
Controlling the Delay

of Small Flows in Datacenters

Damiano Carra

Computer Science Dept.

University of Verona

Verona, Italy

damiano.carra@univr.it

Abstract—As datacenters grow in size, the communication
between servers has emerged as a major bottleneck. Studies
have shown that datacenter workloads are highly variable in
sizes, comprising of a mix of mice and elephant flows which,
when coupled with hard to predict arrivals, make bandwidth
provisioning and flow scheduling a challenging task. There has
been a significant progress in excess bandwidth provisioning and
flow scheduling algorithms, especially using hybrid electrical-
optical networks, aimed at providing effective throughput to
elephant flows while ignoring the delay of small flows. The latency
of small flows, however, is an important performance metric and
existing solutions for improving this metric for traditional packet
switched as well as hybrid datacenter networks continue to be
inadequate. We aim at looking at the design of a datacenter
network which ensures adequate bandwidth provisioning and
minimizes delay for mice flows effectively. In this paper, we
propose a novel hybrid architecture along with simple flow
routing schemes to achieve these goals. The design schemes
proposed in this paper can be incorporated in the existing
datacenter networks. We evaluate the performance of our scheme
and compare it to other existing schemes through simulations.

I. INTRODUCTION

Datacenter networking has attracted a lot of attention in

recent years. It is necessary to eliminate bottlenecks to ex-

ploit the growing amount of computational resources in a

datacenter. One of the most important bottlenecks is the

communication among the machines. Recent advances in

datacenter network architecture aimed at providing redundant

bandwidth [1], [2] and reducing the cost of providing this

excess bandwidth using optical links [3]–[5]. Several solutions

exist to control the traffic routing through the network, ranging

from hash-based flow forwarding (ECMP) [6] to solutions

that manage large flows well to improve performance like

Hedera [7]. These solutions are enabled by Software Defined

Networking (SDN) and the OpenFlow [8] standard. The hybrid

networks, on the other hand, use similar version of hot-spot

scheduling which involves polling the traffic matrix periodi-

cally and setting up high bandwidth paths for large flows in

circuit switched networks.

The traffic in a datacenter is highly variable and composed

of many small flows and few large flows [9], [10]. Large flows

usually are generated when Virtual Machines are instantiated

or moved across the datacenter, or when data to be processed

are stored, or when the output of the processing need to be

sent to other machines (e.g., the results of the Map tasks that

are sent to the Reduce tasks). In all these cases, the delay does

not play an important role for large flows but their throughput

performance is important. On the other hand, small flows

may be associated with RPC calls, high frequency trading,

interactive applications etc., and therefore, need low latencies.

A common aspect shared by all the infrastructure designs

is that they are focused on provisioning large bandwidths

at low OPEX and CAPEX and ignore designs which could

help reduce delay of delay sensitive flows. The flow routing

schemes generally route largest flows most efficiently and

consequently do not guarantee small latencies for small flows.

Even with the excess bandwidth and efficient routing of large

flows, small flows can still experience large latencies due to the

following reasons: 1) presence of a long tailed flow at the ToR

switch with the small flow, 2) routing delays associated with

hierarchical topology of electrical networks. Recently, a few

works attempted to consider the latencies for small flows for

packet switched datacenter networks as a main performance

index [11]–[15] but do not solve the problem completely.

We consider the problem of datacenter network design from

a fresh perspective, driven by the following requirements:

small flows will have special treatment in order to control their

delay, and the main performance index for large flows is the

throughput. We propose a general two-tier topology with one

flat tier dedicated to small flows, while the other tier carries the

large flows. While the topology of our network appears similar

to [5], the architecture is completely different and provisioned

for completely different goals. Instead of focusing on routing

large flows efficiently, we focus on augmenting the existing

datacenter network to support small delays for small flows.

There are different issues that need to be considered in the

design, such as the identification of small and large flows,

the bandwidth dimensioning of the two tiers, and the routing,

to cite a few. In this paper we identify and discuss these

problems, and propose a set of solutions. Further, we evaluate

our design with a packet level simulator and compare it

with different topologies – packet switched topologies, as

well as other hybrid topologies. We show through simulations

that our architecture is able to decrease the delay of small

flows, without affecting the overall throughput of large flows

while using traffic patterns as shown in actual datacenter

measurement studies [9], [10].

The rest of the paper is organized as follows. In Sect. II

1

we provide the necessary background and discuss the related

works. In Sect. III we present our design of the datacenter

network architecture, and discuss the main issues related to this

architecture. We evaluate with simulations our solution and

present the results in Sect. IV. In Sect. V we discuss different

aspects of our design, and we conclude in Sect VI.

II. BACKGROUND AND RELATED WORK

In a datacenter, servers are grouped in racks with a switch on

top, usually called Top-of-the-rack switch (ToR). The switch

collects the traffic coming from and directed to the servers.

Each rack contains typically 20-80 servers. The network-

ing infrastructure is responsible for interconnecting the ToR

switches.

The main challenge is to eliminate potential bandwidth

bottlenecks among ToR switches. For instance, in a tree based

architecture, the switch at the root of the tree would need

ports with an extremely high bandwidth, which is impractical.

For this reason, many alternative architectures, inspired by

literature on the design of switching matrices, have been pro-

posed [16]. In these architectures, the network interconnecting

the ToR switches is composed by commodity switches, with

standard links (e.g., 1 and 10 Gigabit Ethernet), arranged in

a way to provide multiple paths. VL2 [1] is inspired by a

Clos topology and [17] uses a fat-tree topology to provide

full bisection bandwidth among the ToR switches.

The major drawback of the above architectures is the cost

associated to the networking infrastructure. Since it is unlikely

that all servers needs to communicate with all the other

servers, it is common practice to oversubscribe the network,

i.e., to provide a fraction of the bisection bandwidth. Another

approach that aims at decreasing the cost, yet providing

full bisection bandwidth to ToR switches, is to build hybrid

solutions [3], [4]. Along with a packet switched topology, the

infrastructure includes a (optical) circuit switched topology,

where the circuits carry the large flows – recall that few

flows bear most of the traffic of the datacenter. All the

above architectures use variants of hot spot flow scheduling

algorithms where a central scheduler routes flows to best

possible links based on traffic matrix. More recently, a flat

optical architecture Mordia [5] for hybrid networks has been

proposed which uses microsecond order optical switching to

provide a flat ring topology to large flows.

Some recent works started to investigate solutions that are

able to improve another important performance index: the

delay of delay sensitive flows in packet switched datacenter

networks. The delay usually arises because of the following

factors: 1) packet losses and retransmissions, 2) lack of priori-

ties for different traffic classes, and 3) uneven load balancing.

DCTCP [11], and HULL [15] have been proposed to control

the congestion in the network and therefore limit the delay of

the packets. D3 [14] proposes a protocol for deadline-sensitive

application, thus allowing application to specify a maximum

delay. DeTail [13] is a multi-path congestion mechanism

scheme that aims at reducing the tail completion times of

flows. In [18] a distributed preemptive scheduling scheme for

small flows. Finally, MPTCP [12] balances TCP flows across

multiple paths, so that to avoid hot spots and consequently

congestion. All the above mentioned works share a common

aspect: they require changes in the datacenter protocol stack,

either in the end hosts, or in the switches. In our work, instead,

we propose a solution that can be implemented on commodity

hardware1, on top of the existing datacenter networks. Our

solution does not need any modification of the protocol stack

or the applications running on the existing datacenters. The 2-

tier architecture we propose has a focus on the delay of latency

sensitive flows. With respect to the solutions based on hybrid

packet and circuit switched topology, our solution has different

objectives, namely the delay, therefore is structural different

from those hybrid architectures, such as Hedera [7]. Hedera

aims to solve the load balancing problem by periodically

rerouting the heavy flows, but the solution cannot address

delays of small flows. In summary, in our solution we propose

a way to control the delay of small flows without modifying

the hardware or the software of the machines or switches in

the datacenter.

III. DESIGN

We propose a 2-tiered architecture, where each tier carries

different types of traffic – mice and elephants (see Fig. 1).

The first tier is specifically designed to minimize the delay of

mice. From a logical point of view, we have a fully connected

topology: each Top-of-the-Rack (ToR) switch has a direct link

to all the other ToRs, and therefore the number of hops is

minimized. The second tier is dedicated to elephants: this tier

can be built either using multi-hop paths with highly variable

delays (packet switched topology with oversubscription), or a

circuit switched topology with relative long switching times

(e.g., order of ms, such as MEMS-based optical switches).

Fig. 1. 2-tier architecture: small flows are routed using a fully connected
topology, large flows are offloaded to a switched topology.

Our solution poses several challenges. From the traffic

management point of view, we need to be able to identify mice

and elephants, so that the traffic can be properly routed. From

the topological point of view, we need to identify a suitable

solution for building a fully connected topology in the first tier

1The only requirement is the compliance with a SDN implementation, e.g.,
OpenFlow.

2

(the figure shows a possible implementation which we discuss

in greater detail in § III-A).

A. Fully Connected Topology

Datacenters are extremely heterogeneous in the size: from

small-scale datacenter with few hundreds of machines, to mid-

scale with few thousands of machines, up to big datacenters

with tens of thousands or hundreds of thousands of machines.

The solution we propose targets mid-scale datacenters, or

container-size datacenter. Considering that each ToR switch

connects approximately 40 machines, a mid-scale datacenter

with 5000-10000 machines will have 125-250 ToR switches.

Today’s high-end switches have up to 256 ports equipped with

10 Gb Ethernet, therefore the fully connected topology can be

obtained with a single high-end switch2.

The adoption of a single high-end switch has a main

limitation: the maximum connection speed from one ToR

switch to all the other ToR switches is bounded by the speed

of the port, i.e., 10 Gb. In the following, we describe an

alternative solution based on optical networks.

We consider a wavelength-division multiplexed (WDM)

ring: within such a ring, it is possible to create different

“channels”. A channel may be an optical wavelength (i.e.,

λ) or, with the use of TDM, a fraction of a λ. In a fully

connected topology, one would need O(N2) channels, where

N is the number of ToR switches, which would result in

a high fragmentation of the resources. Instead, we propose

a different approach. We make use of N channels: in each

channel, a single ToR switch can transmit, while all the other

ToR switches listen. We call such channels “Single Source

Broadcast Channels” (SSBCs). Since in each SSBC there

is a single transmitting ToR, the channel is collision-free.

Each ToR listens to all the SSBCs (except the one it uses to

transmit), since it may receive traffic from any ToR (and hence

from any SSBC). The selection of the destination (among the

different listeners of a channel) is done at the protocol level

(destination address in the packet header).

The source ToR switch can use the channel for unicast, mul-

ticast and broadcast communications, therefore this solution is

extremely flexible. Note that, since ToR switches are spatially

close one another, one may implement the ring inside a single

switch, and each optical module would be a port of such a

switch.

While designed with different objectives in mind (as ex-

plained in Sect. II), the Mordia optical switch architecture [5]

also adopts a similar optical ring-based topology. However,

Mordia employs wavelength-selective switches (WSSs) to

selectively filter individual wavelengths to a single receiver

per node, effectively realizing a circuit switch rather than a

broadcast fabric.

Overall, the proposed design allows for a flexible assign-

ment of the resources: a channel can use a configurable

fraction of λ, and, if the number of resources in a single ring

is not sufficient, it is possible to add additional rings.

2Such a switch does not need to support OpenFlow, since it is used to
connect the ToRs, and the routing is done automatically.

B. Routing Flows

Given the 2-tier topology as shown in Fig. 1, the first issue

is to identify the mouse and the elephant flows. There are

several approaches to do this which have been well studied

in literature: 1) Applications identify the flows as mice or

elephant, 2) Maintaining per flow statistics at switches, 3)

Random sampling of flows, 4) End to End host identification.

All the approaches have their own advantages and benefits

[19]. It is possible to adopt all of the above mentioned

solutions in our architecture.

We would like to keep the design principle as simple

as possible and use the existing functionalities available in

common commercial products. For this purpose we use a

simple scheme for elephant detection directly at the ToR

switches, without any information coming from the servers

or applications. The detection is simply based on packet

(alternatively: byte) counting: given a threshold Ts, all the

flows with more than Ts packets are considered elephants 3

(we discuss how to determine Ts at the end of this section).

The routing between the first and the second tier is ex-

tremely simple. The default route for a new flow is the fully

connected topology. If the number of packets of a given flow

hits the threshold Ts, then the flow is routed through tier 2.

The flat ring architecture of first tier offers several advantages

for routing the mice flow. Each switch has a view of the

congestion that the outgoing flows will face. This allows to

use several priority based or preemptive single path scheduling

mechanisms within the first tier which are the motivation

behind existing literature for e.g. [14], [18]. The routing within

second tier will follow the paths determined by the specific

technology (e.g., ECMP).

These simple rules can be implemented using the SDN

framework, e.g. OpenFlow. Using OpenFlow, it is possible to

set the threshold Ts in every ToR switch. When a flow sends

more than Ts packets, the ToR switch asks to the OpenFlow

Control Center the new route. Since the Control Center has

a global view of the elephants currently routed through the

switched topology, it will be able to compute the route of

the new flow, trying to maximize the overall throughput. The

new route is communicated to the ToR switch (and the other

switches involved in the path), so that the switches can start

forwarding the packets accordingly. With this solution, the

OpenFlow Control Center is contacted only for the elephants,

which are the 10-20% of the total flows, with a great reduction

of the Control Center burden with respect to a solution without

default routes.

The threshold Ts can be easily computed by the OpenFlow

Control Center. Periodically, e.g., daily, the Control Center

collects the statistics on the flows stored by the ToR switches,

and, considering the available resources in the fully connected

topology, calculates Ts such that the average load on such a

topology would be minimal (e.g. 20-30%, in order to contain

the delays).

3We admit this involves maintaining table containing information for each
flow at a switch and could be buffer intensive.

3

IV. EVALUATION

In this section, we show the results obtained with a simulator

of datacenters, which has been derived from the one developed

in [12].

A. Settings

The simulator is composed by AIMD (Additive Increase

Multiplicative Decrease) sources, and switches, where each

interface is implemented as a FIFO (First In First Out) queue.

We have implemented three datacenter architectures. The

first is the VL2 architecture [1], which is a Clos topology;

by setting the speed of the switch interfaces, it is possible to

obtain either full bisection bandwidth, or an oversubscribed

topology. The flow routing is implemented using the ECMP

algorithm. The second architecture is our proposed 2-tier

topology, which we call mDelay. In this case, the flows are

routed initially using the fully connected topology; if the flow

is bigger than Ts packets, then, starting from packet Ts+1, the

flow is routed through the other tier (switched topology), for

which we use VL2 architecture and ECMP routing. The third

architecture is a 2-tier architecture with optical circuits used

for carrying elephant flows: cThrough [4]. With cThrough, a

central controller regularly computes the maximum weighted

matching among ToR switches (the weights are the traffic to be

transferred between any pairs of ToRs); the output is used to

configure the circuits, while the rest of the traffic goes through

a switched topology (implemented as VL2 topology).

Each server in the topology has 10 active flows, which

is the average number of flows as reported in [4]. The size

of the flows is decided when the flow is created, using the

statistics provided in [4]. The average packet size is 1 KByte.

When a flow is successfully transferred, a new flow is created,

therefore the number of active flows remains constant: this

has been done to let system work in the heavy load regime,

where the delay and the throughput are more sensible to

the design choices. When the flow is created, we have to

assign the destination. This choice will determine the traffic

pattern among different ToR switches. We have implemented

three traffic patterns: uniform, diagonal with a light tail,

and diagonal with a heavy tail. With a uniform distribution,

the destination is chosen uniformly among all the possible

destinations. With a diagonal distribution, the destination is

chosen preferably from a subset of destinations (note that

all the other destinations can still be chosen, but with low

probability). In case of light tail, this subset is limited, while

with heavy tail, this subset is broader.

In our simulations, given a traffic pattern, we compare the

performance of the three architectures described above (VL2,

mDelay and cThrough). In order to do so, we need to ensure

that the comparison is fair: we assume that fairness is defined

in terms of the amount of available resources, i.e., bandwidth4.

In particular, we make sure that the total bandwidth from a

4Alternative definitions would take into account other aspects, such as the
cost of the architectures, in terms of money necessary to build it, or energy
consumption; here we focus on the bandwidth only.

ToR switch to all the other ToR switches (considering all the

available links, i.e., the ones to the aggregate switches in the

VL2 topology, and the optical paths in the 2-tier topologies –

mDelay and cThrough) remains constant across the different

topologies.

As performance index, we focus on flow delay, node

throughput and flow completion time. In our preliminary

evaluation, we have used the following parameters: 1280

servers divided into 64 ToR switches; no oversubscription (i.e.,

the output bandwidth of the switches is 20 times the server

bandwidth); in case of mDelay topology, the output bandwidth

of the switches is decreases by 10%, which is given to the fully

connected topology, and the threshold for the flow routing is 35

packets; in case of cThrough topology, the output bandwidth of

the switches is decreases by 50%, which is given to the circuit

switched tier; given a specific configuration, we performed

multiple runs in order to obtain statistical confidence, and we

compute the 95% confidence interval.

B. Results

In Table I we show the average values of the flow delay

and node throughput in case of diagonal traffic with heavy

tails (similar considerations can be done with other traffic

patterns). The throughput is expressed as a percentage of the

server bandwidth. The delay is expressed using as unit the

service time (average packet size divided the node bandwidth).

Rather than the absolute values, these results are interesting

when we compare the different architectures. We immediately

observe that the node throughput with cThrough is decreased

(with respect to the other topologies). The reason is simple:

the cThrough architecture dedicates a portion of the available

ToR switch bandwidth (the optical path) to a single path

(another ToR, the one for which there is more traffic to send).

This means that the portion of bandwidth in the switched

network is decreased, and congestion is more likely to occur,

and overall the throughput decreases. Note that the traffic

pattern (diagonal) represents the best possible situation for

cThrough; with a uniform traffic pattern, the results are even

worse. Note also that, in the original cThrough paper, the

optical bandwidth is added, and comparison is not done with

a constant switch bandwidth as we do. In case of VL2 or

mDelay architectures, the throughput is equivalent, while the

flow delay is significantly decreased (-17%). Rather than

aggregate values, it is interesting to analyze the performances

for different classes of flows (mice, elephants).

TABLE I
AVERAGE FLOW DELAY AND NODE THROUGHPUT FOR DIFFERENT

TOPOLOGIES (TRAFFIC PATTERN: DIAGONAL HEAVY TAILS; 95%
CONFIDENCE INTERVAL)

Flow Delay Node

(w.r.t. service time) Throughput (%)

VL2 21.2 ± 0.2 44.9 ± 1.9

mDelay 17.6 ± 0.1 44.1 ± 2.9

cThrough 18.2 ± 0.1 40.0 ± 1.5

4

 100

 200

 300

 400

 500

 600

 700

 1 10

C
o
m

p
le

ti
o
n
 T

im
e

[w
.r

.t
.
se

rv
ic

e
ti

m
e]

Flow size [pkts]

cThrough
VL2

mDelay

 5000

 10000

 15000

 20000

 100 1000

Flow size [pkts]

cThrough
VL2

mDelay

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10000 100000

Flow size [pkts]

cThrough
VL2

mDelay

(a) Diagonal Heavy Tails

 100

 200

 300

 400

 500

 600

 700

 1 10

C
o
m

p
le

ti
o
n
 T

im
e

[w
.r

.t
.
se

rv
ic

e
ti

m
e]

Flow size [pkts]

cThrough
VL2

mDelay

 5000

 10000

 15000

 20000

 100 1000

Flow size [pkts]

cThrough
VL2

mDelay

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10000 100000

Flow size [pkts]

cThrough
VL2

mDelay

(b) Diagonal Light Tails

 100

 200

 300

 400

 500

 600

 700

 1 10

C
o
m

p
le

ti
o
n
 T

im
e

[w
.r

.t
.
se

rv
ic

e
ti

m
e]

Flow size [pkts]

cThrough
VL2

mDelay

 5000

 10000

 15000

 20000

 100 1000

Flow size [pkts]

cThrough
VL2

mDelay

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10000 100000

Flow size [pkts]

cThrough
VL2

mDelay

(c) Uniform

Fig. 2. Flow completion time for different topologies and traffic patterns (95% confidence interval).

To this aim, we divide the flows in different bins, according

to their sizes: bin i contains the flows with a number of packets

between 2i−1 and 2i. As a performance metric, we show the

flow completion time, since it captures in a single metric

the delay and the throughput – if the delay decreases, the

probability for an AIMD source to increment the throughput

becomes higher. Figure 2 shows the flow completion time for

small, medium and large flows, with different traffic patterns

(diagonal with heavy and light tails, and uniform).

The mDelay architecture is able to provide a smaller delay

for small and medium flows, while only very large flows are af-

fected (with flows larger than 100 MB, the confidence intervals

overlap). It should be noted that the average node throughput

remains the same for the VL2 and mDelay architectures, i.e.,

the data transferred on average is the same.

Figure 2 indicates that the cThrough architecture seems to

provide a better throughput for the large flows (flows larger

than 50 MB): it is important to note that the figure provide

the results for the flows that have successfully transfer the

data. The overall throughput is in any case less than the one

obtained by the mDelay architecture (see Table I), therefore

the actual gain in the average completion time is due to the

fact that there are less flows overall that have been transferred

using the cThrough architecture.

V. DISCUSSION

The proposed architecture introduces a set of issues, which

are in part shared by similar 2-tier architectures. In this section

we summarize the main ones that we are studying in detail (not

reported here for space constraints).

Scheduling at first tier: The existing solutions for deadline-

aware scheduling of flows or scheduling based on priority

to mice flows become complex due to a multipaths and

tree architecture in standard datacenter designs. Further, the

application of such approaches has been limited to hybrid

networks due to large switching times of MEMS based optical

switches. Our solution which uses a flat topology at the first

tier opens up several interesting directions for scheduling

policies for latency sensitive flows. As mentioned before, this

is due to the fact that each switch has a view of congestion in

the paths and the statistics of outgoing flows.

Adaptive threshold: In our solution, we use a threshold Ts

for identifying the elephants. In § III-B we suggest that the

OpenFlow Control Center periodically collect statistics on the

5

flow to decide how to set Ts. In order to maximize the use of

the resources, it would be interesting to investigate the effect

of an adaptive Ts, where the adaptation may be based on the

instantaneous load of the fully connected topology.

Dimensioning: How many resources (in terms of bandwidth)

should be assigned to the first and the second tier? For the

second tier, the main drive could be, as usually done, the

bisection bandwidth, or a fraction of it. Instead, for the first tier

the dimensioning is still an open problem. Overdimensioning

could help in maintaining under control the delay, but it can

be a waste or resources, while underdimensioning may result

into too small threshold Ts.

Analytical model: The above mentioned problems (scheduling,

computation of Ts, dimensioning) can be studied through

an analytical model, which should be focused on the main

performance index used to drive the design of our solution:

the delay of the flows. While the analysis of the throughput

is usually more simple to address, the analysis of the delay is

particularly challenging.

Alternative approach: Instead of having two separate tiers,

an alternative solution would be to have a single packet

switched network (e.g., VL2), and control the mice and the

elephants with priority queues. The first Ts packets of a flow

are enqueued in the high priority queue, while the remaining

packets are enqueued in a low priority queue. While this

solution would allow for a better exploitation of the resources,

the multi-hop path would increase the probability to increase

the delay. As a future work we plan to investigate this solution,

also with the help of analytical tools.

VI. CONCLUSION

We have proposed a new hybrid datacenter architecture with

emphasis on reducing the delay of small flows. The research

community has treated datacenter infrastructure with the aim

of excessive bandwidth provisioning cheaply. On the other

hand, the existing solutions for reducing latencies of delay

sensitive flows ignore the developments in hybrid networks.

Our research is a step in direction to bridge this divide. The

motivation for our design comes from new proposals of optical

network design which allow small flows to be routed through

circuit switched networks. We show through preliminary sim-

ulations that our design works well and we identify several

research directions associated with the problem and our design.

As a future step, we plan to explore the several open research

directions that we described.

ACKNOWLEDGMENT

The authors would like to thank Gil Zussman, Varun Gupta

and Howard Wang, from Columbia University, for the many

useful discussions and feedback on the paper.

REFERENCES

[1] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data
center network,” in Proc. ACM SIGCOMM’09, 2009.

[2] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 63–74, 2009.

[3] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” in Proc.

ACM SIGCOMM’10, 2010.
[4] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng,

M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,”
in Proc. ACM SIGCOMM’10, 2010.

[5] N. Farrington, G. Porter, Y. Fainman, G. Papen, and A. Vahdat, “Hunting
mice with microsecond circuit switches,” in Proc. ACM HotNets’12,
2012.

[6] C. E. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC

2992 (Informational), 2000.
[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: dynamic flow scheduling for data center networks,” in Proc.

USENIX NSDI’10, 2010.
[8] N. McKeown, T. Anderson, H. Balakrishan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, 2008.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM

IMC’09, 2009.
[10] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of

data centers in the wild,” in Proc. ACM IMC’10, 2010.
[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
ACM SIGCOMM’10, 2010.

[12] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 266–277, 2011.

[13] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” ACM SIGCOMM

Comput. Commun. Rev., vol. 42, no. 4, pp. 139–150, 2012.
[14] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never

than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM

Comput. Commun. Rev., vol. 41, no. 4, pp. 50–61, 2011.
[15] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and

M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in Proc. USENIX NSDI’12, 2012.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: a scalable
fault-tolerant layer 2 data center network fabric,” ACM SIGCOMM

Comput. Commun. Rev., vol. 39, no. 4, pp. 39–50, 2009.
[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[18] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 127–138, 2012.

[19] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in Proc. IEEE INFOCOM’11, 2011.

6

