
and to avoid the slab calcification problem. Next, we describe
in detail an alternative memory partitioning scheme, that we
call Periodic Slab Allocation (PSA). We have implemented
and integrated PSA in Memcached: as such, we also show
experimental results on the performance of PSA following the
same methodology described in Sect. IV.

A. Periodic Slab Allocation (PSA) Policy

Illustrative example: We begin with an intuitive description
of PSA, using an example. By design, Memcached partitions
the memory into different classes. For example, let’s consider
Fig. 4 (top): classes whose ID is grater than or equal to 15
receive at most 104 requests, while classes whose ID is smaller
than or equal to 8 receive at least 106 requests.

Clearly, the contribution to the aggregate hit rate of each
class is different. If we continue the illustrative example above,
evicting all objects from a slab assigned to a high-ID class



incurs in an inflation in the number of misses for such objects
that is bounded by the maximum number of requests, i.e., 104.
On the other hand, the number of misses of low-ID classes is at
least 105, therefore there are more chances, should the memory
be reassigned, to decrease the number of misses.

Intuitively, a slab allocation mechanism that strives at in-
creasing the hit rate in Memcached should operate as outlined
above. The main problem to solve is to determine the candidate
classes to reassign slabs: if the reduction in the number of
misses for one class is higher than the increase in the number
of misses for another class, then slab reallocation contributes
to a higher hit rate overall.

PSA description: Algorithm 1 illustrates the most important
steps of PSA, which is driven by the number of misses incurred
by Memcached. Slab allocation is executed every time the
cache collects M misses; we call the interval of time between
two of such events a round. PSA runs in an individual thread
and uses the internal statistics collected by Memcached to
inform slab allocation: the total number of misses M , the
number of misses per class m, the number of requests per class
r, and the number of slabs allocated to each class s. Note that
r and m are recomputed every round; clearly,

∑

i
mi = M

holds. At each round, PSA “moves” a single slab from the class
with the lower risk of increasing the number of misses to the
one that has registered the largest number of misses.

For a given class i, we define its risk as the ratio between
the number of requests and the number of slabs allocated
to the class, ri/si. In other words, “moving” one slab from
this class to another one increases the number of misses, as
a first approximation, by a value equal to ri/si. While more
sophisticated measures can be used to estimate the variation in
the number of misses when slabs are removed, our approach is
computationally simple (with negligible burden on the system)
and yet our measurements have shown that is fairly accurate.
If the class with the lowest risk has more than one slab, the
slab reassignment follows a Least Recently Accessed (LRA)
approach within the class.6

The selected slab is assigned to the class that has the max-
imum number of misses. Computing such value requires some
attention: indeed, new objects can be requested by clients,
which contribute to unavoidable misses (cf. Sect. III-A). We
estimate the number of new objects that enter the cache in
a round as the minimum value of the ratio mi/ri, computed
for each class i. In fact, a class with more slabs than required
would only store new objects, therefore, among all classes,
the minimum value of mi/ri represents an upper bound to
the probability that new objects have been added to the object
set during the round. The class with the maximum number of
net misses (misses without the new objects) receives the slab.
Once slab allocation completes, a LRU-based eviction policy
within each class ensures an efficient memory utilization, until
the next round.

Note that PSA considers the number of requests per class,
not the size of the objects in such classes: PSA aims at finding
a working point where a change in the memory partitioning
does not increase the hit rate. In summary, PSA can be thought
of as a mechanism that caters to a high hit rate by adapting
how memory is partitioned to mirror both object popularity

6In Twemcache, the slab LRA policy is applied across classes, and thus is
global, not local to a class as in our approach.

dynamics and variations in object size distribution. As a
consequence, although not designed to explicitly address it,
PSA is an effective countermeasure to the calcification problem
we discuss in Sect. III. Our experimental results, that we show
next, substantiate this claim.

Algorithm 1 Periodic Slab Allocation (PSA)

1. Input: s // vector of slabs allocated to each class
2. Input: r // vector of requests in each class
3. Input: m // vector of misses in each class
4.
5. Every M misses do

6. pnew ← min (mi/ri);
7. idtake ← i : (ri/si) < (rj/sj),∀ rj , sj ∈ r, s;
8. idgive ← i : (mi− pnewri) > (mj − pnewrj),∀ rj ,mj ∈ r,m;
9. MoveOneSlab(idtake, idgive);

Complexity: PSA is a lightweight algorithm, in line with
what is currently implemented in Memcached and Twemcache.
To operate, PSA locks the memory in two occasions. First,
to compute, given the internal status of Memcached, the
statistics (r,m, s). This takes O(C), where C denotes the total
number of classes. Second, to move a single slab, consisting in
removing all objects in the slab to evict. This takes O(items).

Recall also that, PSA is executed every M misses, meaning
that a round has no fixed duration: the number of client
requests R = M/hit rate determines when memory allocation
has to be done. In Twemcache (with both S-LRA and random
eviction policies), a slab is removed and assigned to a new
class when there is no free chunks for that class, which happens
approximately every ci misses, where ci is the number of
chunks contained in a slab of class i – in our experimental
setup, ci = 1, . . . , 13796. We conclude that, when M is in the
range [5′000; 20′000], PSA should not impose a high toll on
system resources in an operational setting, and our experiments
are in line with this expectation.

Additional considerations: In this work, we implicitly assume
that each object contributes equally to the hit rate (as it is com-
monly supposed). In case of a miss, the cost for retrieving an
object form the back-end is not usually considered. However,
some objects may be more costly to retrieve from the database
than other: such “cost” could influence eviction decisions. In
the literature, there are a number of examples which consider
object cost to be related to the complexity of the database
query to generate the object. These works [10], [11], [17],
albeit in the context of Web caches, describe approaches based
this concept. Although, currently, Memcached does not support
object cost, an extension in such a direction (e.g. building on
the work by Cao et. al. in [11]) would be simple. If costs were
available, PSA could be readily modified to gauge memory
partitioning accordingly.

B. Experimental Results

Using our implementation of PSA for Memcached, we now
present experimental results following the same methodology
presented in Sect. IV. Specifically, we execute the second
campaign of experiments, in which clients request for objects
with two different size distributions (cf., Sect. IV-D). Recall
that, in such experiments, we identify three phases: in the
first phase, object sizes are drawn from the same (initial)
distribution; in the second phase clients request objects with



size drawn from both distributions; in the last phase, object
sizes are drawn from the same (final) distribution. If not
otherwise stated, we have set M equal to 10′000.
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Fig. 7. Hit rate over time with calcification due to object popularity and size
dynamics: comparison between PSA and other eviction policies.

Fig. 7 shows how the hit rate achieved by PSA compares
to vanilla Memcached and Memcached with Reset. The PSA

mechanism exhibit a higher hit rate in all the three phases of
the experiment: the memory partitioning built by our scheme
produces a larger number of hits, even in the absence of
calcification. We also note that PSA adapts memory allocation
according to request, popularity and size distribution dynamics.
Note also that the hit rate in the third phase is lower than
that in the first phase: this is due to the particular object size
distribution of the last phase, and should not be attributed to
the consequences of calcification. To verify this, we run an
additional experiment where we impose an artificial reset to
the PSA-based Memcached server: with the reset, we make
sure that memory partitioning is “molded” according to the
final object size distribution, following client requests. Fig. 8
(top) illustrates the evolution of the hit rate for PSA and PSA

with reset: since both hit rates converge to the same value,
we conclude that calcification is not the cause for a lower
absolute value. In the last phase of the experiment, object size
distribution is more compact than that used in the initial phase:
the means are the same, but the variance is three times smaller,
which may lead to lower hit rate. As we said in Sect. IV-B,
the hit rate is sensitive to many factors, and coming up with
a proper mathematical model to explain such sensitivity is
outside the scope of this work.

Next, we study the impact of the only parameter of the PSA

mechanism, namely M , which triggers memory allocation.
Fig. 8 (bottom) indicated that such parameter has a rather small
impact on PSA behavior: essentially, M determines the time
it takes for the hit rate to reach its maximum value when the
cache is empty.

We by discussing additional details on PSA: similarly to
what we have done for the baseline experiments, we now show
snapshots of Memcached internal state, including the number
of client requests, misses and the stored objects for each class.
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Fig. 8. Hit rate over time (dynamic popularity): PSA with reset (top) and
with multiple values of M (bottom).
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Fig. 9. Snapshot of the Requests, Misses, and Objects distribution for the
first 10% of client requests.

Fig. 9 illustrates the internal state after 10% of client request
have been issued, for the initial object size distribution. While
Memcached allocates memory proportionally to the number
of requests, the allocation of PSA aims at minimizing the
number of misses. When clients request for objects with a
different size distribution (the third phase of the experiment),
PSA adapts how memory is partitioned to achieve as few misses
as possible, as shown in Fig. 10.
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Fig. 10. Snapshot of the Requests, Misses, and Stored Objects distribution
in the third phase of the experiment.

VI. DISCUSSION

The experimental evaluation of cache eviction policies or
memory partition mechanisms, requires rather complex setups.



First, it is necessary to populate a database system with
millions of objects, defining minimum and maximum sizes,
along with an appropriate definition of size distributions. Then,
it is essential to define client requests for such objects: to do so,
object popularity, and its dynamics, need to be appropriately
crafted. For experimental reproducibility, a clear specification
of such parameters is key, in conjunction to measurement
studies to inform the design of realistic distribution shapes
– a methodology we adopt in this work, building on the
information discussed by Atikoglu et. al. in [6].

Nevertheless, the performance analysis of a caching system
can be made smoother by building an appropriate set of
software tools to accomplish the above in an automatic manner:
this is usually referred to as benchmarking suites. With such
tools, it is possible to reproduce exactly the same experimental
conditions used to study system performance with little effort,
making it possible to compare and benchmark a variety of
existing and new memory management mechanisms.

Today, only a scattered set of pieces of software is available
in the open-source domain to realize experiments: most of
them, however, fall short in providing realistic setups and
simplicity, due to the number of internal parameters they
require. In our work, we attempt to address such problems by
creating a set of traces that can be used by automatic scripts (i)
to populate a database, and (ii) to generate requests. The format
of these traces is extremely simple: those used to populate the
database are a series of entries with (id, size) of the objects;
those used to generate client requests are a series of object
identifiers. The interested reader can find details, scripts and
the traces in [18].

VII. CONCLUSIONS

In-memory key-value stores are increasingly used by large-
scale Web applications, as they relieve back-ends from support-
ing the load to generate hot, popular items requested by clients.
In this paper we have considered Memcached, a popular in-
memory key-value store that is used as a simple caching
layer in many real-life deployments, including Facebook,
Twitter and other large-scale setups. Despite its popularity,
Memcached has received little attention from the academic
community in the past. Only recently, for instance, realistic
data concerning its usage has been disclosed, and issues that
affect its performance have been discussed, albeit informally,
in technical notes.

In this work, we focused on an important component
of Memcached, which governs how memory is partitioned
to accommodate object to be stored. Using an experimental
testbed, we have shown that vanilla Memcached suffers from
a static memory partitioning, which is usually referred to as
calcification. While calcification has been discussed and cited
in technical blogs [4] and some papers [6], [8], we have shown,
to the best of our knowledge for the first time, its impact
on the hit rate. We have also studied Twemcache, a variant
conceived at Twitter that includes eviction policies to address
calcification, and showed that the price Twemcache pays for
adaptivity is a lower hit rate.

The analysis of the calcification problem has revealed the
need for a new approach to memory partitioning altogether,
aiming at achieving as high hit rates as possible, while adapting
to dynamics in client requests, object popularity and charac-

teristics. Our design materialized in a mechanism we called
periodic slab allocation (PSA).

Using a realistic experimental setup, we showed that PSA

outperforms existing mechanisms both in absolute terms –
higher hit rate – and in that it eliminates the problem of
calcification. Along the way, we also proposed a trace-based
methodology for academics and practitioners to study and
compare alternative memory partitioning mechanisms. Our
future work will be devoted to refine the estimation of the
number of misses as the memory assigned to a class varies, in
order to investigate if it would be possible to further increase
the performance of our scheme.
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