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Abstract—Similarity search is a key operation in multimedia
retrieval systems and recommender systems, and it will play an
important role also for future machine learning and augmented
reality applications. When these systems need to serve large
objects with tight delay constraints, edge servers close to the end-
user can operate as similarity caches to speed up the retrieval.
In this paper we present AÇAI, a new similarity caching
policy which improves on the state of the art by using (i) an
(approximate) index for the whole catalog to decide which objects
to serve locally and which to retrieve from the remote server, and
(ii) a mirror ascent algorithm to update the set of local objects
with strong guarantees even when the request process does not
exhibit any statistical regularity.

I. INTRODUCTION

Mobile devices can enable rich interaction with the environ-
ment people are in. Applications such as object recognition or,
in general, augmented reality, require to process and retrieve in
real time information related to the content visualized by the
camera. The logic behind such applications is very complex:
although mobile devices’ computational power and memory
constantly increase, they may not be sufficient to run these
sophisticated logics, especially considering the associated en-
ergy consumption. On the other hand, sending the data to the
cloud to be processed introduces additional delays that may be
undesirable or simply intolerable [1]. Edge Computing [2], [3]
solves this dichotomy by providing distributed computational
and memory resources close to the users. Mobile devices may
pre-process locally the data and send the requests to the closest
edge server, which runs the application logic and provides
quickly the answers.

Augmented reality applications often require to identify
similar objects: for example, an image (or an opportune
encoding of it) can be sent as a query, and the application
logic finds similar objects to be returned to the user [3]–[6].
For instance, a recommendation system may suggest similar
products to a user browsing shop windows in a mall, or
similar artists to a user enjoying street art. The search
for similar objects is based on a k-nearest neighbor (kNN)
search in an opportune metric space [7]. The flexibility of kNN
search comes at the cost of (i) high computational complexity
in case of high dimensional spaces, and (ii) large memory
required to store the instances. The first issue has been solved
in recent years with a set of techniques used to index the
collection of objects that provide approximate answers to kNN
searches, i.e., they trade accuracy for speed. Searches over
large catalogs (billions of entries) in high dimensional spaces

may be executed now in less than a millisecond [8]. Still, the
issue of the memory required to store the objects persists,
especially in a distributed edge computing scenario, as edge
servers have limited memory resources compared to the cloud.

Due to memory constraints, edge servers can be forced
to store a subset of the objects in the catalog, but object
selection is not an easy task. Requests coming from the
users often exhibit spatial and temporal correlation—e.g.,
the same augmented reality application will recover different
information in different areas, and this information can change
over time as the environment changes and users’ interests
evolve. This observation suggests that we may use the request
pattern to drive the object selection. In other words, the edge
server can be viewed as a cache that contains the set of objects
needed to adequately respond to local requests while avoiding
forwarding them to the cloud.

In this paper, we study how to optimize the memory usage
of the edge server for similarity searches. To this aim, we
consider the costs associated with the replies, which capture
both the quality of the reply (that is how similar/dissimilar
to the request the objects provided are), as well as system
costs like the delay experienced, the load on the server or
the network. Our study aims to design an online algorithm to
minimize such costs. We provide the following contributions:

• We formulate the problem of kNN optimal caching taking
into account both dissimilarity costs and system costs.

• We propose a new similarity caching policy, AÇAI (As-
cent Similarity Caching with Approximate Indexes), that
(i) relies on fast, approximate similarity search indexes
to decide which objects to serve from the local datastore
and which ones from the remote repository and (ii) uses
an online mirror ascent algorithm to update the cached
content to minimize the total service cost. AÇAI offers
strong theoretical guarantees without any assumption on
the traffic arrival pattern.

• We compare our solution with state-of-the-art algorithms
for similarity caching and show that AÇAI consistently
improves over all of them under realistic traces.

The remainder of the paper is organized as follows: we present
similarity caches in Sec. II and other relevant background in
Sec. III. We introduce AÇAI in Sec. IV and our experimental
results in Sec. V. The notation used across the paper is
summarized in Table I. The proofs and other technical details
can be found in the Supplementary material. This work is an
extension of our previous work [9]. In particular, we provide (i)
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the regret bound when the state of the system is only updated
every M requests, (ii) a new rounding mechanism, and (iii)
the complete proofs.

II. SIMILARITY CACHES

Consider a remote server that stores a catalog of objects
N , {1, 2, . . . , N}. A similarity search request r aims at
finding the k objects o1, o2, . . . , ok ∈ N that are most similar
to r given an application-specific definition of similarity. To
this purpose, similarity search systems rely on a function
cd(r, o) ∈ R≥0, which quantifies the dissimilarity of a request
r and an object o. We call such a function the dissimilarity
cost.

In practice, objects and requests are mapped to vectors in
Rd (called embeddings), so that the dissimilarity cost can be
represented as (a function of) a selected distance between the
corresponding embeddings. For instance, in the case of images,
the embeddings could be a set of descriptors like SIFT [10],
ORB [11], or the set of activation values at an intermediate

layer of a neural network [12], [13]. Examples of commonly
employed distances are the p-norm, Mahalanobis, and cosine
distances.

The server replies to each request r with the k most similar
objects in the catalogN . As the dissimilarity is captured by the
distance in the specific metric space, these objects are also the
k closest objects (neighbors) in the catalog to the request r
(kNN(r,N )).1 The mapping translates the similarity search
problem into a kNN problem [14], [15].

We can also associate a dissimilarity cost to the reply
provided by a server (e.g., by summing the dissimilarity costs
for all objects in kNN(r,N )). This cost depends on the catalog
N and we do not have control over it. In addition, there
is a fetching cost to retrieve those objects. The fetching cost
captures, for instance, the extra load experienced by the server
or the network to provide the objects to the user, the delay
experienced by the user, or a mixture of those costs.

In the Edge Computing scenario we consider, we can reduce
the fetching cost by storing at the edge server a subset of
the catalog N , i.e., the edge server works as a cache. When
answering to a request, the cache could provide just some
of the k closest objects (those stored locally) and retrieve
the others from the server. The seminal papers [16], [17]
proposed a different use of the cache: the cache may reply
to a request using a local subset of objects that are potentially
farther than the closest neighbors to reduce the fetching
cost while increasing—hopefully only slightly—the dissim-
ilarity cost. They named such cache a similarity cache. The
envisaged applications were content-based image retrieval [16]
and contextual advertising [17]. But, as recognized in [18],
the idea has been rediscovered several times under different
names for different applications: semantic caches for object
recognition [3]–[6], soft caches for recommender systems [19],
[20], approximate caches for fast machine learning inference
[21].

1More precisely, these are the k objects whose embeddings are closer to
the embedding of r. From now on we identify objects with their embeddings.

A common assumption in the existing literature is that the
cache can only store h objects and the index needed to manage
them has essentially negligible size. We also maintain this
assumption, which is justified in practice when objects have
sizes of a few tens of kilobytes (see the quantitative examples
in Sec. III).
Caching policies. The performance of the cache depends
heavily on which objects the cache stores. Among the papers
mentioned above, many (e.g., [19], [20]) consider the offline
object placement problem: a set of objects is selected based on
historical information about object popularity and prefetched
in the cache. But object popularity can be difficult to estimate
and can change over time, especially at the level of small
geographical areas (as in the case of areas served by an
edge server) [22]. Other papers [3]–[6], [21], [23] present
more a high-level view of the different components of the
application system, without specific contributions in terms of
cache management policies (e.g., they apply minor changes
to exact caching policies like LRU or LFU). Some recent
papers [18], [24], [25] propose online caching policies that
try to minimize the total cost of the system (the sum of the
dissimilarity cost and the fetching cost), also in a networked
context [24], [26], but their schemes apply only to the case
k = 1, which is of limited practical interest.

To the best of our knowledge, the only dynamic caching
policies conceived to manage the retrieval of k > 1 similar
objects are SIM-LRU, CLS-LRU, and RND-LRU proposed
in [17] and QCACHE proposed in [27]. Next, we describe
in detail these policies to highlight AÇAI’s differences and
novelty.

All these policies maintain an ordered list of key-value pairs
where the key is a previous request and the value is the set of
k′ closest objects to the request in the catalog (in general k′ ≥
k). The cache, whose size is h, maintains a set of h/k′ past
requests. This approach allows to decompose the potentially
expensive search for close objects in the cache (see Sec. III)
in two separate less expensive searches on smaller sets. Upon
the arrival of a request r, the cache identifies the l closest
requests to r among the h/k′ in the cache. Then, it merges
their corresponding values and looks for the k closest objects
to r in this set including at most l× k′ objects. As the cache
has no knowledge about the catalog at the server, it cannot
compare the quality (i.e., the dissimilarity cost) of the local
answer with the quality of the answer the server can provide.
It relies then on heuristics (detailed below) to decide if the
local answer is good enough. If this is the case, then an
approximate hit occurs and the answer is provided to the user,
otherwise the request r is forwarded to the server that needs
to provide all k closest objects.

The cache state is updated following an LRU-like ap-
proach: upon an approximate hit, all key-value pairs that
contributed to the answer are moved to the front of the list;
upon a miss, the new key-value pair provided by the server is
stored at the front of the list, and the pair at the end of the
list is evicted.

This operation is common to SIM-LRU, CLS-LRU, RND-
LRU, and QCACHE. They differ in the choice of the parame-
ters k′ and l and in the way to decide between an approximate
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hit and a miss. We emphasize that the parameters k′ and l are
only required by the LRU-like policies and do not play any
role in AÇAI’s workflow.

SIM-LRU considers k′ ≥ k and l = 1. Upon a request
for r, SIM-LRU selects the closest request in the cache
and decides for an approximate hit (resp. a miss) if their
dissimilarity is smaller (resp. larger) than a given threshold
Cθ ∈ R≥0. Every stored key r′ covers then a hypersphere
in the request space with radius Cθ. SIM-LRU has the
property that no two keys in the cache have a dissimilarity
cost lower than Cθ, but the corresponding hyperspheres may
still intersect.

CLS-LRU [17] is a variant of SIM-LRU, that can update
the stored keys (the centers of the hyperspheres) and push
away intersecting hyperspheres to cover the largest possi-
ble area of the request space. To this purpose, CLS-LRU
maintains the history of requests served at each hypersphere
and, upon an approximate hit, moves the center to the ob-
ject that minimizes the distance to every object within the
hypersphere’s history. When two hyperspheres overlap, this
mechanism drives their centers apart, which in turn reduces
the overlapping region.

RND-LRU [17] is a random variant of SIM-LRU that
determines the request r to be a miss with a probability that
is increasing with the dissimilarity between r and the closest
request in the cache.

Finally, QCACHE [27] considers k′ = k and l > 1.
The policy decides if the k objects selected from the cache
are an approximate hit if (i) at least two of them would
have been provided also by the server—a sufficient condition
can be obtained from geometric considerations—or (ii) the
distribution of distances of the k objects from the request looks
similar to the distribution of objects around the corresponding
request for other stored key-value pairs.

These policies share potential inefficiencies: (i) the sets of
closest objects to previous queries are not necessarily disjoint
(but CLS-LRU tries to reduce their overlap) and then the
cache may store less than h distinct objects; (ii) the two-level
search may miss some objects in the cache that are close to r,
but are indexed by requests that are not among the l closest
requests to r; (iii) the policy takes into account the dissim-
ilarity costs at the caches but not at the server; (iv) objects
are served in bulk, all from the cache or all from the server,
without the flexibility of a per-object choice. As we are going
to see, AÇAI design prevents such inefficiencies by exploiting
new advances in efficient approximate kNN search algorithms,
which allows us to abandon the key-value pair indexing and
to estimate the dissimilarity costs at the server. Also AÇAI
departs from the LRU-like cache updates, considering gradient
update schemes inspired by online learning algorithms [28].

III. OTHER RELEVANT BACKGROUND

Indexes for approximate kNN search. Indexes are used
to efficiently search objects in a large catalog. In the case
of kNN, one of the approaches is to use tree-based data
structures. Unfortunately, in high dimensional spaces, e.g.,
Rd with d > 10, the computational cost of such a search is

comparable to a full scan of the collection [29]. Approximate
Nearest Neighbor search techniques trade accuracy for speed
and provide k points close to the query, but not necessarily the
closest, sometimes with a guaranteed bounded error. Promi-
nent examples are the solutions based on locality-sensitive
hashing [30], product quantization [8], [31], and graphs [32].
Despite being approximate, these indexes are in practice very
accurate, as shown over different benchmarks in [33].

As we are going to describe, AÇAI employs two approx-
imate indexes (both stored at the edge server): one for the
content stored in the cache, and one for the whole catalog N
stored in the remote server. For the former, since cache content
varies over time, we rely on a graph-based solution, such
as HNSW [32], that supports dynamic (re-)indexing with no
speed loss. On various benchmarks [33], HNSW is the fastest
index, and it is able to answer a 100NN query over a dataset
with 1 million objects in a 128-dimensional space in less than
0.5 ms with a recall greater than 97%. As for the memory
footprint, a typical configuration of the HNSW index requires
O(d) bytes per object, where d is the number of dimensions.
For instance, in the case of d = 128 dimensional vectors, the
memory required to index 10 million objects is approximately
5 GB. As the server catalog changes less frequently (e.g.,
contextual advertising applications [17], and image retrieval
applications [27]), AÇAI can index it using approaches with
a more compact object representation like FAISS [8]. FAISS
is slightly slower than HNSW and does not support fast re-
indexing if the catalog changes, but it can manage a much
larger set of objects. With a dataset of 1 billion objects,
FAISS provides an answer in less than 0.7 ms per query,
using a GPU [8]. Practically, the global catalog index can be
fully reconstructed whenever a given percentage of the catalog
changes. This operation can be done in parallel to the normal
cache operation. Once the catalog index is modified, the cache
can remove the objects that do not appear anymore in the
catalog and allocate the corresponding space to other objects.

As for the memory footprint, for a typical configuration
(IVFPQ), FAISS is able to represent an object with 30 bytes
(independently of d): only 3 GB for a dataset with 100 million
objects!

Summing up our numerical example, if each object has size
20 KB, an edge server with AÇAI storing locally 10 million
objects from a catalog with 100 million objects, needs 200 GB
for the objects and only 8 GB for the two indexes. The larger
the objects, the smaller the indexes’ footprint: for example,
when the server has a few Terabytes of disk space to store
large multimedia objects, the indexes’ size can be ignored.

Gradient descent approaches. Online caching policies based
on gradient methods have been studied in the stochastic
request setting for exact caching, with provable performance
guarantees, [34], [35]. More recently, the authors of [25]
have proposed a gradient method to refine the allocation of
objects stored by traditional similarity caching policies like
SIM-LRU. Similarly, the reference [24] considers a heuristic
based on the gradient descent/ascent algorithm to allocate
objects in a network of similarity caches. In both papers, the
system provides a single similar object (k = 1). A closely
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related recent work [36] considers the problem of allocating
different inference models that can satisfy users’ queries at
different quality levels. The authors propose a policy based on
mirror descent, and provide guarantees under a general request
process, but their policy does not scale to a large catalog size.

We deviate from these works by considering k > 1, large
catalog size, and the more general family of online mirror
ascent algorithms (of which the usual gradient ascent method
is a particular instance). Also our policy provides strong
performance guarantees under a general request process, where
requests can even be selected by an adversary. Our analysis
relies on results from online convex optimization [37] and is
similar in spirit to what was done for exact caching using the
classic gradient method in [28] and mirror descent in [38].
Two recent papers [39], [40] pursued this line of work taking
into account update costs for a single exact cache.

IV. AÇAI DESIGN

AÇAI design is summarized in Fig. 1.

A. Cost Assumptions

Many of the similarity caching policies proposed in the
literature (including SIM-LRU, CLS-LRU, RND-LRU, and
QCACHE) have not been designed with a clear quantitative
objective, but with the qualitative goal of significantly reducing
the fetching cost without increasing too much the dissimilarity
cost. Because of such vagueness, the corresponding papers do
not make clear assumptions about the dissimilarity costs and
the fetching costs. On the contrary, AÇAI has been designed
to minimize the total cost of the similarity search system and
we make explicit the corresponding hypotheses.

Our main assumption is that all costs are additive.2 The
function cd(r, o) introduced in Sec. II quantifies the dissimi-
larity of the object o and the request r. Let A be the set of
objects in the answer to request r. It is natural to consider as
dissimilarity cost of the answer

∑
o∈A cd(r, o).

In addition, if fetching a single object from the server incurs
a cost cf ∈ R>0, the fetching cost to retrieve m objects is
m × cf . This is an obvious choice when cf captures server
or network cost. When cf captures the delay experienced by
the user, then summing the costs is equivalent to consider the
round trip time negligible in comparison to the transmission
time, which is justified for large multimedia objects. It is
easy to modify AÇAI to consider the alternative case when
the fetching cost does not depend on how many objects are
retrieved. Finally, as common in other works [18], [25], we
assume that both the dissimilarity cost and the fetching cost
can be directly compared (e.g., they can both be converted
into dollars). Under these assumptions, when, for example,

the k nearest neighbors in N to the query r (kNN(r,N )) are
retrieved from the remote server, the total cost experienced by
the system is

∑
o∈kNN(r,N ) cd(r, o) + kcf .

2In Sec. IV-D, we discuss to which extent this assumption can be removed.

TABLE I: Notation Summary
Notational Conventions

1χ Indicator function set to 1 when condition χ is true
[n] Set of integers {1, 2, . . . , n}
conv(S) Convex hull of a set S

System Model
N Catalog of N objects
U Augmented catalog of 2N objects
xi 0-1 indicator variable set to 1 when i ∈ N is cached, and

xi = 1− xi−N for i ∈ U \ N
h Cache capacity
r /R Request / Request set
cf Retrieval cost
cd(r, o) Dissimilarity cost of serving object o to request r
c(r, o) Overall cost of serving object o to request r
πr Permutation of the elements of U , where πri gives the i-th

closest object to r
αri Cost difference between the (i+ 1)-th smallest cost and

the i-th smallest cost when serving request r
Kr The order of the largest possible cost when r is requested.
kNN(r, S) Set of k closest objects to r in S ⊂ N according to c(r, · )
x /X Cache state vector / Set of valid cache states
t / T Time slot / Time horizon
C(r,x) Total cost to serve request r under cache allocation x
G(r,x) Total caching gain to serve request r under cache

allocation x
CUC,T Update cost of the system over time horizon T
GT (x) Time-averaged caching gain

AÇAI
Φ Mirror map
D Domain of the mirror map
y Fractional cache state
η Learning rate
gt Subgradient of G(rt,y) at point yt∏Φ
S ( · ) Negative entropy Bregman projection onto the set S

M Freezing period
ckd Upper bound on the dissimilarity cost of the k-th closest

object for any request
ψ Static optimum discount factor

B. Cache Indexes

AÇAI departs from the key-value indexes of most of the
similarity caching policies. As discussed in Sec. II, such an
approach was essentially motivated by the need to simplify
kNN searches by performing two searches on smaller datasets
(the set of keys first, and then the union of the values for
l keys), and may lead to potential inefficiencies including sub-
utilization of the available caching space.

The two-level search implemented by existing similarity
caching policies can be seen as a naı̈ve way to implement
an approximate kNN search on the set of objects stored
locally (the local catalog C). Thanks to the recent advances
in approximate kNN searches (Sec. III), we have now better
approaches to search through large catalogs with limited
memory and computation requirements. We assume then that
the cache maintains two indexes supporting kNN searches: one
for the local catalog (the objects stored locally) and one for the
remote catalog (the objects stored at the server). A discussion
about which approximate index is more appropriate for each
catalog is in Sec. III.

The local catalog index allows AÇAI to (i) fully exploit
the available space (the cache stores at any time h objects and
can perform a kNN search on all of them), (ii) potentially
find closer objects in comparison to the non-optimized key-
value search. Instead, the remote catalog index allows AÇAI
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Fig. 1: Subfigure (a) illustrates AÇAI’s state adaptation. A time slot is initiated when a request rt is received. A virtual
(fictitious) gain G(rt,yt) and a physical gain G(rt,xt) are incurred. The virtual cache adapts its fractional state by calling
Online Mirror Ascent to obtain a new state yt+1 ∈ conv(X ) employing the subgradient of the virtual gain ∂yG(rt,yt), and
the new state is randomly rounded to a valid cache state xt+1 ∈ X . Subfigure (b) depicts how AÇAI employs the two indexes
(local catalog index and global catalog index). Approximate kNN queries are performed on each index, and the contents with
the least overall costs are selected.

to evaluate what objects the server would provide as an answer
to the request, and then to correctly evaluate which objects
should be served locally and which one should be served from
the server/ as we are going to describe next.

C. Request Serving
Differently from existing policies, AÇAI has the possibility

to compose the answer using both local objects and remote
ones. Upon a request r, AÇAI uses the two indexes to find the
closest objects from the local catalog C and the remote catalog
N . We denote the set of objects identified by these indexes as
kNN(r, C) and kNN(r,N ), respectively. AÇAI composes the
answer A by combining the objects with the smallest costs
in the two sets. For an object o stored locally (o ∈ C), the
system only pays cd(r, o); for an object o fetched from the
remote server (o ∈ N \C), the system pays cd(r, o) + cf . The
total cost experienced is

C(r,A) ,
∑

o∈A∩kNN(r,C)

cd(r, o) +
∑

o∈A\kNN(r,C)

(cd(r, o) + cf ) .

(1)

The answer A is determined by selecting k objects that
minimize the total cost, that is

A = arg min
B⊂(kNN(r,C)∪kNN(r,N ))

|B|=k

C(r,B). (2)

D. Cache State and Service Cost/Gain
In order to succinctly present how AÇAI updates the local

catalog and its theoretical guarantee, it is convenient to express
the cost in (1) as a function of the current cache state and
replace the set notation with a vectorial one.

First, we define the augmented catalog U , N ∪ {N +
1, N + 2, . . . , 2N} and define the new costs

c(r, i) =

{
cd(r, i), if i ∈ N ,
cd(r, i−N) + cf , if i ∈ U \ N . (3)

Essentially, i and i + N (for i ∈ {1, . . . , N}) correspond to
the same object, with i capturing the cost when the object is
stored at the cache and i + N capturing the cost when it is
stored at the server. From now on, when we talk about the
closest objects to a request, we are considering c(·, ·) as the
distance.

Note that AÇAI can easily be modified to account for
heterogeneous retrieval costs by modifying Eq. (3) and re-
placing cf by an object-dependent retrieval cost cf,i for every
object i ∈ N . Moreover, we assume that the fetching cost and
dissimilarity cost are added together linearly in the objective,
however our model can capture the scenario where the cost is
not necessarily additive in cd and cf by a redefinition of the
second line in Eq. (3). In particular, the algorithm only requires
the existence of an arbitrary function c(r, i) and the theoretical
guarantees in Sec. IV-H also hold under such modifications.
We consider a simplified model to streamline the presentation.

It is also convenient to represent the state of the cache (the
set of objects stored locally) as a vector x ∈ {0, 1}2N , where,
for i ∈ N , xi = 1 (resp., xi = 0), if i is stored (resp., is not
stored) in the cache, and we set xi+N = 1 − xi.3 The set of
valid cache configurations is given by:

X ,

{
x ∈ {0, 1}2N :

∑
i∈N

xi = h, xj+N = 1− xj ,∀j ∈ N
}
.

(4)

For every request r ∈ R we define the sequence πr as the
permutation of the elements of U , where πri is the i-th closest
object to r in U according to the costs c(r, o),∀o ∈ U . The
answer A provided by AÇAI (Eq. (2)) coincides with the first
k elements of πr for which the corresponding index in x is

3The vector x has redundant components, but such redundancy leads to
more compact expressions in what follows.
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equal to 1. The total cost to serve r can then be expressed
directly as a function of the cache state x:

C(r,x) =

2N∑
i=1

c(r, πri )xπri 1
{∑i−1

j=1 xπrj
<k
},∀x ∈ X , (5)

where 1{χ} = 1 when the condition χ is true, and 1{χ} = 0
otherwise.

Instead of working with the cost C(r,x), we can equiva-
lently consider the caching gain defined as the cost reduction
due to the presence of the cache (as in [35], [41], [42]):

G(r,x) , C(r, (0, 0, . . . , 0︸ ︷︷ ︸
N

, 1, 1, . . . , 1︸ ︷︷ ︸
N

))− C(r,x), (6)

where the first term corresponds to the cost when the cache is
empty (and then requests are entirely satisfied by the server).
The theoretical guarantees of AÇAI are simpler to express in
terms of the caching gain (Sec. IV-H). Observe that the caching
gain is zero for any cache state when the retrieval cost is null
(cf = 0), e.g., the cache and the server are co-located. In this
case, the cache would not provide any advantage.

The caching gain has the following compact expression
(Supplementary material, Sec. I, Lemma 3):

G(r,x) =

Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

 , (7)

where

σri ,
i∑

j=1

1{πrj∈U\N}, ∀(i, r) ∈ U ×R, (8)

Kr is the value of the minimum index i ∈ U such that σri = k,
and αri , c(r, πri+1)− c(r, πri ) ≥ 0.

Let conv(X ) denote the convex hull of the set of valid
cache configurations X . We observe that G(r,y) is a concave
function of variable y ∈ conv(X ). Indeed, from Eq. (7),
G(r,y) is a linear combination, with positive coefficients, of
concave functions (the minimum of affine functions in y).

E. Cache Updates

We denote by rt ∈ R the t-th request. The cache is allowed
to change its state xt ∈ X to xt+1 ∈ X in a reactive manner,
after receiving the request rt and incurring the gain G(rt,xt).
AÇAI updates its state xt to greedily maximize the gain. The
update of the state xt is driven from a continuous fractional
state yt ∈ conv(X ), where yt,i can be interpreted as the
probability to store object i in the cache. At each request rt,
AÇAI increases the components of yt corresponding to the
objects that are used to answer to rt, and decreases the other
components. This could be achieved by a classic gradient
method, e.g., yt+1 = yt + ηgt, where gt is a subgradient
of G(rt,yt) and η ∈ R+ is the learning rate (or stepsize),
but in AÇAI we consider a more general online mirror ascent
update OMA [43, Ch. 4] that is described in Algorithm 1.4

OMA is parameterized by the function Φ( · ), that is called

4Properly speaking OMA, only refers to the update of yt and does not
include the randomized rounding schemes in lines 8–14.

Algorithm 1 Online Mirror Ascent (OMA)
Input: η ∈ R+, ROUNDINGSCHEME

1: procedure ONLINEMIRRORASCENT
2: y1 ← arg min

y∈conv(X )∩D
Φ(y);x1 ← DEPROUND(y1)

3: for t← 1, 2, . . . , T do . Incur a gain G(rt,yt), and compute a
subgradient gt of G at point yt (Supplementary material, Sec. V, Eq. (52))

4: ŷt ← ∇Φ(yt) . Map primal point to dual point
5: ẑt+1 ← ŷt + ηgt . Take gradient step in the dual
6: zt+1 ← (∇Φ)−1 (ẑt+1) . Map dual point to a primal point
7: yt+1 ←

∏Φ
conv(X )∩D(zt+1) . Proj. new point onto feasible region

. Select a rounding scheme
8: if ROUNDINGSCHEME = DEPROUND then
9: if M | t then . Round the fractional state every M requests

10: xt+1 ← DEPROUND(yt+1)
11: end if
12: else if ROUNDINGSCHEME = COUPLEDROUNDING then
13: xt+1 ← COUPLEDROUNDING(xt,yt,yt+1)
14: end if
15: end for
16: end procedure

the mirror map (see Supplementary material, Sec. VI). If the
mirror map is the squared Euclidean norm, OMA coincides
with the usual gradient ascent method, but other mirror maps
can be selected. In particular, our experiments in Sec. V show
that the negative entropy map Φ(y) =

∑
i∈N yi log yi with

domain D = RN>0 achieves better performance.

F. Rounding the Cache Auxiliary State

At every time slot t ∈ [T ], AÇAI can use the randomized
rounding scheme DEPROUND [44] to generate a cache allo-
cation xt+1 ∈ X from yt+1 ∈ conv(X ), while still satisfying
the capacity constraint at any time slot t. The cache can fetch
from the server the objects that are in xt+1 but not in xt.

As cache updates introduce extra costs for the network
operator, DEPROUND could potentially cause extra update
costs that grow linearly in time. To mitigate incurring large
update costs, we may avoid updating the cache state at every
time slot t ∈ [T ] by freezing the cache physical state for
M ∈ [T ] time steps. In particular, we assume the update
cost of the system to be proportional to the number of fetched
files, which can be upper bounded by the l1 norm of the state
update:

∑
i∈N max{0, xt+1,i−xt,i} ≤ ‖xt+1 − xt‖1. Hence,

if we denote by CUC,T the total update cost of the system over
the time horizon T , then we have

CUC,T = O
(
T−1∑
t=1

‖xt+1 − xt‖1

)
. (9)

When the cache state is refreshed after a call to the rounding
scheme DEPROUND, the incurred update cost is in the order of
O (2h), and CUC,T

T = O
(

2h
M

)
. Moreover, when M = Θ

(
T β
)

for β ∈ (0, 1) it holds CUC,T

T = O
(
T−β

)
, and for any ε > 0

and T large enough
CUC,T

T
≤ ε. (10)

The average update cost of the system is then negligible
for large T . The parameter M reduces cache updates at the
expense of reducing the cache reactivity (see Theorem IV.3).

In some applications, it is possible to slightly violate the
capacity constraint with small deviations, as long as this is
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satisfied on average [45]–[47]. For example, there could be a
monetary value associated to the storage reserved by the cache,
and a total budget available over a target time horizon T . In
this setting, the cache may violate momentarily the capacity
constraint, as far as the total payment does not exceed the
budget.

COUPLEDROUNDING (Algorithm 2) is a rounding approach
which works under this relaxed capacity constraint and does
not require freezing the cache state for M time slots. At time
slot t ∈ [T ], the cache decides which files to cache through N
coin tosses, where the file i ∈ N is cached with probability
yt,i, and the random state obtained is xt. By definition, the
expected value of the integral state is E[xt] = yt. The
probability that the cache exceeds its target storage capacity
by δh is given by the Chernoff bound [48] as:

P (‖xt‖1 > (1 + δ)h) < e
−δ2h

2 , δ ∈ (0, 1], (11)

where the l1 norm is restricted to the first N components of
the vector, i.e., ‖x‖1 ,

∑
i∈N |xi|. In the regime of large

cache sizes h� 1, we observe from the Chernoff bound that
the cache stores less than (1 + δ) of its target capacity h with
high probability.

Theorem IV.1 (proof in Supplementary material, Sec. VIII-
A) shows that the expected movement of COUPLEDROUND-
ING is equal to the movement of the fractional auxiliary states
{yt}Tt=1.

Theorem IV.1. If the input to Algorithm 2 is sampled from
a random variable xt ∈ {0, 1}N with E[xt] = yt, then
we obtain as output an integral cache configuration xt+1 ∈
{0, 1}N satisfying E[xt+1] = yt+1 and E [‖xt+1 − xt‖1] =∥∥yt+1 − yt

∥∥
1
.

Moreover, the movement of the fractional states is negligible
for large T :

Theorem IV.2. Algorithm 1, configured with the negative
entropy mirror map and learning rate η = O

(
1√
T

)
, selects

fractional cache states satisfying

T−1∑
t=1

∥∥yt+1 − yt
∥∥

1
= O(

√
T ). (12)

The proof is in Supplementary material, Sec. VIII-B.
Combining the two theorems and (9), we also conclude that

the expected average update cost of the system E
[
CUC,T

T

]
is

negligible for large T .

G. Time Complexity

AÇAI uses OMA in Algorithm 1 coupled with a rounding
procedure DEPROUND or COUPLEDROUNDING. The round-
ing step may take O (N) operations (amortized every M re-
quests when DEPROUND is used). In practice, AÇAI quickly
sets irrelevant objects in the fractional allocation vector yt
very close to 0. Therefore, we can keep track only of objects
with a fractional value above a threshold ε > 0, and the size
of this subset is practically of the order of h.

Algorithm 2 Coupled Rounding
Input: xt,yt,yt+1 . xt satisfies E[xt] = yt

1: procedure COUPLEDROUNDING
2: δ ← yt+1 − yt . Compute the change in distribution
3: for i ∈ N do
4: if (xt,i = 1) ∧ (δi < 0) then
5: xt+1,i ← 0 w.p. − δi

yt,i
, and xt+1,i ← 1 w.p. yt,i+δi

yt,i
6: else if (xt,i = 0) ∧ (δi > 0) then
7: xt+1,i ← 0 w.p. 1−yt,i−δi

1−yt,i
, and xt+1,i ← 1 w.p. δi

1−yt,i
8: else
9: xt+1,i ← xt,i . Keep the same state

10: end if
11: xt+1,i+N ← 1− xt+1,i . Update the augmented states
12: end for
13: return xt+1 . Return the next physical state satisfying E[xt+1] = yt+1

14: end procedure

Similarly, subgradient computation (see Supplementary ma-
terial, Sec. V, Eq. (52)) may require O (N) operations per each
component and then have O

(
N2
)

complexity, but in practice,
as the vector yt is sparse, calculations require only a constant
number of operations and complexity reduces to O (N).

Finally, we use the negative entropy Bregman projection
in [38] (line 6 of Algorithm 1) that has O (N + h log(h)) time
complexity. The O (N + h log(h)) is due to a partial sorting
operation while the actual projection takes O (h). Again, most
of the components of yt are equal to 0, so that, in practice,
we need to sort much fewer points.

H. Theoretical Guarantees

The best static cache allocation in hindsight is the cache
state x∗ that maximizes the time-averaged caching gain in
Eq. (6) over the time horizon T , i.e.,

x∗ ∈ arg max
x∈X

(
GT (x) ,

1

T

T∑
t=1

G(rt,x)

)
. (13)

We observe that solving (13) is NP-hard in general even for
k = 1 under a stationary request process [18]. Nevertheless,
AÇAI operates in the online setting and provides guarantees
in terms of the ψ-regret [49]. In this scenario, the regret is
defined as a gain loss in comparison to the best static cache
allocation x∗ in (13). The ψ-regret discounts the best static
gain by a factor ψ ∈ (0, 1]. Formally,

ψ-RegretT,X (OMAΦ) =

sup
{r1,r2,...,rT }∈RT

{
ψ

T∑
t=1

G(rt,x∗)− E

[
T∑
t=1

G(rt,xt)

]}
,

(14)

where the expectation is over the randomized choices of
DEPROUND. Note that the supremum in (14) is over all
possible request sequences. This definition corresponds to the
so-called adversarial analysis, imagining that an adversary
selects requests in R to jeopardize cache performance. The
definition of the regret in Eq. (14), which compares the gain
of the policy to a static offline solution, is classic. Several
bandit settings, e.g., simple multi-armed bandits [50]–[52],
contextual bandits [53]–[55], and, of course, their applications
to caching problems under the full-information setting [28],
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[38], [40], [56], [57], adopt this definition. In all these cases,
the dynamic, adaptive algorithm is compared to a static policy
that has full hindsight of the entire trace of actions. Moreover,
as is customary when the offline problem is NP-hard [58],
the regret is not w.r.t. the optimal caching gain, but w.r.t. the
gain obtained by an offline approximation algorithm. Regret
bounds in the adversarial setting provide strong robustness
guarantees in practical scenarios. AÇAI has the following
regret guarantee:

Theorem IV.3. Algorithm 1 configured with
the negative entropy mirror map, learning rate

η = 1
(ckd+cf )

√
2 log(Nh )

T+(M−1)(M+T ) , and rounding scheme
COUPLEDROUNDING or DEPROUND with a freezing period
M = Θ

(
T β
)

for β ∈ [0, 1), has a sublinear (1− 1/e)-regret
in the number of requests, i.e.,

(1− 1/e)-RegretT,X (OMAΦ)

≤
(

1− 1

e

)
(ckd + cf )h

√
2 log

(
N

h

)
((M − 1)(T +M) + T ),

where the constant ckd is an upper bound on the dissimilarity
cost of the k-th closest object for any request in R.

Proof. (sketch) We first prove that the expected gain of the
randomly sampled allocations xt is a (1−1/e)-approximation
of the fractional gain. Then, we use online learning results [43]
to bound the regret of OMA schemes operating on a convex
decision space against concave gain functions picked by an
adversary. The two results are combined to obtain an upper
bound on the (1−1/e)-regret. The full proof is available in
Supplementary material, Sec. IX.

The (1−1/e)-regret of AÇAI under COUPLEDROUNDING

scheme has order-optimal regret O
(√

T
)

[59]. Under the
rounding scheme DEPROUND with freezing period M =
Θ
(
T β
)
, the reduced reactivity of AÇAI is reflected by the

additional T
β
2 factor in the order of the regret. Nonetheless,

the expected time-average (1− 1/e)-regret of AÇAI can get
arbitrarily close to zero for a large time horizon. Hence, AÇAI
performs on average as well as a (1− 1/e)-approximation of
the optimal configuration x∗. This observation also suggests
that our algorithm can be used as an iterative method to solve
the NP-hard static allocation problem with the best approxi-
mation bound achievable for these kinds of problems [60].

Corollary IV.3.1. (offline solution) Let ȳ be the average
fractional allocation ȳ = 1

T̃

∑T̃
i=1 yi of AÇAI, and x̄ the

random state sampled from ȳ through COUPLEDROUNDING
or DEPROUND. If Algorithm 1 is configured with the negative
entropy mirror map, and, at each iteration t ∈ [T̃ ], operates
with subgradients of the time-averaged caching gain (13), then
∀ε > 0 and over a sufficiently large number of iterations T̃ ,
x̄ satisfies

E [GT (x̄)] ≥
(

1− 1

e
− ε
)
GT (x∗).

where x∗ = arg max
x∈X

GT (x̄).
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Fig. 2: Synthetic catalog of objects located on a 30× 30 grid.
The heatmap depicts the popularity distribution of objects in
the grid.

The proof can be found in Supplementary material, Sec. X.

V. EXPERIMENTS

We start evaluating AÇAI in a simple scenario with a
synthetic request process, for which we can compute the
optimal fractional static cache allocation. We then consider
real-world catalogs and traces and compare our solution with
state-of-the-art online policies proposed for kNN caching, i.e.,
SIM-LRU [17], CLS-LRU [17], and QCACHE [27] described
in Sec. II.

A. Simple Scenario

As in [61], we consider a synthetic catalog of N = 900
objects positioned on a 30 × 30 grid. The request process is
generated according to the Independent Reference Model [62].
The objects’ popularity is represented by a Gaussian distribu-
tion. In particular, an object o ∈ N with l1 distance do
from the center of the grid (15, 15) is requested at any time

slot t with probability po ∝ e
− d2o

2×62 . The synthetic catalog is
depicted in Fig. 2.

We consider the dissimilarity cost to be the l1 distance. We
take different values for the retrieval cost cf ∈ {1, 2, 3, 4} and
the number of neighbors k ∈ {1, 2, 3, 4, 5}. We take the cache
capacity to be h = 15. We configure AÇAI with DEPROUND
rounding scheme.

We use CVXPY [63] to find the optimal fractional static
cache allocation, and AÇAI to compute its approximation
according to Corollary IV.3.1. In particular, AÇAI runs for
T = 10 000 iterations with a diminishing learning rate
ηt = 2.0

cf
(1 + cos(πtT )).

Results. Figure 3 shows the optimal fractional static cache
allocations and the AÇAI’s fractional static cache allocations
(see Corollary IV.3.1) under different retrieval costs and the
number of neighbors k. We observe that the optimal fractional
static cache allocations in Fig. 3 (a) are symmetric, while
AÇAI’s fractional static cache allocations in Fig. 3 (b) par-
tially lose this symmetry for values of k ∈ {2, 3, 4} primarily
due to the different ways a kNN query can be satisfied over
the physical catalog for such values. In fact, there are multiple
objects in the catalog with the same distance from a request
r, and AÇAI only selects a single permutation πr for a
request r. We observe that, when the retrieval cost is higher,
the allocations are more spread to cover a larger part of the
popular region.
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(a) Optimal fractional static cache allocations
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(b) AÇAI’s fractional static cache allocations

Fig. 3: The optimal fractional static cache allocations, and
AÇAI’s fractional static cache allocations under different
values of the retrieval costs cf ∈ {1, 2, 3, 4} and of the number
of neighbors k ∈ {1, 2, 3, 4, 5}.

In Fig. 4, we compare the gain obtained by the optimal
fractional static cache allocations, its (1 − 1

e )-approximation,
and the gain obtained by AÇAI’s fractional static cache
allocations and the static integral cache allocations (see
Corollary IV.3.1). While Fig. 3 shows that AÇAI’s fractional
static cache allocations may differ from the optimal ones, their
costs are practically indistinguishable (the two corresponding
surfaces overlap in Fig. 4). We also observe that rounding
comes at a cost, as there is a clear gap between the gain of
AÇAI’s fractional cache allocations and of AÇAI’s integral
ones. Still, the average gain of the integral cache allocations
remains close to the fractional optimum and well above the
(1 − 1

e )-approximation. AÇAI then performs much better
than what is guaranteed by Corollary IV.3.1 (a potential gain

Retrieval cost (cf)
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Fig. 4: The gain of the optimal fractional static cache allo-
cations (Gain(OPTY)), its (1 − 1

e )-approximation, and the
gain obtained by AÇAI’s fractional static cache alloca-
tions (Gain(AÇAIY)) and static integral cache allocations
(Gain(AÇAIX )) under different values of the retrieval cost
cf ∈ {1, 2, 3, 4} and of the number of neighbors k ∈
{1, 2, 3, 4, 5}. For AÇAI’s static integral cache allocations,
we report 95% confidence intervals computed over 50 different
runs. The gain of the fractional static cache allocations
obtained by AÇAI overlaps with the gain of the optimal
fractional static cache allocations.

reduction by a factor 1− 1
e ).

B. Real-world Datasets

SIFT1M trace. SIFT1M is a classic benchmark dataset
to evaluate approximate kNN algorithms [64]. It contains
1 million objects embedded as points in a 128-dimensional
space. SIFT1M does not provide a request trace so we gener-
ated a synthetic one according to the Independent Reference
Model [62] (similar to what is done in other papers like [16],
[23]). Request rt is for object i with a probability λi indepen-
dently of previous requests. We spatially correlated objects’
popularities by letting λi depend on the position of the embed-
dings in the space. In particular, we considered the barycenter
of the whole dataset and set λi proportional to d−βi , where
di is the distance of i from the barycenter. The parameter β
was chosen such that the tail of the ranked objects’ popularity
distribution is similar to a Zipf with parameter 0.9, as observed
in some image retrieval systems [27]. We generated a trace
with 105 requests. The number of distinct objects requested in
the trace is approximately 2× 104.

Amazon trace. The authors of [65] crawled the Amazon
web-store and collected a dataset to model relationships
among products and provide user recommendations. They
took as input the visual features of product images obtained
from a machine learning model pre-trained on 1.2 million
images from ImageNet. The visual features are augmented
with the relationships between the items, and these rela-
tionships are collected based on the cosine similarity of
the sets of users who purchased or viewed the items. The
objects’ dissimilarity is modeled as a distance d(·, ·), such that
P(item i is related to item j) increases monotonically with
d(xi,xj), where xi and xj are the visual features of the
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items i and j. The authors of [65] show that the relationship
‘users who viewed i also viewed j’ can successfully be used to
provide accurate recommendations. The authors of [25] built
a request trace from the timestamped user reviews for objects
in the category Baby embedded in a 100-dimensional space.
Two products o and o′ are considered similar if they have been
viewed by the same users. We use the request trace from [25]
and in particular the interval [2×105, 3×105].5 The number of
distinct objects requested in this trace is approximately 2×104.

C. Settings and Performance Metrics

For AÇAI, unless otherwise said, we choose the negative
entropy Φ(y) =

∑
i∈N yi log(yi) as mirror map (see Fig. 10

and the corresponding discussion for other choices) and the
rounding scheme DEPROUND with M = 1. The learning rate
is set to the best value found exploring the range [10−6, 10−4].

As for the state-of-the-art caching policies, SIM-LRU and
CLS-LRU have two parameters, Cθ and k′, that we set in each
experiment to the best values we found exploring the ranges
[cf , 2cf ] for Cθ and [1, h] for k′. For QCACHE we consider
l = h/k: the cache can then perform the kNN search over all
local objects.

We also consider a simple similarity caching policy that
stores previous requests and the corresponding set of k closest
objects as key-value pairs, and manages the set of keys
according to LRU. The cache then serves locally the request
if it coincides with one of the previous requests in its memory,
it forwards it to the server, otherwise. The ordered list of keys
is updated as in LRU. We refer to this policy simply as LRU.

We compare the policies in terms of their normalized
average caching gain per request, where the normalization
factor corresponds to the caching gain of a cache with a size
equal to the whole catalog. In such a case, the cache could
store the entire catalog locally and would achieve the same
dissimilarity cost of the server without paying any fetching
cost. The maximum possible caching gain is then kcf . The
normalized average gain of a policy P with cache states
{xt}Tt=1 over T requests can then be defined as:

NAG(P) =
1

kcfT

T∑
t=1

G(rt,xt). (15)

D. Results

We consider a dissimilarity cost proportional to the squared
Euclidean distance. This is the usual metric considered for
SIFT1M benchmark and also the one considered to learn the
embeddings for the Amazon trace in [65].

The numerical value of the fetching cost depends on its
interpretation (delay experienced by the user, load on the
server or on the network) as well as on the application,
because it needs to be converted into the same unit of the
approximation cost. In our evaluation, we let it depend on the
topological characteristics of the dataset in order to be able
to compare the results for the two different traces. Unless

5We discard the initial part of the trace because it contains requests only
for a small set of objects (likely the set of products to crawl was progressively
extended during the measurement campaign in [65]).
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Fig. 5: Caching gain for the different policies. The cache size
is h = 1000 and k = 10.
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Fig. 6: Caching gain for the different policies, for different
cache sizes h ∈ {50, 100, 200, 500, 1000, 2000} and k = 10.
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Fig. 7: Caching gain for the different policies and different
retrieval costs. The retrieval cost cf is taken as the average
distance to the i-th neighbor, i ∈ {2, 10, 50, 100, 500, 1000}.
The cache size is h = 1000 and k = 10.

otherwise said, we set cf equal to the average distance of
the 50-th closest neighbor in the catalog N .

Figure 5 shows how the normalized average gain changes
as requests arrive and the different caching policies update the
local set of objects (starting from an empty configuration). The
cache size is h = 1000 and the cache provides k = 10 similar
objects for each request. All policies reach an almost stationary
gain after at most a few thousand requests. Unsurprisingly,
the naı̈ve LRU has the lowest gain (it can only satisfy locally
requests that match exactly a previous request) and similarity
caching policies perform better. AÇAI has a significant im-
provement in comparison to the second best policy (SIM-LRU
for SIFT1M and CLS-LRU for Amazon).

This advantage of AÇAI is constantly confirmed for dif-
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Fig. 8: Caching gain for the different policies. The cache size
is h = 1000, and k ∈ {10, 20, 30, 50, 100}.
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Fig. 9: Caching gain for AÇAI for different values of η (top).
Caching gain for SIM-LRU(middle) and CLS-LRU (bottom)
for different values of the parameters (k′, Cθ). SIFT1M trace.

ferent cache sizes (Fig. 6), different values of the fetching
cost cf (Fig. 7), and different values of k (Fig. 8). The relative
improvement of AÇAI, in comparison to the second best
policy, is larger for small values of the cache size (+30%
for SIFT1M and +25% for Amazon when h = 50), and small
values of the fetching cost (+35% for SIFT1M and +100%
for cf equal to the average distance from the second closest
object). Note how these are the settings where caching choices
are more difficult (and indeed all policies have lower gains):
when cache storage can accommodate only a few objects, it is
critical to carefully select which ones to store; when the server
is close, the costs of serving requests from the cache or the
server are similar and it is difficult to correctly decide how to
satisfy the request. The performance of caching policies is
in general less dependent on the number k of similar objects
to retrieve and AÇAI achieves about 10% improvement for k
between 10 and 100 when h = 1000 (Fig. 8).

Sensitivity analysis. We now evaluate the robustness of AÇAI
to the configuration of its single parameter (the learning
rate η). Figure 9 shows indeed that, for learning rates that
are two orders of magnitude apart, we can achieve almost
the same normalized average gain both for h = 50 and for
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Neg-entropy: η = 10−4

Euclidean: η = 5× 10−7
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Fig. 10: Caching gain for AÇAI configured with negative
entropy and Euclidean maps (SIFT1M trace). The cache size
is h = 100 and k = 10.

h = 1000.6

In contrast, the performance of the second best policies
(SIM-LRU and CLS-LRU) are more sensitive to the choice
of their two configuration parameters k′ and Cθ. For example,
the optimal configuration of SIM-LRU is k′ = 10 and
Cθ = 1.5 × cf for a small cache (h = 50) but k′ = 200
and Cθ = 2 × cf for a large one (h = 1000). Moreover, in
both cases a misconfiguration of these parameters would lead
to significant performance degradation.

Choice of the mirror map. If the mirror map is selected equal
to the squared Euclidean norm, the OMA update coincides
with a standard gradient update. Figure 10 shows the superi-
ority of the negative entropy map: it allows one to achieve a
higher gain than the Euclidean norm map or the same gain
but in a shorter time. To the best of our knowledge, ours
is the first paper that shows the advantage of using non-
Euclidean mirror maps for similarity caching problems. We
observe how our finding is in apparent contrast with what
observed for exact caches in [38], i.e., that the Euclidean
mirror map should always be preferred when requests are not
batched. The difference can be explained as follows: under
exact caching only the requested object can satisfy the request
and then the gradient has a single non-null component, but,
under similarity caching, multiple objects in the vicinity of a
request can contribute to reduce the cost of serving it and the
gradient is then less sparse. It is known that denser gradients
may lead to prefer the negative entropy map [43, Sec. 4.3] and
our results in Supplementary material, Sec. VII-A provide a
theoretical justification for our specific problem.

Dissecting AÇAI performance. In comparison to state-of-
the-art similarity caching policies, AÇAI introduces two key
ingredients: (i) the use of fast, approximate indexes to decide
what to serve from the local catalog and what from the remote
one, and (ii) the OMA algorithm to update the cache state. It
is useful to understand how much each ingredient contributes
to AÇAI improvement with respect to the other policies.

To this aim, we integrated the same indexes in the other
policies allowing them to serve requests as AÇAI does,
combining both local objects and remote ones based on

6Under a stationary request process, a smaller learning rate would lead to
converge slower but to a solution closer to the optimal one. Under a non-
stationary process, a higher learning rate may allow faster adaptivity. In this
trace, the two effects almost compensate, but see also Fig. 10.
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Fig. 11: AÇAI caching gain improvement in comparison
to the second best state-of-the-art similarity caching policy:
contribution of approximate indexes and gradient updates. The
cache size is h = 1000, and k ∈ {10, 20, 30, 50, 100}.
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Fig. 12: Number of fetched files (time average) and caching
gain of AÇAI under different rounding schemes. AÇAI is run
with the learning rate η = 10−5 over the Amazon trace. The
cache size is h = 1000 and k = 10.

their costs (see Sec. IV-C), while leaving their cache updating
mechanism unchanged. We then compute, in the same setting
of Fig. 8, how much the gain of the second best policy (SIM-
LRU for SIFT1M and CLS-LRU for Amazon) increases
because of AÇAI request service mechanism. This is the part
of AÇAI improvement attributed to the use of the two indexes,
the rest is attributed to the cache update mechanism through
OMA. We observe from Fig. 11 that most of AÇAI gain
improvement over the second best caching policy is due to
the use of approximate indexes, but OMA updates are still
responsible for 15–20% of AÇAI performance improvement
under SIFT1M trace and 20–35% for the Amazon trace.

Update cost. In this part, we evaluate the update cost of the
different rounding schemes. We set the cache size h = 1000
and k = 10. We run AÇAI over the Amazon trace with a
learning rate η = 10−5.

Figure 12 (a) gives the time-averaged number of files
fetched and Figure 12 (b) gives the caching gain of the
different rounding schemes. We observe that, by increasing
the cache state freezing parameter M , the system fetches
fewer files per iteration at the expense of losing reactivity and
then incurring a smaller gain at the start. The coupled rounding
scheme achieves the best performance as it fetches fewer files
without losing reactivity.

Figure 13 shows the instantaneous and time-averaged
cache occupancy of the cache using the COUPLEDROUND-
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Fig. 13: Time-averaged and instantaneous cache occupancy
under COUPLEDROUNDING. AÇAI is run with the learning
rate η = 10−5 over the Amazon trace. The cache size is h =
1000 and k = 10.

ING scheme with the relaxed capacity constraint. We observe
that the time-averaged cache occupancy rapidly converges to
the cache capacity h, while the instantaneous occupancy is
kept within 5% of the cache capacity.

VI. CONCLUSION

Edge computing provides computing and storage resources
that may enable complex applications with tight delay guar-
antees like augmented-reality ones, but these strategically
positioned resources need to be used efficiently. To this aim,
we designed AÇAI, a content cache management policy that
determines dynamically the best content to store on the edge
server. Our solution adapts to the user requests, without any
assumption on the traffic arrival pattern. AÇAI leverages two
key components: (i) new efficient content indexing methods
to keep track of both local and remote content, and (ii) mirror
ascending techniques to optimally select the content to store.
The results show that AÇAI is able to outperform the state-
of-the-art policies and does not need careful parameter tuning.

As future work, we plan to evaluate AÇAI in the context
of machine learning classification tasks [66], in which the
size of the objects in the catalog is comparable to their d-
dimensional representation in the index, and, as a consequence,
the index size cannot be neglected in comparison to the local
catalog size. Another important future research direction is to
consider dynamic regret, whereby the performance of a policy
is compared to a dynamic optimum. Also, since the employed
online algorithm OMA is greedy (i.e., does not keep track
of the history of the requests), with careful selection of the
mirror map, it may have an adaptive regret guarantee, e.g.,
such guarantee holds for OGD [67].
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Tradeoff Using Bariance Estimates in Multi-Armed Bandits,” Theoreti-
cal Computer Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[53] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual Bandits with
Linear Payoff Functions,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 2011, pp. 208–214.

[54] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire,
“Taming the Monster: a Fast and Simple Algorithm for Contextual
Bandits,” in International Conference on Machine Learning. PMLR,
2014, pp. 1638–1646.

[55] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient Optimal Learning for Contextual Bandits,”
in Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence, 2011, pp. 169–178.

[56] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Fundamental Limits on
the Regret of Online Network-Caching,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 4, no. 2, jun
2020.

[57] Y. Li, T. Si Salem, G. Neglia, and S. Ioannidis, “Online Caching
Networks with Adversarial Guarantees,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 5, no. 3, pp.
1–39, 2021.

[58] L. Chen, H. Hassani, and A. Karbasi, “Online Continuous Submodular
Maximization,” in International Conference on Artificial Intelligence
and Statistics, 2018, pp. 1896–1905.

[59] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[60] G. L. Nemhauser and L. A. Wolsey, “Best Algorithms for Approxi-
mating the Maximum of a Submodular Set Function,” Mathematics of
Operations Research, vol. 3, no. 3, pp. 177–188, 1978.

[61] A. Sabnis, T. Si Salem, G. Neglia, M. Garetto, E. Leonardi, and R. K.
Sitaraman, “GRADES: Gradient Descent for Similarity Caching,” in
IEEE Conference on Computer Communications (INFOCOM), 2021.

[62] E. G. Coffman and P. J. Denning, Operating Systems Theory. Prentice
Hall, 1973, vol. 973.

[63] S. Diamond and S. Boyd, “CVXPY: A Python-Embedded Modeling
Language for Convex Optimization,” Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, jan 2016.

[64] H. Jégou, M. Douze, and C. Schmid, “Product Quantization for Nearest
Neighbor Search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[65] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-Based
Recommendations on Styles and Substitutes,” in Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’15, New York, NY, USA, 2015, pp.
43–52.

[66] U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis,
“Generalization through Memorization: Nearest Neighbor Language
Models,” in International Conference on Learning Representations
(ICLR), 2020.

[67] M. Zinkevich, “Online Convex Programming and Generalized Infinites-
imal Gradient Ascent,” in Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, ser.
ICML’03. AAAI Press, 2003, pp. 928–935.

[68] T. Si Salem, G. Castellano, G. Neglia, F. Pianese, and A. Araldo,
“Towards Inference Delivery Networks: Distributing Machine Learning
with Optimality Guarantees,” preprint arXiv:2105.02510, 2021.

[69] B. S. Mordukhovich and N. M. Nam, “Geometric Approach to Subdif-
ferential Calculus,” Optimization, vol. 66, no. 6, pp. 839–873, 2017.

[70] R. T. Rockafellar, Convex Analysis. Princeton University Press, 2015.

Tareq Si Salem received the MS. degree and Ph.D.
degree in computer science from Côte d’Azur Uni-
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Supplementary Material for Paper:

Ascent Similarity Caching with Approximate Indexes

I. EQUIVALENT EXPRESSION OF THE COST FUNCTION

Lemma 1. Let us fix the threshold c ∈ N ∪ {0}, r ∈ R and i ∈ U . The following equality holds

min

c,
i∑

j=1

xπrj

−min

c,
i−1∑
j=1

xπrj

 = xπri 1
{∑i−1

j=1 xπrj
<c
}. (16)

Proof. We distinguish two cases:

(i) When
∑i−1
j=1 xπrj ≥ c this implies that

∑i
j=1 xπrj = xπrj +

∑i−1
j=1 xπrj ≥ c + xπri ≥ c since xπri ≥ 0. Therefore,∑i−1

j=1 xπrj ≥ c implies that min
{
c,
∑i−1
j=1 xπrj

}
= min

{
c,
∑i
j=1 xπrj

}
= c, and we have:

min

c,
i∑

j=1

xπrj

−min

c,
i−1∑
j=1

xπrj

 = 0. (17)

(ii) When
∑i−1
j=1 xπrj < c, we have

∑i
j=1 xπrj = xπrj +

∑i−1
j=1 xπrj < c + xπri ≤ c since xπri ≤ 1, this implies that

min
{
c,
∑i
j=1 xπrj

}
=
∑i
j=1 xπrj and min

{
c,
∑i−1
j=1 xπrj

}
=
∑i−1
j=1 xπrj , and we have

min

c,
i∑

j=1

xπrj

−min

c,
i−1∑
j=1

xπrj

 = xπri . (18)

Combining Eqs. (17) and (18) yields Eq. (16).

Lemma 2. The cost function C(r,x) given by the expression in Eq. (5), can be equivalently expressed as:

C(r,x) = −
Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

+

Kr∑
i=1

c(r, πri )1{πri∈U\N}, (19)

where σri =
∑i
j=1 1{πrj∈U\N}, α

r
i = c(r, πri+1)− c(r, πri ) and Kr = min{i ∈ U : σri = k} for every (r, i) ∈ R× U .

Proof. Let c̃(r, o),∀(r, o) ∈ R×U be a cost defined as c̃(r, πri ) = c(r, πri ),∀i ∈ [Kr] and 0 otherwise, and we also define α̃ri
as α̃ri , c̃(r, πri+1)− c̃(r, πri ).

When i = 1 and for any r ∈ R, we have

c̃(r, πri ) min

k,
i−1∑
j=1

xπrj

 = 0. (20)

Note that σr1 = 0 by definition, since πr1 ∈ N for any r ∈ R. We have

−
Kr∑
i=1

α̃riσ
r
i =

Kr∑
i=1

c̃(r, πri )σ
r
i −

Kr∑
i=1

c̃(r, πri+1)σri =

Kr∑
i=1

c̃(r, πri )σ
r
i −

Kr∑
i=2

c̃(r, πri )σ
r
i−1 (21)

=

Kr∑
i=1

c̃(r, πri )σ
r
i −

Kr∑
i=1

c̃(r, πri )σ
r
i−1 =

Kr∑
i=1

c̃(r, πri )1{πri∈U\N} =

Kr∑
i=1

c(r, πri )1{πri∈U\N}. (22)
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Observe that the indicator function 1{∑i−1
j=1 xπrj

<k
} is 0 for every i ≥ Kr + 1; therefore, the summation in Eq. (5) can be

limited to Kr instead of 2N . Using Lemma 1 we expand the expression of C(r,x) as follows:

C(r,x) =

Kr∑
i=1

c(r, πri )xπri 1
{∑i−1

j=1 xπrj
<k
} =

Kr∑
i=1

c̃(r, πri )xπri 1
{∑i−1

j=1 xπrj
<k
} (23)

(16)
=

Kr∑
i=1

c̃(r, πri )

min

k,
i∑

j=1

xπrj

−min

k,
i−1∑
j=1

xπrj


 (24)

(20)
=

Kr∑
i=1

c̃(r, πri ) min

k,
i∑

j=1

xπrj

−
Kr−1∑
i=1

c̃(r, πri+1) min

k,
i∑

j=1

xπrj

 (25)

=

Kr∑
i=1

c̃(r, πri ) min

k,
i∑

j=1

xπrj

−
Kr∑
i=1

c̃(r, πri+1) min

k,
i∑

j=1

xπrj

 (26)

= −
Kr∑
i=1

α̃ri min

k,
i∑

j=1

xπrj

 = −
Kr∑
i=1

α̃ri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

−
Kr∑
i=1

α̃riσ
r
i (27)

(22)
= −

Kr∑
i=1

α̃ri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

+

Kr∑
i=1

c(r, πri )1{πri∈U\N} (28)

= −
Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

+

Kr∑
i=1

c(r, πri )1{πri∈U\N} (since k − σrKr = 0). (29)

This gives the cost function expression in Eq. (19).

Lemma 3. For any request r ∈ R the caching gain function G(r,x) in Eq. (6) has the following expression

G(r,x) =

Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

 , (30)

where σri =
∑i
j=1 1{πrj∈U\N}, α

r
i = c(r, πri+1)− c(r, πri ) and Kr = min{i ∈ U : σri = k} for every (r, i) ∈ R× U .

Proof. From Lemma 2, the cost function C(r,x) can be equivalently expressed as:

C(r,x) = −
Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

+

Kr∑
i=1

c(r, πri )1{πri∈U\N}. (31)

Without caching the system incurs the cost kcf +
∑k
o∈kNN(r) c(r, o) when r ∈ R is requested. This is the retrieval cost of

fetching k objects and the sum of the approximation costs of the k closest objects in N . From the definition of πr, this cost
can equivalently be expressed as

∑Kr

i=1 c(r, π
r
i )1{πri∈U\N}. Therefore, we recover the gain expression in Eq. (3) as the cost

reduction due to having a similarity cache. Thus, we have

G(r,x) = kcf +

k∑
o∈kNN(r)

c(r, o)− C(r,x) (32)

=

Kr∑
i=1

c(r, πri )1{πri∈U\N} −
Kr∑
i=1

c(r, πri )1{πri∈U\N} +

Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

 (33)

=

Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

 . (34)

This concludes the proof.
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II. SUPPORTING LEMMAS FOR PROOF OF PROPOSITION IV.1

Lemma 4. For every request r ∈ R, index i ∈ U , and fractional cache state y ∈ conv(X ) the index set defined as

Iri ,
{
j ∈ [i] :

(
πrj ∈ N

)
∧
(
πrj +N /∈ {πrl : l ∈ [i]}

)}
(35)

satisfies the following ∑
j∈[i]

yπrj − σ
r
i =

∑
j∈Iri

yπrj , (36)

where σri =
∑i
j=1 1{πrj∈U\N} (defined in Eq. (8)).

Proof.∑
j∈[i]

yπrj − σ
r
i

(8)
=
∑
j∈[i]

yπrj −
∑
j∈[i]

1{πrj∈U\N} =
∑
j∈[i]
πrj∈N

yπrj +
∑
j∈[i]

πrj∈U\N

(
yπrj − 1

)
=
∑
j∈[i]
πrj∈N

yπrj −
∑
l∈[i]

πrl ∈U\N

y(πrl −N) (37)

Remark that if l ∈ [i] and πrl ∈ U \N , then the object πrl −N has a strictly smaller cost and it appears earlier in the permutation
πr, that is there exists j < l such that πrj = πrl −N . In this case, the variable y(πrl −N) cancels out yπrj in the RHS of (37).
Then, we have ∑

j∈[i]
πrj∈N

yπrj −
∑
l∈[i]

πrl ∈U\N

y(πrl −N) =
∑
j∈[i]
πrj∈N

πrj+N /∈{πrl :(l∈[i])∧(πrl ∈U\N )}

yπrj . (38)

Note that if πrl /∈ U \ N (i.e., πrl ∈ N ), then πrj + N 6= πrl . Then the sets {πrl : (l ∈ [i]) ∧ (πrl ∈ U \ N )} and {πrl : l ∈ [i]}
coincide. Therefore, the above equation can be simplified as follows∑

j∈[i]
πrj∈N

yπrj −
∑
l∈[i]

πrl ∈U\N

y(πrl −N) =
∑
j∈[i]
πrj∈N

πrj+N /∈{πrl :l∈[i]}

yπrj =
∑
j∈Iri

yπrj . (39)

Eq. (37) and Eq. (39) are combined to get ∑
j∈[i]

yπrj − σ
r
i =

∑
j∈Iri

yπrj , (40)

and this concludes the proof.

III. BOUNDS ON THE AUXILIARY FUNCTION

We define Λ : R× conv(X )→ R+, an auxiliary function, that will be utilized in bounding the value of the gain function

Λ(r,y) ,
Kr−1∑
i=1

αri (k − σri )

1−
∏
j∈Iri

(
1−

yπrj
k − σri

) ,∀r ∈ R,y ∈ conv(X ). (41)

The DEPROUND [44] subroutine outputs a rounded variable x ∈ X from a fractional input y ∈ conv(X ), by iteratively
modifying the fractional input y. At each iteration the subroutine SIMPLIFY that is part of DEPROUND is executed on two yet
unrounded variables yi, yj ∈ (0, 1) with i, j ∈ N , until all the variables are rounded in O(N) steps. Note that only yi,∀i ∈ N
is rounded, since xi ∈ U \ N is determined directly from xi−N . The random output of DEPROUND [44] subroutine x ∈ X
given the input y ∈ conv(X ) has the following properties:
P1 E[xi] = yi,∀i ∈ N .
P2
∑
i∈N xi = k.

P3 ∀S ⊂ N ,E
[∏

i∈S (1− xi)
]
≤∏i∈S (1− yi) .

Lemma 5. The random output x ∈ X of DEPROUND given the fractional cache state input y ∈ conv(X ), or the random
output x ∈ {0, 1}U of COUPLEDROUNDING given an integral cache state x′, and fractional cache states y,y′ ∈ conv(X )
with E[x′] = y′, satisfy the following for any request r ∈ R

E [Λ(r,x)] ≥ Λ(r,y). (42)
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Proof.

E [Λ(r,x)]
(41)
= E

Kr−1∑
i=1

αri (k − σri )

1−
∏
j∈Iri

(
1−

xπrj
k − σri

) =

Kr−1∑
i=1

αri (k − σri )

1− E

∏
j∈Iri

(
1−

xπrj
k − σri

)
(43)

≤
Kr−1∑
i=1

αri (k − σri )

1−
∏
j∈Iri

(
1−

yπrj
k − σri

) = Λ(r,y). (44)

The second equality is obtained using the linearity of the expectation operator. The inequality is obtained using [68, Lemma E.10]
with S = Iri , cm = 1

k−σri
, as σri < k for i < Kr in the case when x is the output of DEPROUND, and in the case when x

is an output of COUPLEDROUNDING, the inequality holds with equality since every xi for i ∈ N is an independent random
variable.

IV. BOUNDS ON THE GAIN FUNCTION

Proposition IV.1. The caching gain function G(r,x) defined in Eq. (6) has the following lower and upper bound for any
request r ∈ R and fractional cache state y ∈ conv(X ):

Λ(r,y) ≤ G(r,y) ≤
(

1− 1

e

)−1

Λ(r,y). (45)

Proof. We have the following

G(r,y) =

Kr−1∑
i=1

αri min

k − σri ,∑
j∈[i]

yπrj − σ
r
i

 (36)
=

Kr−1∑
i=1

αri min

k − σri ,
i∑

j∈Iri

yπrj

 (46)

≥
Kr−1∑
i=1

αri (k − σri )

1−
∏
j∈Iri

(
1−

yπrj
k − σri

) (47)

= Λ(r,y), (48)

and

G(r,y) =
Kr−1∑
i=1

αri min

k − σri ,∑
j∈Iri

yπrj

 (49)

≤
(

1− 1

e

)−1 Kr−1∑
i=1

αri (k − σri )

1−
∏
j∈Iri

(
1−

yπrj
k − σri

) (50)

= Λ(r,y). (51)

The inequalities in Eq. (47) and Eq. (50) are obtained through [68, Lemma E.7], and [68, Lemma E.8], respectively, by setting
c = k − σri , and qi = 1 for every i ∈ [Kr − 1].

V. SUBGRADIENTS COMPUTATION

Theorem V.1. For any time slot t ∈ [T ], the vectors gt given by Eq. (52) are subgradients of the caching gain function G(r,y)
for request rt ∈ R at fractional cache state yt ∈ conv(X ).

gt =
[(
c
(
rt, π

rt
i
rt
∗ +1

)
− c (rt, l)

)
1{lrt∗ ≤irt∗ }

]
l∈N

, (52)

where irt∗ , max
{
i ∈ [Krt − 1] :

(∑i
j=1 yt,πrj ≤ k

)
∧ (l +N /∈ {πrtv : v ∈ [i]})

}
, lrt∗ , (πrt)

−1
(l),∀l ∈ N , and (πrt)

−1 is
the inverse permutation of πrt .
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Proof. For any request r ∈ R, the function f (r,i)(y) , min
{
k − σri ,

∑i
j=1 yπrj − σri

}
is a concave function, i.e., a minimum

of two concave functions (a constant and an affine function). The subdifferential of the function at point y, using Theorem [69,
Theorem 8.2 ] is given as

∂f (r,i)(y) =


0 if

∑i
j=1 yπrj > k,

conv
({

0,∇
(∑i

j=1 yπrj

)})
if
∑i
j=1 yπrj = k,

∇
(∑i

j=1 yπrj

)
otherwise,

(53)

where conv ( · ) is the convex hull of a set. Thus, a valid subgradient g(r,i)(y) of f (r,i) at point y can be picked as

g(r,i)(y) =

{
0 if

∑i
j=1 yπrj ≥ k,

∇
(∑i

j=1 yπrj

)
otherwise.

(54)

Note that

∂

∂yl

i∑
j=1

yπrj = 1{yl appears in the sum and yl+N=1−yl does not} (55)

= 1{(l∈{πrv :v∈[i]}) ∧ (l+N 6∈{πrv:v∈[i]})} (56)

= 1{(lr∗≤i) ∧ (l+N 6∈{πrv :v∈[i]})}. (57)

The l-th component of the subgradient g(r,i)(y) is given by

g
(r,i)
l (y) =

{
0, if

∑i
j=1 yπrj ≥ k,

∂
∂yl

∑i
j=1 yπrj otherwise.

(58)

= 1{(∑i
j=1 yπrj

<k ∧ lr∗≤i
)
∧ (l+N 6∈{πrv :v∈[n]})

}. (59)

For any non-negative factor αri , we have ∂
(
αri f

(r,i)(y)
)

= αri ∂
(
f (r,i)(y)

)
(multiply both sides of the subgradient inequality

by a non-negative constant [43, Definition 1.2]), and using [70, Theorem 23.6] we get

∂G(r,y) = ∂

(
Kr−1∑
i=1

αrti f
(r,i)(y)

)
=

Kr−1∑
i=1

αrti ∂f
(r,i)(y). (60)

Let ir∗ , max{i ∈ [Kr − 1] :
(∑i

j=1 yπrj ≤ k
)
∧ (l +N /∈ {πrv : v ∈ [i])}}. Now we can define a subgradient gt of the

function G(r,y) at point yt ∈ conv(X ) and request rt ∈ R for any t ∈ [T ], where every component l ∈ N of gt is given by

gt,l =

Krt−1∑
i=1

αrti g
(rt,i)
l (yt) =

Krt−1∑
i=1

αrti 1
{(∑i

j=1 yπrt
j
<k

)
∧ (lrt∗ ≤i) ∧ (l+N 6∈{πrtv :v∈[n]})

} (61)

=

Krt−1∑
i=l

rt
∗

αrti 1
{(∑i

j=1 yπrt
j
<k

)
∧ (l+N 6∈{πrtv :v∈[n]})

} =

i
rt
∗∑

i=l
rt
∗

αrti =

i
rt
∗∑

i=l
rt
∗

(
c(rt, π

rt
i+1)− c(rt, πrti )

)
(62)

=
(
c(rt, π

rt
i
rt
∗ +1

)− c(rt, l)
)
1{lrt∗ ≤irt∗ },∀l ∈ N . (63)

Note that in the last equality we used the definition of lrt∗ to obtain c(rt, l) = c(rt, π
r
l
rt
∗

). This concludes the proof.

VI. MIRROR MAPS

Let D ⊂ RN be a convex open set, and Y be a convex set such that Y ⊂ cl(D) where cl( · ) is the closure; moreover,
D ∩ Y 6= ∅. The map Φ : D → R is called a mirror map if the following is satisfied [43]:

1) The map Φ is strictly convex and differentiable.
2) The gradient of Φ takes all the possible values of RN , i.e., {∇Φ(x) : x ∈ D} = RN .
3) The gradient of Φ diverges at the boundary of D, i.e., limx→∂D ‖∇Φ(x)‖ = +∞.

It is easy to check the above properties are satisfied for the Euclidean mirror map Φ(x) = 1
2 ‖x‖

2 over the domain D = RN ,
and the negative entropy mirror map Φ(x) =

∑
i∈N xi log(xi) over the domain D = RN>0.
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VII. SUPPORTING LEMMAS FOR PROOF OF THEOREM IV.3

A. Subgradient Bound

Lemma 6. For any time slot t ∈ [T ], fractional cache state yt ∈ conv(X ), and request rt ∈ R the subgradients gt of the
gain function in Eq. (7) are bounded w.r.t the norm ‖ · ‖∞ by the constant

L , ckd + cf . (64)

The constant ckd is an upper bound on the dissimilarity cost of the k-th closest object for any request in R, and cf is the
retrieval cost.

Proof. For any time slot t ∈ [T ] we have

‖gt‖∞ = max {gt,l : l ∈ N} (52)
= max

{
c(rt, π

rt
i
rt
∗ +1

)− c(rt, l) : l ∈ N
}

(65)

≤ c(rt, πrtKrt )− c(rt, πrt1 ) ≤ c(rt, πrtKrt ) (66)

= cf + c(rt, π
rt
Krt−N ) ≤ cf + c(rt, π

rt
Krt−N ) ≤ cf + ckd. (67)

Note that L2 , ‖∂yG(r,y)‖2 can be as high as
√
NL and N can be very large; moreover, the regret upper bound is

proportional to L2 instead of L when the Euclidean map is used as a mirror map (see [43, Theorem 4.2]). This justifies why
it is preferable to work with the negative entropy instantiation of OMA rather than the classical Euclidean setting.

B. Bregman Divergence Bound

Lemma 7. Let y∗ = arg max
y∈conv(X )

∑T
t=1G(r,y) and y1 = arg min

y∈conv(X )∩D
Φ(y), the value of the Bregman divergence DΦ(y∗,y1)

associated with the negative entropy mirror map Φ is upper bounded by the constant

D , h log

(
N

h

)
. (68)

Proof. It is easy to check that y1,i = h
N ,∀i ∈ N (y1 has maximum entropy); moreover, we have Φ(y) ≤ 0,∀y ∈ conv(X ).

The first order optimality condition [43, Proposition 1.3] gives −∇Φ(y1)
T

(y − y1) ≤ 0,∀y ∈ conv(X ). We have

DΦ(y∗,y1) = Φ(y∗)− Φ(y1)−∇Φ(y1)T (y∗ − y1) ≤ Φ(y∗)− Φ(y1) ≤ −Φ(y1) = h log

(
N

h

)
. (69)

VIII. UPDATE COSTS

A. Proof of Theorem IV.1

Proof.
First part. We show that E [xt+1] = yt+1. Take δ , yt+1 − yt.

If δi > 0 for i ∈ N , then:

E [xt+1,i] = E [xt+1,i|xt,i = 1]P(xt,i = 1) + E [xt+1,i|xt,i = 0]P(xt,i = 0) (70)

= yt,i +

(
δi

1− yt,i
+ 0

)
(1− yt,i) = yt,i + δi. (71)

If δi < 0 for i ∈ N , then:

E [xt+1,i] = E [xt+1,i|xt,i = 1]P(xt,i = 1) + E [xt+1,i|xt,i = 0]P(xt,i = 0) (72)

=

(
yt,i + δi
yt,i

)
yt,i + 0 = yt,i + δi. (73)

Otherwise, when δi = 0 for i ∈ N we have E[xt+1,i] = E[xt,i] = yt,i = yt,i + δi. Therefore we have for any i ∈ N

E[xt+1] = yt + δ = yt+1. (74)
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Second part. For any i ∈ N , we can have two types of movements: If δi < 0, then given that xt,i = 1, we evict with
probability −δiyt,i

. If δi > 0, then given that xt,i = 0, we retrieve a file with probability δi
1−yt,i . Thus the expected movement is

given by:

E [‖xt+1 − xt‖1] =
∑
i∈N

E[|xt+1,i − xt+1,i|] (75)

=
∑
i∈N

E
[
|xt+1,i − xt,i|

∣∣xt,i = 0
]
P(xt,i = 0) + E

[
|xt+1,i − xt,i|

∣∣xt,i = 1
]
P(xt,i = 1) (76)

=
∑
i∈N

(
δi

1− yt,i
1{δi>0} · (1− yt,i) +

−δi
yt,i

1{δi<0} · yt,i
)

(77)

=
∑
i∈N
|δi| =

∑
i∈N
|yt+1,i − yt,i| =

∥∥yt+1 − yt
∥∥

1
. (78)

B. Proof of Theorem IV.2

Proof. The negative entropy mirror map Φ is ρ = 1
h strongly convex w.r.t the norm ‖ · ‖1 over D∩conv(X ) (see [37, Ex. 2.5]),

and the subgradients are bounded under the dual norm ‖ · ‖∞ by L, i.e., for any rt ∈ R, yt ∈ conv(X ), and t ∈ [T ] we have
‖gt‖∞ ≤ L (Lemma 6). For any time slot t ∈ [T − 1], it holds:

DΦ(yt, zt+1) = Φ(yt)− Φ(zt+1)−∇Φ(zt+1)
T

(yt − zt+1)

= Φ(yt)− Φ(zt+1) +∇Φ(yt)
T

(zt+1 − yt) + (∇Φ(yt)−∇Φ(zt+1))
T

(yt − zt+1)

≤ −ρ
2
‖yt − zt+1‖21 + ηgTt (yt − zt+1) (79)

≤ −ρ
2
‖yt − zt+1‖2 + ηL ‖yt − zt+1‖21 (80)

≤ η2L2

2ρ
. (81)

Eqs. (79)–(81) are obtained using the strong convexity of Φ and the update rule, Cauchy-Schwarz inequality, and the inequality
ax − bx2 ≤ maxx ax − bx2 = a2/4b as in the last step in the proof of [43, Theorem 4.2], respectively. Moreover, for any
t ∈ [T − 1] it holds

∥∥yt+1 − yt
∥∥

1
≤
√

2

ρ
DΦ(yt,yt+1) ≤

√
2

ρ
DΦ(yt, zt+1)− 2

ρ
DΦ(yt+1, zt+1) ≤

√
2

ρ
DΦ(yt, zt+1) ≤

√
2η2

L2

2ρ2
≤ Lη

ρ
. (82)

The above chain of inequalities is obtained through: the strong convexity of Φ, the generalized Pythagorean inequality [43,
Lemma 4.1], non-negativity of the Bregman divergence of a convex function, and Eq. (81), in respective order. The learning
rate is η = O

(
1√
T

)
; therefore, we finally get

T−1∑
t=1

∥∥yt+1 − yt
∥∥

1

(82)
≤ LηT

ρ
= O(

√
T ). (83)

IX. PROOF OF THEOREM IV.3

Proof. To prove the ψ-regret guarantee: (i) we first establish an upper bound on the regret of the AÇAI policy over its fractional
cache states domain conv(X ) against a fractional optimum, then (ii) the guarantee is transformed in a ψ-regret guarantee over
the integral cache states domain X in expectation.
Fractional domain guarantee. We establish first the regret of running Algorithm 1 with decisions taken over the fractional
domain conv(X ). The following properties are satisfied:

(i) The caching gain function G(r,y) is concave over its fractional domain conv(X ) for any r ∈ R (see Sec. IV-D).
(ii) The negative entropy mirror map Φ : D → R is 1

h strongly convex w.r.t the norm ‖ · ‖1 over D ∩ conv(X ) (see [37, Ex.
2.5]).

(iii) The subgradients are bounded under the dual norm ‖ · ‖∞ by L, i.e., for any rt ∈ R, yt ∈ conv(X ), and t ∈ [T ] we have
‖gt‖∞ ≤ L (Lemma 6).

(iv) The Bregman divergence DΦ(y∗,y1) is bounded by a constant D where y∗ = arg maxy∈conv(X )

∑T
t=1G(r,y) and

y1 = arg min
y∈conv(X )∩D

Φ(y) is the initial fractional cache state (Lemma 7).
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With the above properties satisfied, the regret of Algorithm 1 with the gains evaluated over the fractional cache states {yt}Tt=1 ∈
conv(X )T is [43, Theorem 4.2]

RegretT,conv(X )(OMAΦ) = sup
{rt}Tt=1∈RT

{
T∑
t=1

G(rt,y∗)−
T∑
t=1

G(rt,yt)

}
(84)

≤ DΦ(y∗,y1)

η
+
ηh

2

T∑
t=1

‖gt‖2∞ ≤
D

η
+
ηL2hT

2
. (85)

Integral domain guarantee. Let x∗ = arg max
x∈X

∑T
t=1G(rt,x) and y∗ = arg max

y∈conv(X )

∑T
t=1G(rt,y). The fractional cache state

y∗ ∈ conv(X ) is obtained by maximizing
∑T
t=1G(rt,y) over the domain y ∈ conv(X ). We can only obtain a lower gain by

restricting the maximization to a subset of the domain X ⊂ conv(X ). Therefore, we obtain:

T∑
t=1

G(rt,y∗) ≥
T∑
t=1

G(rt,x∗). (86)

Note that the components for x and y in U \N are completely determined by the components in N . Take ψ = 1− 1/e. For
every t ∈ {1,M, 2M, . . . ,MbT/Mc} and r ∈ R it holds

E [G(r,xt)]
(45)
≥ E [Λ(r,xt)]

(42)
≥ Λ(r,yt)

(45)
≥ ψG(r,yt). (87)

Moreover, consider the following decomposition of the time slots {1, 2, . . . , T} = T1 ∪ T2 ∪ · · · ∪ TbT/Mc+1, where each Ti
represents the i-th freezing period, i.e., xt = xmin(Ti) for t ∈ Ti. Note that |Ti| ≤M for i ∈ {1, 2, . . . , bT/Mc+ 1}. Now we
can decompose the total expected gain of the policy as

ψ

T∑
t=1

G(rt,x∗)−
T∑
t=1

E [G(rt,xt)]
(86)
≤ ψ

T∑
t=1

G(rt,y∗)−
T∑
t=1

E [G(rt,xt)] = ψ

T∑
t=1

G(rt,y∗)−
bT/Mc+1∑

i=1

∑
t∈Ti

E [G(rt,xt)]

(87)
≤ ψ

T∑
t=1

G(rt,y∗)− ψ
bT/Mc+1∑

i=1

∑
t∈Ti

G(rt,ymin(Ti))

= ψ

T∑
t=1

G(rt,y∗)− ψ
T∑
t=1

G(rt,yt) + ψ

T∑
t=1

G(rt,yt)− ψ
bT/Mc+1∑

i=1

∑
t∈Ti

G(rt,ymin(Ti))

(85)
≤ ψ · RegretT,conv(X )(OMAΦ) + ψ

 T∑
t=1

G(rt,yt)−
bT/Mc+1∑

i=1

∑
t∈Ti

G(rt,ymin(Ti))

 .

(88)

The first equality is obtained through a decomposition of the time slots to Ti for i ∈ {1, 2, . . . , bT/Mc + 1}. It remains to
bound the r.h.s of Eq. (88), i.e.,

T∑
t=1

G(rt,yt)−
bT/Mc+1∑

i=1

∑
t∈Ti

G(rt,ymin(Ti)) =

bT/Mc+1∑
i=1

∑
t∈Ti

G(rt,yt)−G(rt,ymin(Ti)) (89)

≤
bT/Mc+1∑

i=1

∑
t∈Ti

∂yG(rt,ymin(Ti)) ·
(
yt − ymin(Ti)

)
concavity of G(rt, ·)

≤
bT/Mc+1∑

i=1

∑
t∈Ti

∥∥∥∂yG(rt,ymin(Ti))
∥∥∥
∞

∥∥∥yt − ymin(Ti)

∥∥∥
1

Hölder’s inequality

≤ L
bT/Mc+1∑

i=1

∑
t∈Ti

t−1∑
t′=min(Ti)

∥∥yt+1 − yt
∥∥

1
triangle inequality and definition of L

≤ L2

ρ

bT/Mc+1∑
i=1

∑
t∈Ti

t−1∑
t′=min(Ti)

η ≤ L2η

ρ
·
(
T

M
+ 1

)
· M(M − 1)

2
update cost upper bound in Eq. (82)

=
L2η

2ρ
(M − 1) (T +M) =

hL2η

2
(M − 1) (T +M) we have ρ = 1/h. (90)

22



Thus, by bounding r.h.s of Eq. (88) in Eq. (90) we get

ψ

T∑
t=1

G(rt,x∗)−
T∑
t=1

E [G(rt,xt)] ≤ ψ
(
D

η
+
ηL2h

2
T +

ηL2h

2
(M − 1) (T +M)

)
(91)

By selecting the learning rate η = 1
L

√
2D

h(T+(M−1)(M+T )) = 1
(ckd+cf )

√
2 log(Nh )

(T+(M−1)(M+T )) giving the tightest upper bound we
obtain

ψ

T∑
t=1

G(rt,x∗)−
T∑
t=1

E [G(rt,xt)] ≤ ψL
√

2Dh(T + (M − 1)(T +M)) (92)

(64),(68)
=

(
1− 1

e

)
(ckd + cf )h

√
2 log

(
N

h

)
(T + (M − 1)(T +M)). (93)

This concludes the proof.

X. PROOF OF COROLLARY IV.3.1
We have the following

E [GT (x̄)]
(45)
≥ E

[
1

T

T∑
t=1

Λ(rt,xt)

]
(42)
≥ 1

T

T∑
t=1

Λ(rt,xt)
(45)
≥ ψGT (ȳ). (94)

We apply Jensen’s inequality to obtain

GT (ȳ) ≥ 1

T̃

T̃∑
i=1

GT (yi). (95)

It is easy to verify that GT (13) is concave, and has bounded subgradients under the l∞ norm over the fractional caching
domain conv(X ); moreover, the remaining properties are satisfied for the same mirror map and decision set. The regret of
Algorithm 1 with the gains evaluated over the fractional cache states {yi}T̃i=1 ∈ conv(X )T is [43, Theorem 4.2] is given by

T̃∑
i=1

GT (y∗)−
T̃∑
i=1

GT (yi) = T̃GT (y∗)−
T̃∑
i=1

GT (yi)
(85)
≤ (ckd + cf )h

√
2 log

(
N

h

)
T̃ . (96)

Divide both sides of the equality by T̃ , and move the gain attained by AÇAI to the l.h.s to get

1

T̃

T̃∑
i=1

GT (yi) ≥ GT (y∗)− (ckd + cf )h

√
2 log

(
N

h

)
T̃ , (97)

where y∗ = arg max
y∈conv(X )

GT (y).

We combine Eq. (94), Eq. (95), and Eq. (97) to obtain

E [GT (x̄)] ≥ GT (y∗)− (ckd + cf )h

√
2 log

(
N

h

)
T̃ , (98)

and GT (y∗) can only be larger than GT (x∗); thus, we also obtain

E [GT (x̄)] ≥ GT (x∗)− (ckd + cf )h

√
2 log

(
N
h

)
T̃

. (99)

We conclude ∀ε > 0 for a sufficiently large number of iterations T̃ , x̄ satisfies

E [GT (x̄)] ≥
(

1− 1

e
− ε
)
GT (x∗). (100)

XI. ADDITIONAL EXPERIMENTS

A. Redundancy

We quantify the redundancy present in the caches in Figure 14 (a), as the percentage of added objects to fill the physical
cache. We also show the contribution of the dangling objects to the gain in Figure 14 (b), that does not exceed 2.0% under
both traces.
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(a) Storage redundancy of the LRU-based
policies under SIFT1M trace.
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(b) Storage redundancy of the LRU-based
policies under Amazon trace.
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(c) The average gain contribution of the
dangling objects under SIFT1M trace.
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(d) The average gain contribution of the
dangling objects under Amazon trace.

Fig. 14: Storage redundancy percentage and gain contribution for the different policies. The cache size h = 1000, and
k ∈ {10, 20, 30, 50, 100}.

B. Approximate Index Augmentation

We repeat the sensitivity analysis and show the caching gain when the different policies are augmented with an approximate
index, and are allowed to mix the best object that can be served locally and from the server. Figure 15 shows the caching gain
for the different caching policies and different values of the cache size h ∈ {50, 100, 200, 500, 1000} and k = 10. Figure 16
shows the caching gain for the different caching policies and different values of the retrieval cost cf , that is taken as the
average distance to the i-th neighbor, i ∈ {2, 50, 100, 500, 1000}. The cache size is h = 1000 and k = 10. Figure 17 shows
the caching gain for the different caching policies and different values of k ∈ {10, 20, 30, 50, 100} and h = 1000.
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Fig. 15: Caching gain of the different policies when augmented with the approximate index, for different cache sizes h ∈
{50, 100, 200, 500, 1000} and k = 10.

C. Computation Time

We provide a comparison of the computation time of the different algorithms in Fig. 18. When the different LRU-like policies
are not augmented with a global catalog index in Fig. 18 (a), AÇAI experiences a higher computation time per iteration. When
the different LRU-like policies are augmented with a global catalog index in Fig. 18 (b), AÇAI has a similar computation time
to the different policies except for the simple vanilla lru policy. Nonetheless, in both settings AÇAI computation time remains
comparable and approximately within factor 4 w.r.t the computation time of the different policies. Due to space limitation we
cannot add this figure to the main text.
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Fig. 16: Caching gain for the different policies and different retrieval cost when augmented with the approximate index. The
retrieval cost cf is taken as the average distance to the i-th neighbor, i ∈ {2, 10, 50, 100, 500, 1000}. The cache size is h = 1000
and k = 10.
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Fig. 17: Caching gain for the different policies when augmented with the approximate index. The cache size is h = 1000, and
k ∈ {10, 20, 30, 50, 100}.
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Fig. 18: Time-averaged computation time of AÇAI and the different policies LRU, SIM-LRU, CLS-LRU, and QCACHE(a)
w/o an approximate global catalog index, and (b) w/ an approximate global catalog index. Experiment run over the Amazon
trace, cache size h = 1000, parameter k = 10, η = 10−4, retrieval cost cf is set to be the distance to the 50-th closest neighbor
in N .
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