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Abstract—Memcached is a popular component of modern Web architectures, which allows fast response times – a fundamental

performance index for measuring the Quality of Experience of end-users – for serving popular objects. In this work, we study how

memory partitioning in Memcached works and how it affects system performance in terms of hit ratio.

We first present a cost-based memory partitioning and management mechanism for Memcached that is able to dynamically adapt to

user requests and manage the memory according to both object sizes and costs. We present a comparative analysis of the vanilla

memory management scheme of Memcached and our approach, using real traces from a major content delivery network operator. We

show that our proposed memory management scheme achieves near-optimal performance, striking a good balance between the

performance perceived by end-users and the pressure imposed on back-end servers.

We then consider the problem known as “calcification”: Memcached divides the memory into different classes proportionally to the

percentage of requests for objects of different sizes. Once all the available memory has been allocated, reallocation is not possible or

limited. Using synthetic traces, we show the negative impact of calcification on the hit ratio with Memcached, while our scheme, thanks

to its adaptivity, is able to solve the calcification problem, achieving near-optimal performance.

Index Terms—Web architectures, performance evaluation.

✦

1 INTRODUCTION

MODERN Web sites and applications attract very large
numbers of end-users, which expect services to be

responsive at all times: indeed, latency plays a crucial role
in the perceived Quality of Experience (QoE), which de-
termines to a large extent the popularity and success of
competing services.

Today’s web pages have a complex structure, as they
are composed by tens of objects, often served by a pool of
back-end servers. In addition, objects usually do not have
the same relevance: central panels, side panels or advertise-
ments may have different values for end-users as well as
content providers. To serve Web pages composed by such
heterogeneous objects efficiently, modern web architectures
make use of fast, in-memory storage systems that work as
web caches.

In this context, Memcached [4] is a widely-used caching
layer: it is a key-value store that exposes a simple API to
store and serve data from the RAM. Thanks to its simplicity
and efficiency, Memcached has been adopted by many suc-
cessful services and companies, such as Wikipedia, Flickr,
Digg, WordPress, Craigslist, and, with additional customiza-
tions, Facebook and Twitter.

In-memory cache systems keep replicas of the contents
stored permanently in the back-end databases. Such objects
not only have different sizes – from few bytes corresponding
to the text of a web page, to tens or hundreds of kilobytes
for pictures, up to few megabytes for multimedia content
– but they might have different retrieving costs. In the
literature, there are a number of mechanisms [8], [12], [27]
which consider object cost to be related to the complexity of
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the database query to generate an object, which may not
be correlated with the size of the object itself. In such a
scenario, the traditional hit ratio (number of hits divided by
the number of requests) may be insufficient to capture the
“pressure” on the back-end. A metric based on the objects
cost, such as the cost hit ratio (sum of the cost of the hits
divided by the sum of the cost of the requests), is thus truly
desirable.

Many works, such as Cao et. al. in [12], have proposed
simple and elegant solutions that take into account the
cost when managing objects in a cache. Nevertheless, these
solutions can not be directly applied to Memcached: for effi-
ciency reasons, Memcached has a specific memory manage-
ment scheme. By design, Memcached partitions the memory
dedicated to store data objects into different classes; each
class is dedicated to objects with a progressively increasing
size. When a new object has to be stored, Memcached checks
if there is available space in the appropriate class, and stores
it. If there is no space, Memcached evicts a previously stored
object in that class in favor of the new one.

In this paper we implement a cost-based memory man-
agement scheme for class-based, in-memory storage sys-
tems such as Memcached. A cost-based solution introduces
a number of challenges that are not immediately clear when
approaching the problem. How can the memory be divided
among different classes in an on-line fashion, i.e. while the
system is running? What happens if the cost associated to
objects in a class changes over time? How often should the
system re-evaluate the decisions made?

The fact that the statistical characteristics of the objects,
or the cost associated to them, may change, introduces
another problem for Memcached: Once all the available
memory has been allocated, memory reallocation is not
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supported.1 Such a strict approach to memory allocation
raises a problem referred to as calcification – a problem
observed in some prominent operational setups [1], [6], [7].
Despite the clear consequences on hit ratio, this problem has
received little attention in the literature.

Our contributions: We design and implement a new API
for Memcached, in which it is possible to associate the
cost of an object to their requests. The API is an extension
of the Set operation, where, along with the key and the
value, a numeric entry corresponding to the cost can be
added. Along with the API, we have implemented an on-
line scheme that takes into account the cost of the objects
stored in the different classes to decide how to partition the
memory among them. The basic idea used in our scheme is
to balance the number of misses, weighted by the cost of the
objects, among different classes.

To validate our memory management scheme, we use an
experimental approach, and conduct a series of experiments
on a testbed which is representative of the typical blueprint
of modern web architectures. In our experimental campaign,
we use input traces (i.e. events corresponding to storing or
fetching objects) that are both real – collected from a vantage
point inside a major content delivery network (CDN) – and
synthetic, based on statistics from traces in the literature.

We compare our mechanism with an optimal allocation
that we compute off-line, with a variation of the Mattson
stack algorithm [21]. Our results indicate that the memory
allocation in Memcached is far from being optimal, even
when object costs are not taken into account. With our
scheme, we obtain superior hit ratios both when objects
have all the same cost and when they have different costs. In
summary, our scheme achieves near-optimal performance,
striking a good balance between the performance perceived
by end-users and the pressure imposed on back-end servers.

We then study the effect of calcification on Memcached
performance. Using an experimental approach, we show
and determine how calcification adversely impacts the hit
ratio. In our experiments, we use the latest version of
Memcached and Twemcache – a custom version developed
at Twitter that includes a series of policies to address the cal-
cification problem. In addition, we generate object size dis-
tribution according to the model introduced by Atikoglu et.
al. [7], which is based on production-traces of Memcached at
Facebook. We show that our memory management scheme
is able to avoid calcification, maintaining close to optimal
performance.

The remainder of the paper is organized as follows.
In Section 2 we provide some background information on
Memcached and we discuss the related works. We present
our solution in Section 3, along with a method to compute,
off-line, the optimal allocation. Our results are shown in
Section 4. We study the calcification problem in Section 5,
and we provide additional observations and discussions in
Section 6. We conclude in Section 7.

1. Starting from version 1.4.11, Memcached now provides a mecha-
nism to reallocate the memory. However, the reallocation algorithm is
extremely conservative, therefore reallocation is rare.

2 BACKGROUND AND RELATED WORK

2.1 Memcached

Memcached is a key-value store that keeps data in memory,
i.e. data is not persistent. Clients communicate with Mem-
cached through a simple set of APIs: Set, Add, Replace

to store data, Get or Remove to retrieve or remove data.
Memcached has been designed to simplify memory man-
agement [31] and to be extremely fast: since every operation
requires memory locking2, data structures must be simple
and their access time should be kept as small as possible.

In Memcached, the basic unit of memory is called a
slab and has fixed size, set by default to 1 MB. A slab is
logically sliced into chunks that contain data items (objects3)
to store. The size of a chunk in a slab, and consequently the
number of chunks, depends on the class to which the slab
is assigned. A class is defined by the size of the chunks it
manages. Sizes are chosen with a geometric progression: for
instance, Twitter uses common ratio 1.25, and scale factor
76, therefore the sizes of the chunks in class 1, 2, 3, . . . , are
76, 96, 120, . . . Bytes respectively. An object is stored in the
class that has chunks with a size sufficiently large to contain
it. As an illustration, using the classes defined at Twitter,
objects with sizes 60 Bytes, 70 Bytes, and 75 Bytes are all
assigned to class 1, while objects with sizes 80 Bytes and 90
Bytes are assigned to class 2.

The total available memory to Memcached is allocated
to classes in a slab-by-slab way. The assignment process
follows the object request pattern: when a new request for
a particular object arrives, Memcached determines the class
that can store it, checks if there is a slab assigned to this
class, and if the slab has free chunks. If there is no free chunk
(and there is available memory), Memcached assigns a new
slab to the class, it slices the slab into chunks (the size of
which is given by the class the slab belongs to), and it uses
the first free chunk to store the item. When all slabs have
been assigned to the classes, Memcached adopts the Least
Recently Used (LRU) policy for eviction. Note that LRU is
applied on a per-class basis: items in other classes are stored
in chunks of memory with different sizes, and chunks can
not be moved.

Once an appropriate portion of memory has been as-
signed to a class, it is permanently associated to such class
(unless the Memcached server is restarted). Recently, it has
been shown that the current memory management policy
induces slab calcification [1], [7], which may have a negative
impact on the system performance.

Even if there have been many attempts to solve slab cal-
cification – examples are the Memcached Automove policy
and the Twitter Twemcache policies [6] – it is still not clear
if the slab assignment process itself is optimal. Moreover,
none of the above polices takes into account the different
costs that can be associated to objects.

2. Note that memory locking is necessary even in case of a Get, since
access time statistics need to be updated for the eviction policy to work
properly.

3. Throughout the paper we will use the terms “object” and “item”
interchangeably.
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2.2 Related Work

The analysis of cache performance has been the subject
of many past studies. In this paper we consider specifi-
cally Memcached, therefore we first focus on the literature
about such system. Even if Memcached is widely used, the
study of its performance has received only little attention.
Atikoglu et. al. provide in [7] a set of measurement results
from a production site – in our experiments we use these
statistics to generate our “synthetic” workload. However,
the work does not analyze eviction policies, and it does not
consider the impact of memory partitioning on the hit ratio.

Gunther et. al. [18] highlight that Memcached has scal-
ability issues, since threads access the same memory, and
locks prevent the exploitation of parallelism. For this reason,
a number of works [17], [31] consider the throughput of
Memcached, proposing a set of mechanisms and data struc-
tures to decrease the overall latency. These works do not
consider explicitly the impact of the memory partitioning on
the hit ratio as we do. Nishtala et. al. [22] study scalability
problems, i.e. how to manage a multi-server architecture,
but they do not study the eviction policies and memory
partitioning.

Recently, two works [19] [23] sharing similar objectives
to ours have appeared in the literature: these studies have
been developed independently and at the same time with
our work. Hu et. al. [19] propose a dynamic programming
approach for computing the best slab assignment. Their
approach is computationally intensive, and the obtained
results are similar to ours in terms of hit ratio. Nevertheless,
they do not consider the impact of costs, and the corre-
sponding cost hit ratio. The scheme proposed by Ou et. al.
[23] has been tested on a key-value store simulator, while we
have implemented our solution in Memcached, including
the new interfaces necessary to handle the object costs.

Overall, the literature on caching mechanisms is vast:
CPU [10], browser [27], Web [12], and DNS caches [20], as
well as Content Delivery Networks [25], are each character-
ized by different problems. Among previous works, CPU
caches need to solve similar problems to ours. In a CPU
cache, many processes share the same memory space, and
a single process may “pollute” the cache with its data [28],
which has a negative impact on performance. Similarly, in
Memcached, different classes share the memory, and the
space taken by a class may hurt the performance of other
classes and therefore the overall hit ratio. The solution
adopted for CPU caches [24], [28], [29] are based on a com-
mon idea, in which the memory partitioning process tries to
balance the number of misses among the processes. In [14]
the authors propose a scheme for dynamically allocating the
memory to different classes of objects: in all these cases
the solutions do not consider the impact of cost in their
decisions.

In Web caches, there are a number of examples [8],
[12], [27] which consider object cost to be related to the
complexity of the database query to generate the object,
and not their size. Solutions that are able to handle these
situations are presented by Cao et. al. in [12]. Nevertheless,
such approach can not be directly adapted to the specific
memory partitioning mechanism adopted by Memcached,

since, for performance reasons, objects are divided into
classes, and eviction is done on a per-class basis.

3 COST-BASED MEMORY MANAGEMENT

In this section we present our approach to a cost-based
memory allocation and management scheme for Mem-
cached. In addition – to obtain a baseline for a comparative
analysis – we discuss an off-line algorithm that computes an
optimal memory allocation.

3.1 Miss-Ratio Curve

The analysis of cache performance has been the subject of
many studies in the last 30 years. Analytical models are
usually based on the Independent Reference Model (IRM),
in which objects, and their access pattern, are modeled by
independent random variables. Unfortunately this model
has some limitations, as it fails to capture the performance
of the storage system when, for instance, request arrivals
are correlated, or objects have different sizes. For these
reasons, storage systems are usually studied with trace-
driven numerical analysis: given a trace and an eviction
policy, it is possible to compute the miss-ratio curve, i.e. the
miss ratio that is obtained for different sizes of the cache.

The calculation of the miss ratio curve can be done with
a single pass of the traces using the Mattson stack algorithm
[21]. While more efficient algorithms have been proposed in
the literature to compute the stack distance – also known as
reuse distance, see [33] for an overview, or [32] [30] as exam-
ples for approximated solutions – in this section we present
the basic version of the Mattson algorithm for simplicity of
exposition. Any variant proposed in the recent literature can
be used to improve the efficiency, but the algorithm output
would be the same. For instance, the original algorithm
maintains a stack where objects are stored, and an array
to keep track of the position of the object in the stack in case
of a hit. Both these data structures can be substituted with
efficient and dynamic data structures such as a counting B-
Tree, where elements can be inserted, removed and searched
in O(logN), with N number of elements in the tree, and,
with the same complexity, it is possible to obtain the current
position of an element within the tree4.

We report the pseudo-code of the Mattson algorithm in
Algorithm 1. For each object in the trace, if it is not found
in the stack (the function findPosition() returns -1), there is
a special counter hit∞ to increment, which is used to count
the number of objects seen for the first time (usually referred
to as cold start misses or compulsory misses). Every time an
object is requested, such object is moved at the top of the
stack. Once the trace has been fully read, the Miss Ratio
Curve (MRC), for different dimensions of the cache, can
be simply computed by looking at the array hit and the
counter hit∞.

The Mattson stack algorithm assumes that all the objects
have the same cost, therefore, in the original algorithm, the
value of costi is equal to one for all objects (see lines 9 and

4. This is known as the Olken algorithm [33], which we actually used
in our implementation.
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12). To compute the miss-ratio curve in the general case
where objects have different costs, we propose a variant:
for each requests, we update the stack distance with the cor-
responding cost, instead of simply incrementing the stack
by one. In this way, the array that keeps track of the hits
for different values of memory sizes, takes correctly into
account the sum of the costs of each object stored in that
position.

Algorithm 1 Mattson Algorithm with costs

1. Input: trace // trace to be analyzed, with object id, size
and cost

2. Data: stack // data structure that contains the objects
3. Data: hit // array that keeps track the position of hits
4. Data: hit∞ = 0 // counter for objects seen for the first

time
5.

6. for each object i in trace do
7. pos = findPosition(i, stack);
8. if pos ≥ 0 then
9. hit[pos] += costi;

10. removeElementAtPosition(pos, stack);
11. else
12. hit∞ += costi;
13. end if
14. push(i, stack);
15. end for
16. for k ← 1..length(hit) do

17. MRC(k) = 1−

∑

k

j=0
hit[j]

∑

k

j=0
hit[j]+hit∞

;

18. end for

A typical output of the analysis of a trace is shown in
Figure 1. Even if the figure shows a specific trace, its concave
shape is representative of most common cases, which exhibit
diminishing returns: the gain that can be obtained with the
first few blocks of allocated memory is usually much higher
than the one that can be obtained by additional allocations.
For instance, it is clear that, if the available memory is
sufficient for storing all of the content, adding more memory
will not further decrease the miss ratio of a cache.
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Fig. 1. Examples of the miss ratio curve for different classes. The miss
ratio is computed considering in the denominator the total number of
requests for all classes (this is why it is so high, on a per-class basis).
The composition of all classes yields an overall miss ratio which goes,
as the memory increases, below 20%.

3.2 Memory partitioning: Offline Assignment

The considerations made so far focus on a single-class cache,
where all objects have the same size. What happens when
we have different classes? How can the memory be divided
among different classes, so that each class achieves the best
possible miss-ratio? In its on-line version, a solution to this
problem is the main contribution of our work. Here, for the
sake of building a baseline comparison, we consider the off-
line version, i.e. we first execute our variant of the Mattson
stack algorithm for all the classes, then we optimally assign
portions of the memory to the different classes. For such a
case, we need the MRC for the different classes. To this aim,
we first need to compute the Hit Ratio Curve (HRC) for each
class as shown below

HRCw(k) =

∑k

j=0 hit
w[j]

∑num classes
m=0

(

∑k

j=0 hit
m[j] + hitm

∞

) . (1)

Note that the denominator considers all the classes, so that
HRCw provides a measure of the fraction of the global hit
ratio due to class w. Starting from the HRCw , the hit ratio
curve for class w, its MRCw is given by

MRCw(k) = 1−HRCw(k), (2)

and the overall miss ratio curve is given by

MRCtot(k) = 1−
∑

m

HRCm(k); (3)

Next, we discuss some necessary assumptions to make
the off-line problem tractable. We assume that memory can
be divided into a finite number of blocks (in Memcached,
they are the slabs), and that each class receives an integer
number of blocks. We assume also that the relative decrease
of the miss-ratio, as the memory grows, is monotonically
decreasing: in practice, for any class w, given a memory size
k and the miss ratio MRCw(k) for that memory size, then

MRCw(k)−MRCw(k+1) ≥ MRCw(k+1)−MRCw(k+2), ∀k.

Both assumptions are reasonable, and the second has been
confirmed by analyzing the real-life traces we use in this
work, as Figure 2 shows.
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Fig. 2. Example of the miss ratio difference curve for different classes.
The miss ratio difference is the decrease in the miss ratio when slabs
are added to the class, one at a time.

Given the above assumptions, a simple heuristic can be
used to compute the optimal assignment. Such a heuristic
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has been inspired by [29], in which the authors look for
the set of points that minimize the derivatives of the miss
ratio curves. Here, we approximate such derivatives with
the corresponding difference between two discrete values
of memory sizes. Recently, different alternative approaches
has been proposed to solve this assignment problem using
dynamic programming [19] [11]. While these approaches
have been developed independently and the same time with
respect to our solution, they are computational intensive
(time complexity is cubic) and obtain results similar to ours
(if the MRCs are convex, as in our case).

In the heuristic we propose (see Algorithm 2), at each
iteration, classes are sorted by the miss-ratio difference
MRCw(k) - MRCw(k + 1), where w is the class index and k
is the number of blocks assigned to class w so far: a memory
block is assigned to the class with the highest miss-ratio
difference. This procedure (sorting and block assignment) is
repeated for all the available blocks.

Algorithm 2 Optimal Off-line Slab Assignment

1. Input: Miss ratio curves for all classes
2. Input: Number of available slabs
3.

4. repeat
5. Sort classes by their miss ratio difference
6. Assign a slab to the class with the highest difference
7. until All slabs are assigned

Given the above assumptions, the output of the proce-
dure represents the optimal assignment for a given memory
size. This output can be used as a reference, since it can be
computed only off-line, after a trace has been analyzed. The
aim of our work is to find the on-line counterpart.

3.3 On-line Mechanism

Memcached provides a set of APIs for storing key-
value pairs. To enable cost-based memory manage-
ment, we extend the APIs to handle costs when stor-
ing or modifying the data. In particular, we consider
the interfaces Set(key,value), Add(key,value) and
Replace(key,value), and introduce the new siblings
Set(key,value,cost), Add(key,value,cost) and
Replace(key,value,cost). For the purpose of our
memory management scheme, we not only store the cost
of each object inside Memcached, but we also keep a set
of counters that summarizes the cumulative cost for each
class, and the counters are updated when objects are added
or evicted from the storage.

Once the costs have been set, the memory management
module periodically evaluates the memory assignment. The
frequency of this evaluation may depend on the the number
of requests or on the number of misses. Since our aim is
to control the number of misses, we have experimentally
observed that using the number of misses produces more
stable results. The length of the period is less relevant, since
it influences only the convergence speed.

At every assignment interval, we maintain a number
of auxiliary counters, that we use for computing slab al-
location. For each class, we maintain the sum of the costs

of the requested objects (that resulted in a hit) and the
sum of the cost of the misses. Memcached does not hold
information about the cost for requested objects that result
in a miss; therefore we consider the cost of the storage
operation (Set(key,value,cost)), since we expect that,
after a miss, the object is retrieved from the back-end
and stored in Memcached. We also distinguish between
the misses for objects that have never been asked before
(compulsory misses), and misses for objects that have been
evicted, usually referred to as capacity misses. This distinction
is important, since we cannot avoid the compulsory misses,
while the capacity misses are an indication of potential hits
if we increase the memory for that class.

In order to distinguish between these two types of
misses, we use a data structure introduced in [26]: the
Decaying Bloom Filter (DBF). The DBF is an extension of
the Counting Bloom Filter designed to detect duplicates for
data streams. Since detecting duplicates in an unbounded
data stream is difficult to achieve, if not unfeasible, and
we are interested in the case when the time between two
different requests for the same object have short time scale,
it is sufficient to consider an approximate solution that
detects duplicates within a fixed time frame, i.e. over a
sliding window. We have tested different sizes of the sliding
window and observed that a size greater than 100’000 is
sufficient to capture the vast majority of the popular objects:
in other words, if the difference between two consecutive
requests for the same object is greater than 100’000 requests,
its contribution to the hit ratio is not significant.

Next, assume that all auxiliary information described
above – the cost of the capacity misses per class m, the cost
of the requests per class r, and the number of slabs allocated
to each class s – is available. Our memory management
scheme uses a slab allocation algorithm that we label SAS. The
algorithm, outlined in Algorithm 3, evaluates a single slab
movement, from a “rich” class, i.e. a class with many slabs
and few misses, to a “needy” class, i.e. a class that would
most benefit from additional memory.

Removing from a rich class: For each class we can compute

the miss ratio
mi

ri
: a small miss ratio may indicate that a class

can afford to lose some memory. Nevertheless, the miss ratio
alone is not sufficient to provide a complete picture: we need
to understand how efficiently a class is using the memory
assigned to it. For instance, if we have two classes with the
same miss ratio, but one class has two slabs assigned to it
and the other has ten slabs, it is clear that the class with 2
slabs is using the memory more efficiently, and if we remove
one slab from such a class, it will suffer, and the number of
misses may increase significantly. On the other hand, if we
remove a slab from the class with 10 slabs, the impact will
be much more contained.
Therefore, we consider the miss ratio normalized to the

number of slabs:
mi/ri
si

. This value is an indication of the

increase in the miss ratio in case we decide to remove a
slab from a class. While more sophisticated measures can
be used to estimate the variation in the miss ratio when
slabs are removed, our measurements have shown that the
approach we propose is fairly accurate.
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In summary, we define a rich class the class with the smallest

value of
mi/ri
si

. Among the slabs of that class, we select the

one according to the Least Recently Accessed (LRA) policy,
i.e. we select the slab that has not been accessed for the
longest time.

Giving to a needy class: The identification of the class that
is suffering the most is much simpler. Since our aim is to
decrease the overall number of misses, it is sufficient to look
at the class that has registered the largest number of misses.

Algorithm 3 Slab Allocation Scheme (SAS)

1. Input: s // array of slabs allocated to each class
2. Input: r // array of requests in each class
3. Input: m // array of misses due to eviction in each class
4.

5. Every M misses do

6. idremove-from ← argmin
i

(

mi/ri
si

)

;

7. idgive-to ← argmax
i

(mi);

8. MoveOneSlab(idremove-from, idgive-to);

Note that SAS considers the cost of the misses per class
and per slab: SAS aims at finding a working point where
a change in the memory partitioning does not increase
the miss ratio. In summary, SAS can be thought of as a
mechanism that caters to a high hit ratio by adapting how
memory is partitioned to mirror object popularity dynamics
(as memory allocation is continuously re-evaluated) and
variations in object size distribution and cost.

We observe that, when we remove a slab from a class,
we need to evict all objects within such a slab. Since objects
have different popularities, it may happen that we remove
highly requested objects within that class, and the number of
misses increase more than predicted. Clearly, once the rich
class has been identified, it would be beneficial to reorganize
the objects among the slabs, and put the least recently
used objects in the slab to be evicted. This operation is
computationally intensive and would lock the resources for
a longer time with respect to our SAS scheme. On the other
hand, as we will show in the results, our solution obtains
nearly-optimal results and is computationally lightweight.
Therefore, even if more complex policies would avoid evict-
ing popular objects, the benefits that they could obtain may
be marginal.

4 COMPARATIVE ANALYSIS

We now present our experimental results, where we com-
pare the performance of vanilla Memcached to that of a
Memcached server that uses our memory partitioning man-
agement scheme. First, we discuss our experimental setup,
then present our comparative analysis. In what follows,
we focus on results obtained using real traces. Due to the
limited duration of the real traces (48 hours), we have not
observed any significant change in the statistical properties
of the requested objects. Therefore the results we show focus
on the memory management scheme evaluation when the
set of requested objects remains constant. The case where the

set of objects changes, and their statistical properties change
too (such as the distribution of the object size), introduces
different problems (e.g., the calcification) that needs to be
discussed separately: we consider this latter case, where we
have run experiments with synthetic traces, in Section 5.

4.1 Experimental Setup

Typically, in scale-out Web applications, a series of Mem-
cached servers are configured in a shared-nothing setup,
whereby each server takes care of a subset of data objects us-
ing consistent hashing [7] or variations thereof. This means
that each Memcached server receives requests for objects
that have approximately the same statistical properties.
Therefore, to study memory management, it is sufficient to
measure the performance of a single Memcached server. As
for the request arrival to the server, Memcached locks the
memory at each operation: even if requests are managed by
many threads (used to maintain open connections, process
the requests and prepare the responses), from the memory
viewpoint, these requests are processed in series; hence,
generating the requests from a single, or from multiple
clients, has little or no impact on memory management5.

Following the above observations, in our experiments
we deploy a simple, yet representative, Web architecture:
an application server is connected to a database and to a
Memcached server (the cache size is set to 1 GB). A client
issues requests for objects that are permanently stored in
the database. The application server checks if the requested
object is in the cache; if Memcached returns the object, the
application server serves the client; otherwise, it retrieves
the object from the database, serves the client and stores the
object in Memcached.

Fig. 3. An illustration of the testbed used in our experiments: this is a
simple, yet representative, configuration.

The database is populated with objects extracted from
real traces collected at a vantage point of a major CDN. The
traces we use include the cost necessary to retrieve each
object: for simplicity, we store such costs in an efficient data
structure within the application server, so that each client
request for an object is associated to its cost. Hence, the
application server can use the new Memcached API we have
developed and specify object costs along with requests. In

5. Actually, with multiple threads, the overall throughput may in-
crease, since memory lock occurs at the class level. Nevertheless, for
the purpose of our experiments, the concurrent management of the
classes has no impact on the main performance index we consider, i.e.
the hit ratio.
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TABLE 1
Information about the traces.

Length of the trace 48 hours

Number of requests received 9.67 · 106

Number of distinct objects 5.62 · 106

Cumulative size of the

requested objects 8.07 GiB

a real deployment, cost-information is usually provided by
back-end services: we discuss in detail this aspect in Sect. 6.
The client issues object requests by replaying the real traces.

4.2 CDN Traces

In this section we describe the traces used in the exper-
iments. The traces have been collected from one of the
servers of a major CDN operator. As shown in Table 1, the
traces contains almost 10 million requests for more than 5
million objects. Overall, the sizes of the objects sum up to
approximately 8 GiB. The traces cover a period of time of
roughly 48 hours of request traffic.

Next, we focus on object popularity. We compute the
number of requests received by each object, sort objects ac-
cording to this value and plot the resulting object popularity
in Figure 4. It is interesting to note that, while the tail of the
distribution follows a Zipf-like distribution, the popularity
of the top 1’000 objects follows a different pattern. This,
along with the heterogeneous object size, limits the appli-
cability of theoretical models available in the literature to
analyze the performance of the cache. In particular, we refer
to the Che’s approximation [15], used to predict the hit ratio
for a given cache size: the model assumes that all objects
has the same size, the object popularity follows a Zipf-like
distribution, and the arrivals follow a Poisson process. In
our case, since the assumptions do not hold, we can not
make use of such theoretical results, and we need to resort
to the experimental approach.
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Fig. 4. Number of requests for each object, ordered by objects rank, from
the most popular to the least popular.

Next we focus on the object size distribution. The size of
the objects spans from few bytes up to 1 MiB, with most
of the objects having size between 100 bytes and 10 kiB.
Figure 5 shows the empirical CDF of object sizes.
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Fig. 5. Empirical cumulative distribution function of the object sizes.

Along with each object, the traces report an additional
parameter called retrieval time, which is the time need to
fetch the object either from the original server, the cache
hierarchy, the disk or memory, along with the necessary
computation (e.g., unzipping or encoding the content). Con-
sidering the objects retrieved from the original server and
the cache hierarchy, their retrieval times are an effective
measure of the pressure on back-end servers each object
impose, as computed by the CDN management system.
Thus, in our experiments, we use the retrieval time as the
cost associated to the object. Due to internal CDN operator
confidentiality policies, this cost has been re-normalized
to an integer between 1 and 10’000. Figure 6 shows the
empirical CDF of the object costs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

C
D

F

Object cost

Fig. 6. Empirical cumulative distribution function of the object costs.

It is important to note that the retrieval time is not
necessarily correlated to object sizes: Figure 7 shows the
relation between the object size and its cost (each point
represents an object). We have also computed the correlation
coefficient between the size and the cost, obtaining a value
equal to 0.013, which indicates no correlation.

The fact that objects may have different costs represents
an important information that should be used when man-
aging the storage system. In the following, we study the
performance of Memcached using a variety of cost metrics,
as determined by different memory management policies.
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4.3 Results

The main performance metric we consider in this work is
the cost hit ratio, which is given by the sum of the costs of
the hits divided by the sum of the costs of all the requests.
This metric is computed from the application server that
receives the requests from the client.

Our traces can be used to perform a variety of experi-
ments, by changing the cost used to characterize the object.
For instance, if we set all the costs equal to 1, we obtain
the basic cache behavior, and the cost hit ratio becomes
the traditional hit ratio, where each hit contributes equally.
Alternatively, we can use the size of the objects as cost: in
this case the performance metric indicates the so-called byte
hit ratio. Finally, we can use the retrieval time to understand
the impact of such costs on the performance.

In all the three cases outlined above, we use our variant
of the Mattson stack algorithm shown in Algorithm 1, along
with Algorithm 2 presented in Section 3, to compute – in an
off-line manner – the optimal cost hit ratio. Next, we present
our results in terms of the cost hit ratio as a function of
the number of requests received by the application server:
hence, the x-axis of our figures is only loosely related to
time. We show the optimal value with a horizontal line.
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Figure 8 shows the hit ratio when all the objects have the
same cost. It is interesting to note that the basic Memcached
policy is far from optimal: the slab assignment based on
object request arrival is not able to exploit correctly the

available memory. With SAS, instead, the hit ratio converges
towards the optimum, as more and more requests are pro-
cessed.
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Fig. 9. Byte hit ratio obtained when the objects have a cost equal to their
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In Figure 9 we consider the case where the objects have
cost equal to their sizes. The byte hit ratio obtained by
Memcached is close to optimal: the vanilla Memcached slab
assignment works well when focusing on the sizes of the
objects. Nevertheless, the assignment is static, therefore any
change in the statistical properties of the objects may lead
to sub-optimal performance. As for the SAS scheme, also in
this case, its dynamic adaptation is able to slightly improve
over Memcached.
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Fig. 10. Cost hit ratio obtained with retrieval times as objects costs.

In our final experiment, we assign object costs to be equal
to their retrieval time, which constitutes a more representa-
tive cost value than object sizes. In this case, our scheme
strives at reorganizing memory based on both user request
patterns and the pressure on the back-end each request
imposes. As the number of requests increases, SAS achieves
near-optimal performance. Instead, the static memory man-
agement of vanilla Memcached, provides a sub-optimal cost
hit ratio, which translates into eviction of objects that need
to be retrieved again from the back-end, with high costs.

To better illustrate the process of slab assignment made
by SAS, we take a snapshot of the system approximately
after half of the requests has been processed. This snapshot
is shown in Figure 11, which describes how slabs are parti-
tioned across object size classes. As a reference, we show the
optimal slab assignment. The SAS scheme starts with an ini-
tial slab assignment similar to the one used by Memcached,
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since slabs are allocated on a per-request basis. As soon as all
the available slabs are assigned, SAS periodically reorganizes
memory allocation to decrease the cost due to the misses.
The profile of the assignment gradually shifts from the one
that characterizes Memcached (the other snapshots are not
shown here for space constraints), to the optimal one.
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Fig. 11. Slab assigned to the different classes. The snapshot has been
taken after half of all the requests has been processed.

In summary, our proposed scheme is able to dynamically
adapt to user requests and manage the memory according
to both object sizes and costs.

5 THE CALCIFICATION PROBLEM

In Memcached, once an appropriate portion of memory has
been assigned to a class, it will remain always associated
to such class (unless the server is restarted). Clearly, if the
statistical properties of the requested objects do not change
over time, the hit ratio may be not affected by such a
static slab allocation. Instead, when the statistical proper-
ties change (e.g., larger objects become more popular), the
problem of slab calcification becomes tangible [6], and perfor-
mance deteriorates. In the following, we summarize current
attempts and known best practices to mitigate calcification:

Cache Reset: every T seconds all the objects are removed
from the cache. This policy requires manual intervention, as
it is not implemented in Memcached. Despite its simplicity,
we note that the abrupt service interruption due to the reset
is harmful in several aspects: i) client connections may result
hanging; ii) several transitory periods may be required to
fill the cache; and iii) the back-end servers and the database
layer may suffer load spikes due to an empty cache. In a
multi-server setting, the Reset has to be coordinated, so that
the impact on the global hit ratio is limited.

Memcached Automove: a recent version of Memcached
allows slab reassignment. Every 10 seconds, the systems
collects the number of evictions in each class: if a class has
the highest number of evictions three times in a row, it is
granted a new slab. The new slab is taken from the class
that had no eviction in the last three observations. As stated
by the designers of this policy, the algorithm is conservative,
i.e., the probability for a slab to be moved is extremely low
(because it is rare to find a class with no eviction for 30
seconds).

Twitter random eviction: Twemcache [6] allows administra-
tors to select a set of eviction policies explicitly designed to

solve the slab calcification problem; with random eviction,
for each Set, if there is no free chunk or free slab, instead of
applying the class LRU policy, the server chooses a random
slab (that can belong to any class), evicts all the objects
in such a slab, reassigns the slab to the current class (by
dividing the slab into chunks of appropriate size), and uses
the first free chunk to store the new object – the remaining
free chunks will be used for the next Set requests. This
policy allows slabs to be reallocated among classes to follow
request dynamics. However, since the eviction procedure
is executed on a per-request basis and since slab eviction
implies the eviction of all its stored objects, we believe the
random eviction policy to be too aggressive. Our experi-
ments confirm such claim.

Twitter slab LRA eviction: Twemcache provides also an
alternative policy to overcome the limitation of the random
policy. For each Set, if there is no free chunk or free slab,
the server chooses the least recently accessed slab (that can
belong to any class), evicts all the objects in such a slab,
reassigns the slab to the current class, and uses the first
free chunk to store the new object – the remaining free
chunks will be used for the next Set requests. The access
time of a slab is updated each time an object in such a slab
is accessed. The policy aims at a dynamic slab-to-memory
assignment, letting the slabs to be assigned dynamically to
the classes, but the eviction of multiple items may have a
negative impact on the hit ratio.

In the next section, we study with an experimental
approach if these policies are able to efficiently address the
calcification problem, and we compare the results with the
ones obtained by our SAS scheme.

5.1 Experimental Setup

The experimental testbed is the same as explained in Sec-
tion 4.1. In order to highlight the calcification problem, we
have generated synthetic traces where the requested objects
come from two sets with different statistical characteristics.
The first set has Q1 = 7 Millions objects, whose size
is randomly drawn from a Generalized Pareto distribu-
tion with location θ = 0, scale ϕ = 214.476 and shape
k = 0.348238 – these values have been reported by Atikoglu
et. al. in [7]. The second set has Q2 = 7 Millions objects,
whose size is randomly drawn from a Generalized Pareto
distribution with different parameters: θ = 0, ϕ = 312.6175
and k = 0.05. Even if calcification has been observed in
some prominent operational setups [1], [6], [7], no detail has
been given on the change of the statistical properties of the
requested objects. Therefore our choice of the second set of
parameters has been made to induce slab calcification. We
have tested different distributions and parameters for the
second set of objects, obtaining always the same qualitative
results presented in the next sections.

Since Memcached and Twemcache does not support
costs, for a fair comparison we set the cost of all the objects
to one. To ensure a proper reproducibility of our results, we
provide a set of traces that can be used by automatic scripts
to populate a database, and to generate requests. In Sect. 6
we provide additional details about this.
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Fig. 12. Hit ratio over time with calcification obtained by different schemes.

Our experiments are built as follows. The client gener-
ates R = 200 Millions requests, divided into three phases.
In the first phase, the client selects random6 objects from
the first set; in the second phase, random objects of the sec-
ond set are increasingly requested; in the third phase only
random objects of the second set are considered. For each
request, the application server registers a hit if the object is
in the cache. To produce our results, we consider intervals of
R = 500′000 requests and compute the aggregate hit ratio
thereof.

Note that, while the first phase reproduces the usual
behavior of the cache, the other phases have been designed
to force the system to deal with a change in the statistical
properties of the objects: this pinpoints the calcification
problem in Memcached and allows to study the effective-
ness of current countermeasures. Morevover, once the cache
is full, it is not important how fast the statistical properties
of the requested objects change. In other words, even if the
change of the statistical properties appears over 400 Millions
requests (instead of 200 Millions), the calcification will occur
slowly, but it will appear in any case.

In order to compare with the optimal value, we have con-
sidered two portions of the traces, taken from the first and
the last phase, and use these portions to feed the Mattson
algorithm and the offline computation of the optimal slab
assignment. Since the statistical properties of the requested
objects change, the optimal value change, therefore we have
two different values for the first and the last phase. Such
values are shown as horizontal lines in the figures7.

5.2 Results

We consider four system configurations: Memcached, Mem-
cached with the reset policy, Twemcache with the random

6. The probability distribution used to identify the object to request
is a truncated Normal distribution that shifts over the object identifiers
as the experiment progresses: in this way we emulate artificially the
change in popularity of the objects. Note that, while popularity may
have different distributions, the objects size are selected from the sets
Q1 and Q2, therefore the choice of the popularity has no impact on the
memory allocation (more details on this point can be found in [13]).

7. The optimal values can be used as a reference for the first and the
last phase, while in the middle it is not possible to compute an optimal
value due to the changing statistical characteristics of the objects.

eviction policy, and Twemcache with the slab LRA policy8.
Figure 12 shows the results, in terms of hit ratio over time.

Figure 12(a) indicates that, for Memcached, after an ini-
tial period necessary to fill the cache, in the first phase the hit
ratio becomes stable at a value of roughly 84%. In the second
and third phase, the impact of slab calcification on the hit
ratio is evident, with a loss of 4%. As the client asks for more
and more objects with sizes that have been drawn from a
different distribution, the hit ratio decreases progressively.
During all the trace it is clear that the hit ratio obtained
by Memcached is far from optimal, as we already observed
in the previous sections. Nevertheless, the calcification has a
additional negative impact: while the optimal value changes
from 91% to 89%, with Memcached the decrease is 4%.

With the Reset policy, shown in Figure 12(b), we impose
a cache reset four times during the experiment. The resets
mitigate the effects of slab calcification. During the transi-
tion among object sets, the hit ratio is affected by different
object size distributions: this is clearly visible in the third
“wave.” However, once the transition is over, Memcached
can restore the hit ratio to a similar value to that of the
first phase, which is in any case far from the optimal value.
Clearly, each reset action provokes a transitory period to fill
the cache, which affects negatively the achieved hit ratio.

Figure 12(c) shows that the random eviction policy in
Twemcache achieves a lower, and extremely variable hit ratio,
when compared to Memcached. As we anticipated in Sect.2,
the eviction of randomly selected slabs may be too aggres-
sive, because an individual slab may contain many popular
items. As such, using Twemcache in conjunction with the
random eviction policy has a negative impact on the hit ratio
overall. Our experiments show that also the slab LRA policy
in Twemcache obtains a smaller hit ratio than Memcached in
the long run, albeit performing better than random eviction.
The reason why the slab LRA policy is close to optimal at
the beginning is due to the initial slab assignment, which
is biased to classes with small objects. In fact, the slab LRA
policy choses the slab to be evicted based on the access time.
Since classes with large objects contain less objects (and
overall, they contribute less to the hit ratio), they are chosen
more frequently at the beginning, but they have less impact

8. We omit the Memcached Automove policy, since we have verified
that, in our experimental setup, no slab has been moved.
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on the hit ratio. This results in a memory assignment which
provides good performances at the beginning. Nevertheless,
in the long run, the evolution of whole slabs reassignment
have a significant negative impact. Overall, the two Twem-
cache eviction variants under-perform Memcached (with
calcification) and may be unstable.

Figure 13(a) shows how the hit ratio achieved by SAS

compares to that of Memcached, in each experiment phase.
With no calcification (first phase), SAS achieves a 7% increase
over vanilla Memcached and almost reaches the optimal
value; in presence of calcification (third phase), the gain in
favor of SAS reach 10%, with a near-optimal value. Note
that the hit ratio in the third phase is lower than that
in the first phase: this is due to the particular object size
distribution of the last phase, and should not be attributed
to the consequences of calcification. This is confirmed by
the fact that the optimal value is also diminished, and the
results of SAS is close to such value, As additional test, we
run an experiment where we impose an artificial reset to
the SAS-based Memcached server: with the reset, we make
sure that memory partitioning is “molded” according to the
final object size distribution, following client requests. Fig-
ure 13(b) shows that, after the reset, the hit ratio converges
to its previous value.
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Fig. 13. Hit ratio over time obtained by SAS compared with vanilla
Memcached (a) and by varying the parameter M (b).

Finally, we conclude by observing that SAS has a sin-
gle parameter that needs to be set: how often the slab
assignment should take place. If the interval is too short,
then the variability of the statistics (sum of the cost of the
requests and misses) may negatively impact the assignment.

If the interval is too long, the scheme converges slowly
to the optimum. We have experimentally checked that the
sensitivity of the results to this parameter is actually not
significant. We tested different cases with interval between
5’000 and 20’000 misses, and observed that any value within
this range provide similar results (see Figure 13(b)).

6 DISCUSSION

We now discuss additional details about the SAS policy and
the experiments we performed to validate it.

Overheads and complexity: The SAS policy requires storing,
for each object, an additional cost information, which might
take space. The overhead can be computed for each single
slab (1 MB): in our experiments, considering the slab that
contains the smallest objects, we have approximately 11’000
objects. If we use 4 bytes for representing the cost with a
float, the overall additional size required is approximately
43 kB, i.e, 4% of the slab size. For slabs with bigger objects,
this reduces to 1% or smaller overheads. Overall, even
considering the additional data structures – such as the
counters for each class – the overhead is limited.
As for the computational complexity, SAS is a lightweight
algorithm, in line with what is currently implemented in
Memcached and Twemcache. To operate, SAS locks the
memory in two occasions. First, to compute, given the inter-
nal status of Memcached, the overall statistics (r,m, s). This
takes O(C), where C denotes the total number of classes.
Second, to move a single slab, consisting in removing all
objects in the slab to evict: this takes O(items). SAS is
executed every M misses, meaning that a round has no fixed
duration. Compared with the frequency of slab movements
performed in Twemcache, we observed that SAS does not
impose a high toll on system resources in an operational
setting. In order to confirm this, we have measured the
throughput, i.e., the number of requests per seconds that
are processed by Memcached, SAS and the two policies
implemented in Twemcache (Figure 14). The values have
been obtained with 5 different runs for each policy, using
different seeds for the generation of the objects and arrival
patterns. The small bars at the top of each box indicates the
95% confidence interval. Rather than the absolute values of
the throughput (which, for instance, is influenced by the
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Fig. 14. Average throughput of the different schemes.



IEEE TRANSACTIONS ON SERVICES COMPUTING, UNDER SUBMISSION 12

distribution of the object size), it is interesting to note that
SAS has a limited impact on the performance in terms of
throughput with respect to Memcached, and its burden is
comparable to the one imposed by Twemcache. This is true
also with different values of the parameter M , the length of
the evaluation period.

Impact on the latency: While the throughput provides a
measure of how fast the cache is, it would be interesting to
understand the impact of caching on the overall response
latency, which includes the time necessary to retrieve the
content from the back end. It is worth noting that even
modest improvements to the cache hit ratio has significant
impact on the average latency. For instance, assuming an
average read latency from the cache and from the backend
of 100 µs and 10 ms respectively, increasing the hit rate by
6% (e.g., from 84% to 90%) would reduce the average read
latency by over 35%. Clearly this result strongly depends
on the overall architecture: if the backend provides a read
latency of 2 ms, then increasing the hit rate from 84% to
90% would reduce the read latency by over 28%; if the
backend needs to retrieve the content from an origin server
far from the current cache, then the read delay would be
tens of milliseconds. Therefore, the response time strongly
depends on the architecture of the overall system, and it can
be evaluated accurately only in a real deployment.

Rather than on the overall architecture, we may focus
on the latency of the cache itself, and the impact of the
different schemes on such metric. In the example above,
we have assumed that the average read latency from the
cache is the same before and after the increase of the hit rate.
Nevertheless, if the scheme that helps in increasing the hit
rate has an impact on the average read latency, the overall
latency may be affected. To shows that this is not the case,
we have measured the average latency of the Get requests
and built the corresponding CDF – due to the high number
of requests, each point in the CDF represents the average
latency of 10’000 Get requests.
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Figure 15 shows that the different policies – SAS and
the variants of Twemcache – have little impact on the Get

request latency with respect to Memcached: for instance, for
any percentile, the delay of SAS is at most 1 µs larger than
Memcached. Overall, therefore, SAS is able to improve the
hit ratio with negligible impact on the cache throughput and
on the average cache latency.

Compulsory and capacity misses: In our work, we distin-
guish between compulsory misses (objects that have never
been requested before) and capacity misses (objects previ-
ously evicted). This distinction is important since we cannot
avoid compulsory misses, but we can direct the resources
we have (the slabs) to decrease the capacity misses. Note
that, in general, there is little correlation between com-
pulsory and capacity misses, i.e. a class with high com-
pulsory misses not necessarily has high capacity misses
too. In other words, we can not take the total number
of misses, without distinguish between compulsory and
capacity misses, as an indication of the capacity misses.
While designing our scheme, we have tested a solution that
considers the total number of misses, obtaining a significant
performance degradation with respect to the solution where
the distinction between misses is made (not shown here
for space constraints). On the other hand, the cost of the
Decaying Bloom Filter used to detect duplicates in the data
stream is negligible, and the benefits it provides in terms of
performance significant.

Traces: The experimental evaluation of cache eviction poli-
cies or memory partition mechanisms, requires rather com-
plex setups. First, it is necessary to populate a database
system with millions of objects, defining minimum and
maximum sizes, along with an appropriate definition of size
distributions. Then, it is essential to define client requests
for such objects (object popularity, and its dynamics). For
experimental reproducibility, a specification of such param-
eters is key, in conjunction to measurement studies to inform
the design of realistic distribution shapes – a methodology
adopted in this work, building on the information discussed
by Atikoglu et. al. in [7].
Nevertheless, the performance analysis of a caching system
can be made smoother by building an appropriate set of
software tools to accomplish the above in an automatic
manner. With such tools, it is possible to reproduce exactly
the same experimental conditions used to study system
performance, making it possible to compare and benchmark
a variety of existing and new memory management mecha-
nisms.
Today, only a scattered set of pieces of software is available
in the open-source domain to realize experiments: most of
them, however, fall short in providing realistic setups and
simplicity, due to the number of internal parameters they re-
quire. In our work, we attempt to address such problems by
creating a set of traces that can be used by automatic scripts
(i) to populate a database, and (ii) to generate requests. The
format of these traces is extremely simple: those used to
populate the database are a series of entries with (id, size)
of the objects; those used to generate client requests are a
series of object identifiers. The interested reader can find
details, scripts and the traces in [2].

Additional experiments: Due to the the limited availability
of public traces, we could test our scheme on a few, yet
representative, scenarios. Nevertheless, the basic version of
our scheme, which did not include the cost, called PSA, has
been implemented and tested in other works [19] [23]. Both
works use a set of traces derived from the Facebook work-
load [7]. In addition, in [19], the authors performed a stress-
test, i.e., they use a workload designed to test the throughput
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of the server inspired by [9]. In all the experiments, SAS is
able to obtain almost optimal performance in terms of hit
ratio, confirming its effectiveness in adapting to different
scenarios.

On the cost of the objects: When using the new API we
introduced in Memcached, the operator needs to specify
the cost of the object when storing it into the cache. One
option could be to use the size of the object itself. Another
option would be to use the delay to retrieve the content from
the backend. Usually, such information is indeed readily
available in current systems. Many production systems, in
fact, deploy a monitoring infrastructure for measuring the
performance of the system itself. For instance, in the case
of the traces we used, the cost was actually recorded along
with the traces. Such cost is the overall delay for obtaining
the object, which include not only the time necessary to
transfer the bytes, but also the time for additional opera-
tions, such as decompression. Note that not all objects are
compressed, it depends on different factors (non only size)
that are related to the store management policies adopted
by the operator (which may be different from the cache
management policies). In any case, any system such as a
web application infrastructure, that needs to closely observe
its performance, deploys such monitoring system, so that
the information about the cost is available when retrieving
the object.

7 CONCLUSION AND PERSPECTIVES

Web-scale companies invest many resources and make con-
siderable efforts to improve the performance of their web
applications and the perceived Quality of Experience by
end-users. Focusing on the hit ratio alone does not account
for the pressure on the back-end correctly, since such a metric
disregards the cost necessary to obtain the data. The cost
hit ratio represents a metric that summarizes both the work
done in the back-end and the performance perceived by the
end users.

In this work, we proposed a cost-based memory man-
agement mechanism for Memcached – a widely adopted
in-memory storage system used as a fundamental building
block in many modern web architectures – that is able to
dynamically provide a cost-based hit ratio close to optimal.
Our scheme works on-line and is able to adapt to the
characteristics of the objects that are requested, while other
solutions statically allocate the memory to the different
classes, thus obtaining sub-optimal performance.

Such sub-optimal performance are present even when
the statistical characteristics of the cached objects change
over time. While calcification has been discussed and cited
in technical blogs [1] and some papers [7], [22], we have
shown, to the best of our knowledge for the first time, its
impact on the hit ratio. We have also studied Twemcache, a
variant conceived at Twitter that includes eviction policies to
address calcification, and showed that the price Twemcache
pays for adaptivity is a lower hit ratio. Our scheme, instead,
is able defeat the calcification problem, yet maintaining close
to optimal performance.

As a future work, we intend to investigate alternative
in-memory storage systems, such as Redis [5], that adopt a
different approach for memory allocation than that of Mem-
cached. In particular, we plan to analyze the performance of
memory allocation schemes specifically designed to avoid
fragmentation, such as jemalloc [16], developed by Jason
Evans for FreeBSD, and Google’s TCmalloc [3]. With these
allocators, the in-memory storage system does not need to
take care of object classes, and can perform memory man-
agement with a single LRU queue. A comparison among
such systems and Memcached may reveal interesting trade-
offs and limits of modern memory management schemes.
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