Cache Policies for Linear Utility Maximization

Giovanni Neglia*, Damiano Carra’, and Pietro Michiardi*
*Université Cote d’Azur, Inria, giovanni.neglia@inria.fr
TUniversity of Verona, damiano.carra@univr.it
iEurecom, pietro.michiardi @eurecom.fr

Abstract—Cache policies to minimize the content retrieval
cost have been studied through competitive analysis when the
miss costs are additive and the sequence of content requests is
arbitrary. More recently, a cache utility maximization problem
has been introduced, where contents have stationary popularities
and utilities are strictly concave in the hit rates. This paper
bridges the two formulations, considering linear costs and con-
tent popularities. We show that minimizing the retrieval cost
corresponds to solving an online knapsack problem, and we
propose new dynamic policies inspired by simulated annealing,
including DYNQLRU, a variant of QLRU. For such policies
we prove asymptotic convergence to the optimum under the
characteristic time approximation. In a real scenario, popularities
vary over time and their estimation is very difficult. DYNQLRU
does not require popularity estimation, and our realistic, trace-
driven evaluation shows that it significantly outperforms state-
of-the-art policies, with up to 45% cost reduction.

I. INTRODUCTION

Cache policies have often been designed with the purpose
to maximize the hit rate, but different metrics can be mean-
ingful in different contexts: data rate to be served from the
upstream caches/servers, users’ delivery time, ISP/AS opera-
tional costs [1], [2], damage to flash memories in hierarchical
caches [3], service time from the HDD [4], etc. Performance
optimization in all these cases can be abstracted to the same
problem: given some cost ¢; that is paid upon a miss to retrieve
content ¢, minimize the sum of the retrieval costs. We provide
a few examples below

e ¢; = 1: minimize the cache miss ratio,

e ¢; = S;, the size of content 7: minimize the traffic from
upstream servers/caches,

e ¢; = T;, the retrieval time from the server where content
1 is stored: minimize user’s retrieval time.

Our target is to design cache policies that minimize the time-
average retrieval cost, when content requests exhibit some sta-
tistical regularity. When the request process is unpredictable,
this problem has been studied under the name of File Caching
(FC) problem [5]. In this case, no algorithm can provide
absolute worst-case guarantees. Instead there exist algorithms,
like GreedyDual-Size (GDS), with a known (and optimal)
competitive ratio, i.e. they achieve a cost at most a given
factor larger than the cost of the optimal offline algorithm that
knows the sequence of future requests. We want to go beyond
FC, because in many practical cases, some contents can be
requested more often than others during relatively long periods
of time, so that a caching algorithm can exploit such regularity
and perform much better. The Independent Reference Model

(IRM) corresponds to the extreme case where content popu-
larities are constant over time and contents requests are drawn
independently according to a given probability distribution.
A related problem has been formulated in [6], considering
the advantages from hits rather than the disadvantages from
misses. In particular the authors have defined the following
Cache Utility Maximization (CUM) problem under the IRM
and constant content size:
N

maximize Ui(hi),

N
subject to h; = B, 1
hl,.A.hNE[O,l] J Z ()

i=1 i=1
where B is the cache’s size, h; is the stationary hit probability
of content ¢ and U;(h;) is the utility associated to the hit
probability. The paper shows how to derive optimal TTL-cache
policies [7] when the functions U; are increasing and strictly
concave. The constraint in (1) can be interpreted as an average
buffer occupancy constraint.

Our first contribution is to bridge the FC and CUM for-
mulations, by showing that the FC problem under the IRM
(our focus) corresponds to a CUM problem where the utility
functions U, are linear and the constraint takes into account
content sizes. This linear case is then particularly important to
study, because most of the usual cache performance metrics
are additive over different misses (as shown above).

The second contribution is the proposal of new dynamic
policies to solve the linear utility maximization problem. We
leverage the fact that a CUM problem with linear utilities
corresponds to a Knapsack Problem (KP). Recognizing this
parallelism does not lead to a trivial solution, because the
optimal cache policy needs then to solve an online KP under
partial information (e.g. the catalogue is not known). We
design then two new dynamic algorithms, OSA and DYN-
QLRU, based on simulated annealing ideas, and we prove
that they asymptotically store the optimal set of contents
under the characteristic time approximation, also referred to
as Che’s approximation [8]. Convergence to the optimum
does not follow immediately from known results for simulated
annealing. Indeed simulated annealing methods work offline
and can freely explore the solution space, while in our online
setting the possibility to change the current tentative solution
is limited by the request process.

As a third contribution, we consider a realistic setting, where
popularities keep varying over time. Their estimation is a very
difficult task. In particular, we show through some numerical
examples that estimation may require a significant amount of
memory and estimation errors can jeopardize performance. For

these reasons, policies that do not require to estimate popular-
ities, like our DYNQLRU, can be of more practical interest.
In order to use DYNQLRU also in this realistic non-IRM
setting, we propose a change detector that resets DYNQLRU
and restarts its exploration phase when the request process
appears to have significantly changed. A simple formula allows
us to configure the change detector.

We use request traces from the Akamai content delivery
network to tune IRM parameters and validate our theoretical
results. Moreover, we test the performance of DYNQLRU
coupled with the change detector under the actual traces and
four different realistic retrieval costs: miss ratio, upstream
traffic, retrieval time and HDD load. DYNQLRU outperforms
other policies like LRU or GDS always but in the case of the
upstream traffic when all the policies perform equally well.
Cost reduction can be as high as 45%.

The paper is organized as follows. In Sec. II we introduce
the FC and CUM problems and other related works. We then
formalize the retrieval minimization problem in Sec. III and
prove that optimal static policies exist and they solve some
specific KPs. We discuss how some heuristics for KP lead
naturally to cache policies. Then, in Sec. IV we introduce the
policy OSA. After having shown the difficulties to estimate
popularities in Sec. V, we illustrate the policy DYNQLRU
in Sec. VI and the change detector in Sec. VII. Simulation
results both under IRM and real content request traces are in
Sec. VIII. Due to space constraints some of the results are in
the companion technical report [9].

II. BACKGROUND AND RELATED WORKS

Let AV denote the (potentially infinite) catalogue of contents
and r;, € N% a sequence of L content requests. The File
Caching (FC) problem [5] is formulated as follows: given a
cache with integer size B, and files with positive integer sizes
and non-negative retrieval costs, maintain in the cache files
to minimize the total retrieval cost. We denote by s; and c;
respectively the size and the cost of content i € N.

Let X(n) C N denote the state of the cache at time
n, i.e. the set of the contents stored in the cache when the
n-th request arrives. A possible state x needs to satisfy an
instantaneous buffer occupancy constraint, i.e. Y ;.. 5; < B.
Then, replacement-policies are required to decide which con-
tents should be evicted to make space for a new content. The
retrieval cost experienced by a cache policy 7 under an arrival
sequence r;, when the cache has size B is

L
C(m Brp) =Y cryml(re(n) ¢ X(n)). ()
n=1

It is always possible to find a specific sequence of content
requests such that any cache policy performs arbitrarily bad.
It is then standard to perform a competitive analysis [10]. Let
m;q denote the ideal optimal policy that knows in advance
the sequence of requests. A policy 7 is said to be f(B’, B)-
competitive if on any sequence the total retrieval cost incurred

by 7 with a cache of size B is at most f(B’, B) times the
cost obtained by ;4 with a cache of size B’ < B, i.e.

C(Tf’, Ba rL)
max

— 12 < f(B' B L.
ry C(’iTid,B/,I'L) < (B,)7 v

It is possible to prove that the best possible competitive ratio
for any deterministic online algorithm (i.e. an algorithm that
does not know the future requests) is B/(B — B’ 4+ 1) [11].
In [12] the algorithm GDS was proven to be B-competitive'
and then optimal. This algorithm will be used later for com-
parison. It should be observed that in many applications the
cache size B may be huge, and then this approximation factor
is of limited interest. Nevertheless, the performance of these
algorithms degrades in practice much slower than linearly with
the cache size B.

Differently from replacement-policies, TTL-policies asso-
ciate a timer to each content and the content is evicted
only when the timer expires. As a consequence, TTL-caches
ideally operate with an infinite cache size and impose only
an average constraint on the buffer occupancy, that should
be equal to a given value. We denote also this value as B.?
The timer of a given content may or may not be renewed
upon a hit. TTL-policies were first proposed as a modeling
tool to study existing replacement-policies from the seminal
work on LRU from Fagin [13] and Che et al. [8]. In this
paper we use the expression characteristic time approximation
(CTA) to denote the possibility to approximate a replacement
policy with an opportunely tuned TTL-policy. This approach
has been shown to be very accurate [14]. More recently, the
practical use of TTL-policies has been advocated because of
their flexibility [7], [6]. In particular, as we mentioned in the
introduction, [6] derives TTL-policies that can solve the CUM
problem (1) when the utility functions U; are strictly concave.
The framework considers a finite catalogue N and requests
arriving according to the (continuous-time) IRM: the request
process is a Poisson process and a request is for content ¢ with
probability p; (called the content popularity) independently
from previous requests.

Many papers consider cache policies minimizing specific
retrieval costs (e.g. [1], [2], [3], [4] mentioned in the intro-
duction). None of them try to address the general problem
we target in this paper, but we rely on two results from
our previous work [4], that do not actually depend on the
specific cost considered. There, we study which set of contents
M* should be duplicated in the RAM in order to reduce the
expected HDD workload generated from the next request, that
we call the one-step lookahead expected cost. We prove that
M* is the solution of the following problem:

m%g}\ifze Z pic;, subject to Z si < B, 3)
ieEM ieM

'When dependance on B’ is omitted, it means that the two caches have
the same size, i.e. B’ = B.

2A practical implementation will require a buffer only slightly larger than
B, see [6].

i.e. minimizing the expected retrieval cost is equivalent to
maximizing the objective function in (3), i.e. the utility from
storing the contents M in the cache. We formally define the
utility ¢ of a set of contents M as

)£ pici “
ieM

Problem (3), as already observed in [4], is a KP where the
knapsack has capacity B and objects have value p;c; and
weight s;. We extend these result by showing that minimizing
the one-step lookahead expected retrieval cost (and then prob-
lem (3)) is actually equivalent to minimizing the time-average
retrieval cost. We show a similar result when TTL-policies
with average occupancy constraints are considered as in the
original CUM problem. Our DYNQLRU, to be described in
Sec. VI, can be considered a dynamic version of the policy
q;-LRU, proposed in [4], according to which a new content ¢
is introduced in the cache upon a miss with a probability
that depends on the ratio ¢;/s;. The idea to probabilistically
differentiate content management according to the ratio ¢;/s;
had already been considered in [15], where, upon a hit, content
1 is moved to the front of the queue with some probability g;.
Under Zipf’s law for popularities, the authors prove that the
asymptotic hit ratio is optimized when §; o 1/s;.

The interactions of caches at different ASs has been investi-
gated through game theory in [2], where a stochastic potential
“a la Young” [16] (as we do in Sec. IV) is introduced to
study Nash equilibria stability. While our caching algorithms
are randomized by choice (to explore the solution space),
in [2] randomization is rather a collateral effect of noisy
popularity estimates. Moreover, [2] does not consider the non-
homogeneous dynamics rising when the noise “converges” to
zero as time goes on, whereas we do.

Finally, we observe that, once the analogy between KP
and caching is clearly identified, it may appear natural to
explore approaches like simulated annealing to design caching
policies, but, to the best of our knowledge, this was never
done before. Moreover, we are aware that there exists a rich
literature on online KP where a sequence of objects arrive
over time (see e.g. [17] and references therein), but i) it relies
on some assumptions that do not suit a caching application
(e.g. contents cannot be removed from the knapsack once
stored), and ii) the focus is on a competitive analysis as for
the FC problem.

III. RETRIEVAL COST MINIMIZATION UNDER IRM

We want to minimize the retrieval cost under the assump-
tions that i) the total cost is the sum of the retrieval costs
due to each miss (as in FC) and ii) contents have different
popularities and in particular requests follow the IRM (as in
CUM). The catalogue A is then finite with size N = |N|.
We are interested in replacement-policies and TTL-policies
that are optimal for long content request sequences. Given an
infinite request sequence r = (r(1),7(2),...), we denote by
|r], its subsequence containing the first n elements. It seems

natural to define the cost of a policy 7 to be the time-average
retrieval cost

lim C(m, B, |r]n)

n—00 n

=nli>rgogzcr k) ¢ X(k)),
(%)

but one may (rightly) wonder if the cost in (5) is well
defined, i.e. if this limit always exists. It is indeed possible to
build policies for which the average would keep oscillating.
The main result of this section is that TTL or replacement
policies minimizing the one-step lookahead expected cost also
minimize the time average cost defined above and that they
implicitly solve two related Knapsack Problems (KPs).

We first consider classic replacement-policies that sat-
isfy the instantaneous occupancy constraint. We say that a
replacement-policy 7., is expected-cost optimal, if it guaran-
tees that after a finite number of requests a set of contents M*,
solution of problem (3), is stored in the cache almost surely
(a.s.). For example, a policy that “waits” for the contents in
M* to be requested, and then stores them forever is expected-
cost optimal, because any content is asked by a finite time a.s.
and the set M* is finite. We prove now that any of such
policies 7* is optimal in the average-cost sense.’

Proposition IIL.1. For any replacement-pOIicy Treps ANY
expected-cost optimal policy ¥, , and an IRM sequence of

rep’
content requests R it holds
C B, |R],
lim inf O(ﬂ'repaB; LRJn) > lim (Treps L J L)
n— oo n n— o0 n

(6)
Proof. The complete proof is in [9]. Here we provide just the
key ideas. First, we observe that (6) is equivalent to

lim sup — Zcr k)eX (k) <UWM") as. (T)

n—oo

The main step of the proof then is to prove that the time-
average limit of the retrieval costs converges to the time-
average limit of the expected retrieval costs. If the states X (n)
were independent from the request sequence, the result would
follow immediately from the strong law of large numbers, but
this is not the case. We can then rely on Doob’s convergence
theorem and Fatou-Lebesgue theorem, to prove that almost
surely

The final step is to prove (7) by contradiction, assuming
the existence of a diverging sequence n,, whose limit does

3To stress that the request sequence is a sequence of random variables, we
denote it by using capital letters.

not satisfy (7). It holds:
Nm

UMY < Tim —— 3 e Lr(k) € X (k)

m—00 Ny, et

1 Nm MNm

S UK(R) < Tim =S UM®) =UM)
k=1 m =1

€))
where the first equality follows from Eq. (8) and the second
inequality from M?* being the solution of problem (3). This
chain of inequalities leads to a contradiction and then the thesis
follows.

lim —
m—00 Ny,

O

We consider now TTL-policies with an infinite buffer
size and a constraint on the average buffer occupancy, i.e.,
Zie w hisi = B. A TTL-policy (mrrr) is identified by the
timers it associates to each content. The following results are
valid both if timers are renewed or not upon a hit. We want
to find the hit probabilities h; that maximize the one-step
lookahead expected retrieval cost for a given request. They
are the solution of the following problem:

h??ﬁﬂlﬁ] iENplhzc,, subject tog\;hzsl B.

We denote by 77, a TTL-policy whose timers have been
selected so that the corresponding hit probability for any
content ¢ is b} and we call it an expected-cost optimal policy.

The following proposition (proved in [9]) is the analogue
of Prop. III.1 for the case of TTL policies.

(10)

Proposition IIL.2. For any TTL-policy mrrp, any expected-
cost optimal policy whpp, and an IRM sequence of content
requests R it holds
C B, |R
. Clarre, B[R],

n—00 n

C(ﬂ-;‘TLv 37 LRJH)

> lim

n— oo

a.s.
11

We have then shown that, both under instantaneous and
average buffer occupancy constraints, a policy that minimizes
the one-step lookahead expected retrieval cost, i.e. the ex-
pected cost from the next request, also minimizes the time-
average retrieval cost. In particular, an optimal replacement-
policy stores, after some finite time, the set of contents that
solves the knapsack problem (3). An optimal TTL-policy
stores each content ¢ in the cache a fraction h] of time,
where h} are solutions of problem (10). Problem (10) is
an instance of the CUM problem (1), where utilities are
proportional to the hit probabilities U; = p;c;h;. The two
problems are strongly related because (10) is the fractional
knapsack problem corresponding to a relaxation of (3). This
was already observed in [4], where (10) was introduced as a
way to find an approximate solution for (3).

In the rest of this paper, we focus on replacement-cache
policies. Nevertheless, the characteristic time approximation
and the fractional KP (10) will still make their appearance
as approximate solutions. Our purpose is to design expected-
cost optimal policies or good heuristics. We already mentioned

a possible implementation if an optimal solution M* of
problem (3) is known: store forever the contents in M* as
soon as they are retrieved. This policy is not practical because
knowing M* would require to solve the NP-hard problem (3).
An additional difficulty is that in general the set of contents
and their popularities p; are not known, but we assume for the
moment that this is the case and we postpone this issue until
Sec. V.

Possible inspiration for policies can originate from usual
heuristics to solve a KP. For example we call VGREEDY a
policy that keeps contents ordered according to their expected
value p;c; and removes the contents with smallest values when
space is needed. Instead, the policy DGREEDY is a policy that
keeps contents ordered according to their density p;c;/s;, i.e.
the expected value per byte occupied in the cache. None of
these policies is guaranteed to converge to a global optimum
as we show in the following example.

Example 1 (DGREEDY and VGREEDY may not converge to
the optimum). Let s; = 51, so = 100, s3 = s4 = 50, p1 =
0.26, po = 0.27, p3s = py = 0.235 and unitary costs c; = 1 for
i =1,2,3,4 and B = 100. As soon as content 1 with value
0.26 is required, DGREEDY would store it and would never
evict it. Similarly, VGREEDY would get stuck with content
2 with value 0.27. The optimal policy should instead store
contents 3 and 4 with a utility U({3,4}) = 0.47.

In the next section, we investigate if approaches based on
simulated annealing can converge to the optimal solution.

IV. A SIMULATED ANNEALING APPROACH

In this section we show a new approach based on simulated
annealing to design an optimal cache policy. Simulated anneal-
ing [18] is based on the idea of exploring in a random way
the neighbourhood of a potential solution accepting occasional
changes that may worsen the solution with a probability that
decreases over time. The application of simulated annealing
to caching is, to the best of our knowledge, new. As it will be
evident from the discussion below, convergence to the optimal
solution does not follow directly from standard results for
simulated annealing because in this online setting we do not
have the possibility to design the neighbourhood structure. The
analysis is then more involved.

A. The algorithm

We start describing our policy that we call Online Simulated
Annealing (OSA). Upon a miss for content ¢ at time n, we
select a set v of contents potentially to be evicted to free space
for content ¢ as follows. The set v is initially empty. We draw
at random a content j among those stored in the cache and we
put it in v. If removing the contents in v frees enough space
to store content ¢, we are done, otherwise we keep selecting
at random other contents from the cache (without resampling)

until this condition is not satisfied.* Now, we actually evict
the contents in v to store ¢ with probability p(i,v)

if U({i}) > UW)

(12)
otherwise,

1
p(i,v) = { Ui} —Uv)
e T(n)
where T'(n) > 0 is a parameter decreasing to 0 over time and
U() is defined in Eq. (4).

Let X be the set of all the possible sets of contents that can
be stored at the cache, i.e. if x € X, then ZieX s; < B. If the
state of the cache at time n is x (i.e. X(n) = x), we define the
neighbourhood of state x as the set of the possible states the
cache can assume at time n + 1. We denote it by Z(x). The
policy OSA implicitly defines a non-homogeneous Markov
Chain (MC) over the set X, whose sequence of probability
transition matrices we denote by {P(n)},en. In particular,
a matrix element Py ,(n) can be expressed [9] as product
of a time-invariant probability (()x ,) to select z as potential
successor of the current state x, and a time-variant probability
(txyz(n)) to accept z as successor. In particular, Qx , can be
calculated from p; and the probability that the specific set v
is selected to make space for object i. Once z is selected, the
transition is accepted according to Eq. (12), that leads to the
following expression for tx ,(n)

1
lxz = u@-ux
e T(n)

The new state is always accepted if the utility of the state
z is higher than the utility of the current state x. If this
is not the case, the cache can still move to the new state
with a probability exponentially decreasing in the utility loss.
Because the parameter T'(n) is decreasing over time, the
algorithm will explore more the solution space at the beginning
and will become more and more “greedy” as time goes on.

The policy has been designed to operate as a simulated
annealing algorithm. While the neighbour selection probabil-
ity Qx,z can be arbitrarily chosen in the offline simulated
annealing, here we cannot completely control it, because it
depends on the request sequence. We will come back later to
the consequences of such difference.

ifU(z) > U(x)

otherwise.

B. Convergence

As we discussed in Sec. III, we look for policies that
asymptotically store a set of contents M* that is solution of
problem (3). Note that the objective function of problem (3)
is U(M) (by definition (4)), hence we would like OSA
to asymptotically store a set of contents that is a global
maximizer of U(). The average utility (or the average retrieval
cost) achieved by OSA does not change if the cache state
keeps changing over time, but only a vanishing fraction of
time is spent in states that are not global maximizers of /().

4The random selection process can be arbitrary as far as any content
currently in the cache has a positive probability to be selected. Selection
probabilities can be for example function of content cost or size. The
asymptotic results in this section do not depend on such probabilities but
the transient behavior of OSA can depend on them.

These observations motivate us to study which states have
an asymptotical non-zero probability to be visited by the MC
{P(n)}nen. We call such states stochastically stable.

The following theorem IV.1 provides a sufficient condition
for the existence of a stationary distribution for the non-
homogeneous MC {P(n)},en, and then shows that stochas-
tically stable sets are well defined. Moreover, the theorem
relates the stationary distribution of this non-homogeneous
MC to the stationary distributions of the sequence of homoge-
neous MCs each with (constant) probability matrix P(n). Let
P(n, k) denote the product P(n)P(n+1) ... P(n+k), Almax
the maximum absolute difference of utilities between two
neighbouring states, and b the maximum number of contents
that may be stored in the cache (b depends on B and the
content sizes).

Proposition IV.1. If T(n) = Almaxb/log(n), the
non-homogeneous Markov Chain with transitions matrices
{P(n)}nen is strongly ergodic, i.e. it exists a probability
vector (i such that limy_, o Px y(n, k) = py for all x,y € X.
Moreover, p is the limit of the stationary distributions pu(n) of
the Markov Chains P(n), i.e. lim, o p(n) = p.

The stochastically stable sets are the states y for which
tty > 0. The proof is in [9] and follows from standard results
for simulated annealing.

The next step in the analysis of simulated annealing algo-
rithms is to prove that all the stochastically stable states are
global maximizers of the optimization problem considered.
This result is usually achieved by a proper design of the
neighbour selection probabilities. If such probabilities guar-
antee that each homogeneous MC P(n) is reversible, then
the stationary probability u(n) can be easily calculated. A
usual expression for the stationary probability is the following:
pix(n) = exp (=U(x)/T(n)) / (Lyex exp(*u(y)/T(n))),
for which it is immediate to verify that lim,,_, px(n) = 0 if
X is not a global maximizer.

In our online algorithm, we do not have the full control
of the matrices)(n). In particular, the neighbourhood set is
not symmetric, i.e. z € Z(x) does not imply x € Z(z). For
example, if introducing object ¢ requires to evict two objects
from the cache, then it will not be possible to go back from z
to x with a single transition. As a consequence the MC cannot
be made reversible.

A few convergence results are known for simulated an-
nealing in the non-reversible case. In [19] convergence to
the optimum is proven under a weak reversibility condition.
Weak reversibility requires that for any pair of states x and
y, if there is a path from x to y (i.e. a sequence of states
X = Xi1,Xg,...Xp, = Yy such that for each n =1,...p — 1,
Xnt+1 € Z(xy)) along which the utility does not go below a
level L, then there is a path from y to x for which this is also
true. Unfortunately this is not the case in our problem (see
Example 2 in [9]).

Although our system is not weakly reversible in general,
in typical scenarios we expect its dynamics to be close to

those of a weakly reversible system and then in particular
we expect OSA to converge to the global optimum of the
problem or to a close point. Our support to the previous claim
originates from the success of CTA discussed in Sec. IL. If
we consider a TTL-policy mimicking OSA (as it has been
done successfully for LRU, FIFO, RANDOM, QLRU..., see
e.g. [14]), then the corresponding system is weakly reversible.
This follows immediately from the fact that for any path from
X 10y, eg X = X1,X2,...X, =y With x,41 € Z(x,) for
n = 1,...p — 1, the reverted sequence of states is now a
possible path from y to x.

In the companion technical report [9] we provide a rigorous
characterization of the states to which our algorithm converges
in terms of a specific potential function. Our analysis follows
the regular perturbation approach made popular by Young
to study the stochastically stable equilibria in games with
trembling hands [16].

V. INTERLUDE: ESTIMATION OF CONTENT POPULARITY

All the policies described in Sections III and IV require to
know content popularities p;. A possibility is to let the poli-
cies unchanged, but replace popularities with their estimates.
Unfortunately, making timely estimates of varying content
popularity is a difficult task. Classic approaches essentially
use compact data structures to perform autoregressive moving
averages of the current number or requests for each con-
tent [20]. Results are far from being satisfactory and popularity
estimation is still an open research topic itself (see for example
the recent papers [21], [22]). This is one of the reasons for
which simple policies like LRU are a de facto standard, even
when content sizes are uniform and the key performance
metric is the hit ratio.

0.8 0.8
0.7 0.7
Memory: 50k objs
.£0.6 £06 \ Memory:-+00k-o
Zos | 205 T
2V L Memory; S0k obj A nm
S04 Memory: 100k obis So4 Mj‘ 1
| Memory: IM objs " g s y AJ
0.3 0.3 Memory:-1M-objs
0.2 — 0.2
012345678910 012345678910

Number of requests (x 108) Number of requests (x 108)

Fig. 1. Miss ratio over time for the DGREEDY (left) and the OSA (right)
policies with estimated popularity: impact of the number of objects for which
we maintain popularity estimates.

Here, we show that popularity estimation can be tricky even
under the simple IRM. In such case, the asymptotically optimal
estimator for the content request rate is simply the total number
of requests divided by the observation period. If the memory
available for estimation is of the order of the catalogue size
(©(N)), then it is possible to track the popularity of each
content and, after some time, the estimates are precise enough
for the policies to run as in the exact-knowledge case. If
memory is more limited, then performance rapidly degrades.

For example Fig. 1 shows the performance of DGREEDY and
OSA under IRM (details in Sec. VIII) when the popularities
of the W most recently requested contents is tracked. The
values of W considered correspond roughly to 2, 4 and 40
times the average number of objects stored in the cache (the
catalogue has 110 millions objects). A similar observation for
the case when Bloom counting filters are used is also in [23]:
the counting error floor (due to false positives) does not allow
to evaluate correctly the popularity but for the most popular
m contents, where m is the number of counters used.

Given the difficulty to estimate content popularities, we
would like to design a policy, that does not rely on popularity
estimation, but can still asymptotically store the optimal set
of contents. The next section shows that this goal is feasible.

VI. HOW TO AVOID POPULARITY ESTIMATION: DYNQLRU

The new policy we propose here is a variant of QLRU
including the dynamics of OSA. This policy, that we call
DYNQLRU is almost as simple to implement as QLRU, but
inherits the convergence properties of OSA, without the need
to explicitly estimate online popularities. DYNQLRU works
as follows. Contents are stored in a queue ordered from the
most recently requested to the least recently requested object.
It is more convenient in this case to consider the cache state
to be this sequence. With some abuse of notation, we will still
write ¢ € X (n) to indicate that content 4 is stored in the cache
at time n. If the n-th request generates a miss, the content,
say i, is retrieved and inserted at the head of the queue with

probability)
Q(n7 Z) = YRR

nad[nin <

(13)

where a@ > 0 is an adimensional parameter and d,;, =
min;epr ¢;/s; is the minimum density across all the cata-
logue.® If space is needed to store the new content, objects
are removed from the tail. Upon a hit, the content is served
and moved to the front of the queue.

We observe that the policy ¢;-LRU proposed in [4] stores
a content in the cache upon a miss with probability ¢; =
exp (f 5%) (in that paper c; is the content retrieval time from
the HDD). DYNQLRU can be considered as a version of ¢;-
LRU where the parameter 5 changes over time according to
B(n) = In(n)admin.

As for OSA, X (n) can be modeled as a non-homogeneous
MC with transition probability matrices {P(n)}nen. The
following proposition corresponds to Prop. IV.1 for OSA, even
if the proof does not follow exactly the same steps.

Proposition VL.1. If o < 1/b, the non-homogeneous Markov
Chain with transitions matrices {P(n)}nen is (strongly)
ergodic, i.e. it exists a probability vector 1 such that
limyg oo Pxy(n, k) = py for all x,y € X. Moreover, 1 is
the limit of the stationary distributions of the Markov Chains
P(n), i.e. lim, o p(n) = p.

5In a practical implementation, it can simply be replaced with the minimum

density value seen until now. Note also the difference with the expected
density p;c;/s; used by DGREEDY.

Proof. The complete proof is in [9]. We first prove that the
MC is weakly ergodic, using Dobrushin’s index and the block
criterion and then move to prove strong ergodicity.

We consider that costs ¢; can be expressed by integer values,
and we let vy denote the least common multiple of the set
of costs, i.e. v = LCM{c;,% € N}. The matrix function
P(a) over (0, 1], defined as P(a) £ P afdmwﬁ), is a regular
extension of the matrix P(n). Moreover, it is polynomial in the
variable a and then all its entries belong to a closed class of
asymptotically monotone functions. These properties of P(a),
together with the weak ergodicity of the MC { P(n)},en imply
strong ergodicity of the MC [24, Th. 2]. Moreover, for n large
enough, there is a unique stationary distribution p(n) of the
homogeneous MCs P(n), and lim,,_, o p(n) = p. O

Now, as in Sec. IV, we should characterize the stochastically
stable states of the MC. The following result shows that under
CTA, DYNQLRU with « < 1/b converges to the solution of
the fractional knapsack problem (10).

Proposition VL.2. Under the characteristic time approxi-
mation, when o« < 1/b, the stochastically stable sets of
DYNQLRU store all and only the contents that are included
in the solution of the fractional knapsack problem (10).

Proof. Let A* be the set of stochastically stable states of
DYNQLRU. The probability h; to find content ¢ asymptotically

in the cache is
hi= Y px= Y. hx
xeA*|iex

xeX|iex

It follows that 1) if ¢ has null hit probability, all the states
x containing 7 have zero probability and then they are not
stochastically stable, and 2) if 7 has positive hit probability,
it needs to belong to at least one stochastically stable state.
Then, the stochastically stable states contain all and only the
contents that have a positive hit probability asymptotically.

Let 8(n) = In(n)admin. When n diverges, [diverges
and it has been proved in [4] that, under CTA, the hit
probabilities converge to the solution h; of the fractional
knapsack problem (10).

Combining the two remarks the thesis follows.

O

This result corresponds to the weak-reversibility condition
in Sec. IV.

VII. LEARNING IN A NON-STATIONARY SETTING

In the discussion above we considered a stationary content
request process. Here we discuss how the policies can be
adapted in a setting where content popularities vary over time.
Policies like LRU or GDS are intrinsically robust to such
changes. For the policies that require to know popularities, like
DGREEDY, VGREEDY and OSA, the most natural approach
is to keep dynamic estimates of popularities, for example
using moving-average or autoregressive filters. This approach
requires to tune the filters by estimating the timescale over
which popularities may be considered constant. Moreover, the

simulated annealing approaches OSA and DYNQLRU explore
the solution space less and less over time. The risk is to
maintain stale cache states. A standard solution is to stop
decreasing the parameters 7'(n) or g(n,i) when they reach
a given (small) positive value, in order that some exploration
is still possible. But in this case we lose the advantage of the
fast initial exploration phase. Moreover, the final value has
to be carefully selected for the policy to be able to follow
popularity changes.

In this section we propose a different solution that leads
to a more adaptive and simpler-to-configure approach. The
idea is to couple the system with a change detector to decide
when to “reset” the policies, bringing them back to the initial
“high temperature/high ¢ phase where they explore more. Our
solution is based on the standard CUSUM sequential analysis
technique to detect online changes of a system parameter [25].
In our case we use a one-sided CUSUM to detect an increase
of the average cost of relative amplitude f, that may suggest
that popularities have changed and a new optimal set of
contents to be stored needs to be found. The pseudocode is
in [9]. Until no change occurs, the costs c,(,) are assumed
to be i.i.d. random variables with expected value . (for
which a running estimate /i, is maintained). Instantaneous
costs of value larger than fi.(1 + f/2) contribute to increase
a cumulative sum S. When S is larger than a threshold h, it
is assumed that a change has happened and both the dynamic
policy and the CUSUM filter are reset.

The CUSUM filter requires to select two parameters f and
h. As we said, f corresponds to the minimum level of change
in the expected cost that we want to detect. The threshold
h allows us to trade off false positive versus false negative
rates. In [9] we show that h can be chosen from the inequality
e —h —1>10% if we consider the exploration phase to
be ended when probabilities decrease by a factor 107,

VIII. SIMULATION RESULTS

In this section we evaluate the performance of the different
policies using an anonymized, aggregated set of requests for
objects collected over 30 days from Akamai. The actual
identity of the requested objects was obfuscated, but the size
of the object was known. The trace contains 2 - 10° requests
for 110 millions contents, whose size varies from few bytes to
tens of MB. A more detailed description of the trace is in [4].
We use the trace directly (reading the request arrival times
from the trace itself), and also to tune the parameters of IRM
from the empirical joint popularity-size distribution.

In the previous sections we have proved that OSA and
DYNQLRU asymptotically store the optimal set of contents
under CTA and provided that the parameters 7'(n) and g(n, i)
decrease slow enough. In many applications the sufficient
conditions for convergence can be of low practical interest.
For example for DYNQLRU if the cache can store b = 106
contents, we would require o < 107¢ and ¢(n,i) would
decrease of a factor ten only after 1010° requests! We need to
evaluate how our policies perform under practical settings. In
what follows we consider 7'(n) = 0.001nqz/logn, where

Unax 18 the maximum content utility seen until the current
time. DYNQLRU is configured with o = 10, and, similarly,
dpin 1s set to the minimum density value seen.

We start evaluating the performance of the different policies
under the trace-tuned IRM, considering as target the mini-
mization of the miss ratio, i.e. ¢; = 1. For each policy, we
evaluated its performance on 100 IRM request traces generated
with different seeds. Each IRM trace has 10® requests, the
miss ratio is calculated over the last 10° requests because we
are interested in their convergence properties. We consider the
ideal estimators that track the cumulative number of requests
for each content ever seen.

We present results for cache sizes B = 1KB and B = 1GB
(respectively in the top and bottom row of Fig.2). When
B = 1KB, only requests for the about 30 thousand contents
with size between 1 and 10 bytes are considered. This par-
ticular scenario allow us to study a small cache for which
the settings considered for OSA and DYNQLRU are closer
to those that would guarantee convergence to the optimum.
The left-hand side of Fig.2 shows the empirical CDF of the
miss ratio for the policies that require to estimate popularity.
DGREEDY achieves a small miss ratio. Indeed when objects
have relatively small size in comparison to the knapsack size,
the policy that greedily stores the objects with largest density is
known to lead to very good approximations. OSA succeeds to
find a slightly better set of contents, even if the parametrization
does not allow it to consistently converge to them. The right-
hand side of Fig.2 shows the results for the policies that do
not require the knowledge of popularities, DYNQLRU, GDS,
and LRU, as well as the DGREEDY as a reference. DYNQLRU
has a behaviour similar to OSA (not appreciable at this scale),
while the policies GDS and LRU perform significantly worse.

When the cache has size 1GB and all the content requests
are considered, DGREEDY achieves the lowest miss ratio as
shown in the bottom row of Fig.2. OSA does not perform
equally well: the temperature does not decrease slow enough to
reach the optimal allocation and the policy gets stuck in some
local minimizer of the miss ratio. We tried temperatures up
to 100 times larger, but there was no significant improvement.
On the contrary, for the largest temperature values the transient
becomes so long, that performance can actually worsen: OSA
is still randomly exploring the solution space at the end of the
simulation. Despite of this, OSA still outperforms VGREEDY
policy that easily gets stuck in local minima for the miss ratio.

DYNQLRU shows performance similar to OSA, but with
less variability and less sensitivity to parameter setting. The
gap with DGREEDY has the same explanation. On the other
hand, DYNQLRU outperforms both GDS and LRU, whose
miss ratios are respectively between 40% and 60% and be-
tween 75% and 100% larger than those of DYNQLRU.

From now on, we compare the policies using directly the
actual trace. We illustrated in Sec. V the difficulty to estimate
popularities online. Here we provide an additional experiment,
comparing the performance of DGREEDY, the “winner” under
IRM, with those of DYNQLRU coupled with a CUSUM
(configured as described in Sec. VII with f = 0.1 and 6 = 2).

CD

CD

! i [DGreedy mm— 1 Greedy
| : OSA - - [DyngLRU
0.8 'I VGreedy —— - | | 0.8
. 03
0.6 A !] b U«O'é GDS
A 02 1A 8
0.4 | 1 04
. 0.1 | 1 A
/7
02 | o . {1 02 LRU
J 022 0222
O 1 Il O Il
0.22 0.23 0.24 0.25 02 03 04 05 06 0.7 038
Miss ratio Miss ratio
1 DGreejly / = 1 DGreefly
0.8 /OSA 0.8 DyngLRU
0.6 ,0.6 6Ds
f 2
04 04
0.2 V-Greedy 0.2 ERY

0
02 03 04 05 06 07 08

Miss ratio

0
02 03 04 05 06 07 08

Miss ratio

Fig. 2. Miss ratio over time for B=1KB (top) and B=1GB (bottom), policies
with known object popularity (left) and unknown object popularity (right). In
both cases we use DGREEDY as a reference, which requires the popularity to
be known.

For DGREEDY the average request rate of each content ever
seen is maintained. Note that a comparison of popularities
would require ideally to update all the estimated request
rates at the arrival of each request, that may not be feasible.
Figure 3 shows the miss ratio over time for two different
DGREEDY settings. In the first one, the request rate for a
content is updated only at the arrival of a request for that
content. In the second one, all the estimates are also updated
every 107 requests, i.e. every 6 hours. The corresponding plots
are respectively labeled without/with updates. The experiment
shows that even when memory for estimation is not a concern,
computation constraints may affect the popularity estimation
quality, to the point that the result in Fig. 2 may be reversed
and DYNQLRU may perform better than DGREEDY.

0.8
82 DGreedy, without updates
g 0.5 ‘A‘v"/‘/MM
2 05 [iy \
2 0.4 / DGreedy; with updates
g 0.3 / 'A‘\
0.2 AN
0.1 'DynqLRU
0
0 5 10 15 20 25

Number of requests (x 108)

Fig. 3. Impact of the popularity on DGREEDY policy: no updates in the
estimate, with updated, and comparison with DYNQLRU.

In the following we show the results for the DYNQLRU,
GDS, and LRU policies and four different retrieval costs: the
miss ratio, the upstream traffic, the retrieval time from the
server, and the HDD load. The upstream traffic is the amount
of data to be retrieved by parent caches or the authoritative
content servers, it corresponds to setting ¢; = s;. For the
retrieval time, the cost c¢; is the average retrieval time for
content ¢ as measured in the Akamai network. Finally for the
HDD load, the cost of ¢ is the work imposed to the HDD
to retrieve content i. We have estimated it as a function of
the content size and HDD characteristics using the empirical
formula proposed in [4]. All the metrics have been normalized
to 1, by dividing them from the cost that would be incurred if
the cache were not present. Results in Fig. 4 show significant
improvement from DYNQLRU, but for the upstream traffic,
for which all the policies have almost the same performance.
Average cost reductions in comparison to the second best
policy range from 15% for the HDD load up to 30% for the
retrieval time and 45% for the miss ratio.

0.7 0.7
A0S . \
0.6 [~ ME AR '\\J \ <)0.6
i} i ,
.20.5 7 LROW A “50'5 W ‘ﬁ
0.4 04 \
203 W gAML 503
02 wngL.R 202
o) [DynqLRU, LRU, GDS]
0.1 0.1
0 0

0 5 10 15 20 25 0 5 10 15 20 25

Number of requests (x 108) Number of requests (x 108)

0.7 0.7
GDS
0.6 06 M
LRU
20.5 | 0.5 A LRU
S, IPANNDA A, [T, I psm WV
50.4 GDS M 504 Dynq\\LﬁU Vs 4
303 R0.3
0.2 " gt AN
A DyngLRU '
0.1 0.1
0 0

0 5 10 15 20 25 0 5 10 15 20 25

Number of requests (x 108) Number of requests (x 108)

Fig. 4. Miss ratio (top-left), upstream traffic (top-right), retrieval time from
origin (bottom-left) and HDD load (bottom-right).

IX. CONCLUSIONS AND FUTURE WORKS

In this paper we have bridged the two cache utility maxi-
mization frameworks proposed until now and proved that when
costs are linear over the misses and requests follow the IRM,
an optimal policy solves an online knapsack problem. We
have proposed two new policies, based on simulated annealing,
that are optimal under the characteristic time approximation.
Experiments on real traces show that DYNQLRU outperforms
both LRU and the competitive-ratio-optimal GDS. In the
future we will investigate if strong performance guarantees

can be provided for OSA, as well as perform an extended
sensitivity analysis for the configuration of our policies.

REFERENCES

[11 A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching
more (costly items) for less (ISPs operational expenditures),” Parallel
and Distributed Systems, IEEE Trans. on, vol. 27, no. 5, pp. 1316-1330,
2016.

[2] V. Pacifici and G. Dan, “Coordinated selfish distributed caching for
peering content-centric networks,” IEEE/ACM Trans. on Networking,
2016.

[3] S. Shukla and A. A. Abouzeid, “On designing optimal memory damage
aware caching policies for content-centric networks,” in Proc. of WiOpt
2016, 2016, pp. 163-170.

[4] G. Neglia, D. Carra, M. D. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time aware cache algorithms,” in Proc. of ITC-28,
September 2016.

[5] E. N. Young, Encyclopedia of Algorithms. Boston, MA: Springer US,
2008, ch. Online Paging and Caching, pp. 601-604.

[6] M. Dehghan, L. Massoulié, D. Towsley, D. Menasche, and Y. Tay, “A
Utility Optimization Approach to Network Cache Design,” in Proc. of
IEEE INFOCOM 2016, 2016.

[71 N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 — 231, 2014.

[8] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305-1314, Sep 2002.

[9]1 G. Neglia, D. Carra, and P. Michiardi, “Cache policies for linear utility

maximization,” RR-9010, Inria, Tech. Rep., January 2017.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.

Young, “Competitive paging algorithms,” Journal of Algorithms, vol. 12,

pp. 685-699, 1991.

N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3, pp.

371-383, 2002.

P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in

Proc. of the USENIX USITS, 1997.

R. Fagin, “Asymptotic miss ratios over independent references,” Journal

of Computer and System Sciences, vol. 14, no. 2, pp. 222 — 250, 1977.

M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the

performance analysis of caching systems,” ACM Trans. Model. Perform.

Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1-12:28, May 2016.

P. R. Jelenkovic and A. Radovanovic, “Optimizing LRU Caching for

Variable Document Sizes,” Comb. Probab. Comput., vol. 13, no. 4-5,

pp. 627-643, Jul. 2004.

H. P. Young, “The Evolution of Conventions,” Econometrica, vol. 61,

no. 1, pp. 57-84, January 1993.

H.-J. Bockenhauer, D. Komm, R. Krilovi¢, and P. Rossmanith, “The

online knapsack problem: Advice and randomization,” Theor. Comput.

Sci., vol. 527, pp. 61-72, Mar. 2014.

P. J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated Annealing:

Theory and Applications. Norwell, MA, USA: Kluwer Academic

Publishers, 1987.

B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of

Operations Research, vol. 13, May 1988.

A. Broder and M. Mitzenmacher, “Network applications of bloom filters:

A survey,” Internet Math., vol. 1, no. 4, pp. 485-509, 2003.

S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content

caching,” in Proc. of IEEE INFOCOM 2016, 2016.

M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and

S. Chouvardas, “Placing dynamic content in caches with small popula-

tion,” in Proc. of IEEE INFOCOM 2016, 2016.

G. Bianchi, K. Dufty, D. J. Leith, and V. Shneer, “Modeling conservative

updates in multi-hash approximate count sketches,” in Proc. of ITC-24,

2012.

S. Anily and A. Federgruen, “Ergodicity in parametric non stationary

Markov chains: An application to simulated annealing methods,” Oper-

ations Research, vol. 35, no. 6, pp. 867-874, 1987.

E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no.

1-2, pp. 100115, 1954.

[10]

(11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

