Access-time aware cache algorithms

Giovanni Neglia*, Damiano Carra†, Mingdong Feng‡, Vaishnav Janardhan‡, Pietro Michiardi§ and Dimitra Tsigkari*

*Inria, {giovanni.neglia, dimitra.tsigkari}@inria.fr
†University of Verona, damiano.carra@univr.it
‡Akamai Technologies, {mfeng, vjanardh}@akamai.com
§Eurecom, pietro.michiardi@eurecom.fr

Abstract—Most of the caching algorithms are oblivious to requests’ timescale, but caching systems are capacity constrained and, in practical cases, the hit rate may be limited by the cache’s impossibility to serve requests fast enough. In particular the hard-disk access time can be the key factor capping cache performances. In this paper, we present a new cache replacement policy that takes advantage of a hierarchical caching architecture, and in particular of access-time difference between memory and disk. Our policy is optimal when requests follow the independent reference model, and significantly reduces the hard-disk load, as shown also by our realistic, trace-driven evaluation.

I. INTRODUCTION

The hit probability is a well-known key metric for caching systems: this is the probability that a generic request for a given content will be served by the cache. Most of the existing literature implicitly assumes that a hit occurs if the content is stored in the cache at the moment of the request. In practice, however, in real caching systems the actual hit rate is often limited by the speed at which the cache can serve requests. In particular, Hard-Disk Drive (HDD) access times can be the key factor capping cache performance.

As an illustrative example, Fig. 1 shows the percentage of CPU and HDD utilization, as reported by the operating system, over two days in the life of a generic caching server. As the amount of requests varies during the day, the resource utilization of the caching server varies as well: during peak hours, HDD utilization can exceed 95%. Such loads may cause the inability to serve a request even if the content is actually cached in the HDD. In case of a pool of cache servers, a solution based on dynamic load balancing may alleviate this problem by offloading the requests to another server. Nevertheless, this solution has its own drawbacks, because the rerouted queries are likely to generate misses at the new cache.

In this paper, we study if and how the RAM can be used to alleviate the HDD load, so that the cache can serve a higher rate of requests before query-rerouting becomes necessary.

The idea to take advantage of the RAM is not groundbreaking. Modern cache servers usually operate as a hierarchical cache, where the most recently requested contents are stored also in the RAM: upon arrival of a new request, content is first looked up in the RAM; if not found, the lookup mechanism targets the HDD. Hence, the RAM “shields” the HDD from most of the requests.

The question we ask in this paper is: what is the optimal way to use the RAM? Which content should be duplicated in the RAM to minimize the load on the HDD? We show that, if content popularities are known, the problem can be formulated as a knapsack problem. More importantly, we design a new dynamic replacement policy that, without requiring popularity information to be known, can implicitly solve our minimization problem. Our policy is a variant of q-LRU. In q-LRU after a cache miss, the content is stored in the cache with probability q and, if space is needed, the least recently used contents are evicted. We call our policy q_{i}-LRU, because we use a different probability q_{i} for each content i. The value q_{i} depends on the content size and takes into account the time needed to retrieve contents from the HDD. Simulation results on real content request traces from the Akamai’s Content Delivery Network (CDN) [1] show that our policy achieves more than 80% load reduction on the HDD with an improvement between 10% and 20% in comparison to standard LRU.

The paper is organized as follows. In Sec. II we formalize the problem and illustrate the underlying assumptions. In Sec. III we present the policy q_{i}-LRU and prove its asymptotic optimality. We evaluate its performance under real-world traces in Sec. IV. Related works are discussed in Sec. V.

II. MODEL

A. Hard Disk Service Time

Our study relies on some assumptions about the load imposed on the HDD by a set of requests. Consider a single file-read request for content i with size s_{i}. We call service time the
time the HDD works just to provide content \(i \) to the operating system. Our first assumption is that the service time is only a function of content size \(s_i \). We denote it as \(T(s_i) \).\(^1\) The second assumption is that service times are additive, i.e. let \(A \) be a set of contents, the total time the HDD works to provide the contents in \(A \) is equal to \(\sum_{i \in A} T(s_i) \), independently from the specific time instants at which the requests are issued. Note that we are not assuming any specific service discipline for this set of requests: they could be served sequentially (e.g. in a FIFO or LIFO way) or in parallel (e.g. according to a generalized processor sharing).\(^2\) But we are requiring that concurrent object requests do not interfere by increasing (or reducing) the total HDD service time.

The analytical results we provide in Sect. III, which is the main contribution of our work, do not depend on a particular structure of the function \(T(s_i) \). Nevertheless, we describe here a specific form based on past research on HDD I/O throughput \([2][3]\), and based on our performance study of disk access time observed in caching servers. We will refer to this specific form later to clarify some properties of the optimal policy. Furthermore, we will use it in our experiments in Sec. IV.

Considering the mechanical structure of the HDD, every time a new read is done, we need to wait for the reading arm to move across the cylinders, and for the platter to rotate on its axis. We call these two contributions the average seek time and average rotation time, and we denote them by \(\sigma \) and \(\rho \) respectively. Each file is divided into blocks, whose size \(b \) is a configuration parameter. If we read a file whose size is bigger than a block, then we need to wait for the average seek time and the average rotation time for each block.

Once the reading head has reached the beginning of a block, the time it takes to read the data depends on the transfer speed \(\mu \). Moreover, while reading, the reading arm needs to move across tracks and cylinders, so we need to add a contribution due to the seek time for read, \(\sigma_r \), which depends on the size of the file we are reading. As a last contribution, we have a constant delay due to the controller overhead, \(\phi \).

Overall, the function that estimates the cost of reading a file from the hard disk is given by the following equation (see Table I for a summary of the variables used):

\[
T(s_i) = (\sigma + \rho) \left[\frac{s_i}{b} \right] + \left(\frac{1}{\mu} + \sigma_r \right) s_i + \phi. \tag{1}
\]

Based on our experience on real-life production systems, the last column of Table I shows the values of the different variables for a 10'000 RPM hard drive.

We have validated Eq. 1 through an extensive measurement campaign for two different hard disk drives (10’000 RPM and 7'200 RPM). The results are shown in Fig. 2. In the figure, we actually plot the quantity \(T(s_i)/s_i \); in Sect. III we will illustrate the key role played by this ratio. The estimated value of \(T(s_i)/s_i \) has discontinuity points at multiples of the block size \(b \); in fact, as soon as the size of an object exceeds one of such values, the service time increases by an additional average seek time and an additional average rotation time. The points in the figures represent the output of our measurement campaign for a representative subset of sizes (in particular, for sizes close to the multiples of block size \(b \), where the discontinuities occur). Each point is the average value for a given size over multiple reads. From the experiments, we conclude that the function \(T(s_i) \) shown in Eq.1 is able to accurately estimate the cost of reading a file from the HDD.

\[
\begin{array}{|c|c|c|}
\hline
\text{Variable} & \text{Meaning} & \text{Typical Value} \\
\hline
s_i & \text{Size of object } i & \cdot \\
\sigma & \text{Average seek time} & 3.7 \cdot 10^{-3} \text{ s} \\
\rho & \text{Average rotation time} & 3.0 \cdot 10^{-2} \text{ s} \\
b & \text{Block size} & 2.0 \text{ MB} \\
\sigma_r & \text{Seek time for read} & 3.14 \cdot 10^{-5} \text{ s/MB} \\
\mu & \text{Transfer bandwidth} & 157 \text{ MB/s} \\
\phi & \text{Controller Overhead} & 0.5 \cdot 10^{-3} \text{ s} \\
\hline
\end{array}
\]

\[\text{Fig. 2. Graph of the function } T(s_i)/s_i.\]

\[\text{B. Query Request Process}\]

Let \(N = \{1, 2, \ldots, N\} \) denote the set of contents. For mathematical tractability, as done in most of the works in the literature (see Sec. V), we assume that the requests follow the popular Independent Reference Model (IRM), where contents requests are independently drawn according to constant probabilities (see for example \([4]\)). In particular we consider the time-continuous version of the IRM: requests for content \(i \in N \) arrive according to a Poisson process with rate \(\lambda_i \) and the Poisson processes for different contents are independent. While the optimality results for our policy \(q_3 \)-LRU are derived under such assumption, significant performance improvements are obtained also considering real request traces (see Sec. IV).

\[\text{C. Problem Formulation}\]

In general, the optimal operation of a hierarchical cache system would require to jointly manage the different storage units, and in particular to avoid to duplicate contents across multiple units. On the contrary, in the case of a RAM-HDD system, the problem is usually decoupled: the HDD

\[\text{Table I}\]

\text{SUMMARY OF THE VARIABLES USED FOR } T(s_i).\]
caching policy is selected in order to maximize the main cache performance metric (e.g. hit ratio/rate), while a subset of the contents stored in the HDD can be duplicated in the RAM to optimize some other performance metric (e.g. the response time). The reason for duplicating contents in the RAM is twofold. First, contents present only in the RAM would be lost if the caching server is rebooted. Second, the global cache hit ratio/rate would not be significantly improved because the RAM accounts for a small percentage of the total storage available at the server. A consequence of such decoupling is that, at any time, the RAM stores a subset (M_R) of the contents stored in the HDD (M_H). In our work we consider the same decoupling principle. As a consequence, our policy is agnostic to the replacement policy implemented at the HDD (LRU, FIFO, Random, ...).

We now look at how the RAM reduces the HDD load. An incoming request can be for a content not present in the HDD (nor in the RAM because we consider M_R ⊂ M_H). In this case the content will be retrieved by some other server in the CDN or by the authoritative content provider, and then stored or not in the HDD depending on the specific HDD cache policy. Note that the choice of the contents to be duplicated in the RAM plays no role here. Read/write operations can occur (e.g. to store the new content in the HDD), but they are not affected by the RAM replacement policy, that is the focus of this paper. We ignore then the corresponding costs. On the contrary, if an incoming request is for a content present in the HDD, the expected HDD service time depends on the set of contents M_R stored in the RAM. It is indeed equal to

$$\sum_{i \in M_R \setminus M_H} \frac{\lambda_i}{\sum_{j \in N} \lambda_j} T(s_i) = \sum_{i \in M_H} \frac{\lambda_i}{\sum_{j \in N} \lambda_j} T(s_i) - \sum_{i \in M_R \setminus M_H} \frac{\lambda_i}{\sum_{j \in N} \lambda_j} T(s_i),$$

(2)

because, under IRM, \(\lambda_i / \sum_{j \in N} \lambda_j \) is the probability that the next request is for content \(i \), and the request will be served by the HDD only if content \(i \) is not duplicated in the RAM, i.e. only if \(i \notin M_R \).

Our purpose is to minimize the HDD service time under the constraint on the RAM size. This is equivalent to maximize the second term in Eq. (2). By removing the constant \(\sum_{j \in N} \lambda_j \), we obtain then that the optimal possible choice for the subset M_R is the solution of the following maximization problem:

$$\text{maximize}_{M_R \subset N} \sum_{i \in M_R} \lambda_i T(s_i) \quad \text{(3)}$$

subject to \(\sum_{i \in M_R} s_i \leq C \).

This is a knapsack problem, where \(\lambda_i T(s_i) \) is the value of content/item \(i \) and \(s_i \) its weight. The knapsack problem is NP-hard. A natural, and historically the first, relaxation of the knapsack problem is the fractional knapsack problem (also called continuous knapsack problem). In this case, we accept fractional amounts of the contents to be stored in the RAM. Let \(h_i \in [0, 1] \) be the fraction of content \(i \) to be put in the RAM, the fractional problem corresponding to Problem (3) is:

$$\text{maximize}_{h_1, \ldots, h_N} \sum_{i=1}^{N} \lambda_i h_i T(s_i) \quad \text{(4)}$$

subject to \(\sum_{i=1}^{N} h_i s_i = C \).

From an algorithmic point of view, the following greedy algorithm is optimal for the fractional knapsack problem. Assume that all the items are sorted in decreasing order with respect to the profit per unit of size (i.e. \(\lambda_i T(s_i)/s_i \geq \lambda_j T(s_j)/s_j \) for \(i \leq j \)). The algorithm finds the biggest index \(i \) for which the sum \(\sum_{i=1}^{k} s_i \) does not exceed the memory capacity. Finally, it stores the first \(k \) contents in the knapsack (in the RAM) as well as a fractional part of the content \(k+1 \) so that the RAM is filled up to its capacity. A simple variant of this greedy algorithm guarantees a \(\frac{1}{2} \)-approximation factor for the original knapsack problem [5, Theorem 2.5.4], but the greedy algorithm itself is a very good approximation algorithm for common instances of knapsack problems, as it can be justified by its good expected performance under random inputs [5, Sec. 14.4].

From a networking point of view, if we interpret \(h_i \) as the probability that content \(i \) is in the RAM, then we recognize that the constraint in Problem (4) corresponds to the usual constraint considered under Che’s approximation for cache networks [6], where the effect of the finite cache size is taken into account by imposing the expected cache occupancy for an unbounded TTL-cache [7] to have the form:

$$\sum_{i=1}^{N} h_i s_i = C. \quad \text{(5)}$$

The last remark connects our problem to the recent work in [8], where the authors use Che’s approximation to find optimal cache policies to solve the following problem:

$$\text{maximize}_{h_1, \ldots, h_N} \sum_{i=1}^{N} U_i(h_i) \quad \text{(6)}$$

subject to \(\sum_{i=1}^{N} h_i s_i = C \),

where each \(U_i(h_i) \) quantifies the utility of a cache hit for content \(i \).\(^3\) Results in [8] do not help us solve our Problem (4) because their approach requires the functions \(U_i(h_i) \) to be (i) known and (ii) strictly concave in \(h_i \). On the contrary, in our case, content popularities (\(\lambda_i \)) are unknown and, even if they

\(^3\)Although it is theoretically possible that a content stored in the RAM and in the HDD may be evicted by the HDD earlier than by the RAM, these events can be neglected in practical settings. For example in the scenario considered in Sec. IV typical cache eviction times are a few minutes for the RAM and a few days for the HDD for all the cache policies considered.

\(^4\)Since the PASTA property holds under the IRM model, then \(h_i \) is also the RAM hit probability.

\(^5\)The work in [8] actually assumes that all the contents have the same size, but their analysis can be easily extended to heterogenous sizes, as we do in Sec. III-B.
were known, the functions \(U_i(h_i) \) would be \(\lambda_i h_i T(s_i) \) and then linear in \(h_i \). Besides deriving the cache policy that solves a given optimization problem, [8] also "reverse-engineers" existing policies (like LRU) to find which optimization problem they are implicitly solving. In Sec. III we use a similar approach to study our policy.

After this general analysis of the problem, we are ready to introduce in the next section a new caching policy \(q_i\text{-LRU} \) that aims to solve Problem (4), i.e. to store in the RAM the contents with the largest values \(\lambda_i T(s_i)/s_i \) without the knowledge of content popularities \(\lambda_i \), for \(i = 1, \ldots, N \).

III. The \(q_i\text{-LRU} \) Policy

We start introducing our policy as a heuristic justified by an analogy with LRU.

Under IRM and Che’s approximation, if popularities \(\lambda_i \) are known, minimizing the miss throughput at a cache with capacity \(C \) corresponds to solving the following problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{N} \lambda_i h_i s_i \\
\text{subject to} & \quad \sum_{i=1}^{N} h_i s_i = C
\end{align*}
\]

The optimal solution is analogous to what discussed for Problem (4): hit probabilities to one for the \(k \) most popular contents, a hit probability smaller than one for the \((k+1)\)-th most popular content, and hit probabilities to zero for all the other contents. The value of \(k \) is determined by the RAM size.

Now, it is well known that, from a practical perspective, the traditional LRU policy behaves extremely well, despite content popularity dynamics. LRU is a good heuristic for Problem (7): it implicitly selects and stores in the cache the contents with the largest values of \(\lambda_i \), even when popularities \(\lambda_i \) are actually unknown.

Recall that our purpose is to store the contents with the largest values \(\lambda_i T(s_i)/s_i \); then, the analogy between the two problems suggests us to bias LRU in order to store more often the contents with the largest values of \(T(s_i)/s_i \). Intuitively, upon a cache miss, the newly requested content \(i \) is cached with probability \(q_i \), which is an increasing function in \(T(s_i)/s_i \). Specifically, we define \(q_i \) as follows:

\[
q_i = e^{-\beta \frac{T(s_i)}{s_i}}, i \in N,
\]

where \(\beta > 0 \) is a constant parameter.\(^6\) In practical cases, as discussed in section IV, we set \(\beta \) such that \(q_i \geq q_{\min} \) for every \(i \in N \), so that any content is likely to be stored in the cache after \(1/q_{\min} \) queries on average.

Our policy has then the same behaviour of the \(q\)-LRU policy, but the probability \(q \) is not fixed, it is instead chosen depending on the size of the content as indicated in Eq. (8). For this reason, we denote our policy by \(q_i\text{-LRU} \).

With reference to Fig. 2, the policy \(q_i\text{-LRU} \) would store with higher probability the smallest contents as well as the contents whose size is slightly larger than a multiple of the block size \(b \). Note that the policy \(q_i\text{-LRU} \) does not depend on the model described above for the HDD service time, but it requires the ratio \(T(s)/s \) to exhibit some variability (otherwise we would have the usual \(q\text{-LRU} \)).

Until now we have provided some intuitive justification for the policy \(q_i\text{-LRU} \). This reasoning reflects how we historically conceived it. The reader may now want more theoretically grounded support to our claim that \(q_i\text{-LRU} \) is a good heuristic for Problem (4). In what follows we show that \(q_i\text{-LRU} \) is asymptotically optimal when \(\beta \) diverges in two different ways.

We first prove in Sec. III-A that \(q_i\text{-LRU} \) asymptotically stores in a cache the contents with the largest values \(\lambda_i T(s_i)/s_i \), as the optimal greedy algorithm for Problem (4) does. This would be sufficient to our purpose, but we find interesting to establish a connection between \(q_i\text{-LRU} \) and the cache utility maximization problem introduced in [8]. For this reason, in Sec. III-B, we reverse-engineer the policy \(q_i\text{-LRU} \) and derive the utility function it is implicitly maximizing as a function of \(\beta \). We then let again \(\beta \) diverge and show that the utility maximization problem converges to a problem whose optimal solution corresponds to store the contents with the largest values \(\lambda_i T(s_i)/s_i \).

A. Asymptotic \(q_i\text{-LRU} \) hit probabilities

In [9] it is proven that under the assumptions of the IRM traffic model, the usual \(q\text{-LRU} \) policy tends to the policy that statically stores in the cache the most popular contents when \(q \) converges to 0. We generalize their approach to study the \(q_i\text{-LRU} \) policy when \(\beta \) diverges (and then \(q_i \) converges to 0, for all \(i \)). In doing so, we address some technical details that are missing in the proof in [9].\(^7\)

Let us sort contents in a decreasing order of \(\lambda_i T(s_i)/s_i \), assuming, in addition, that \(\lambda_i T(s_i)/s_i \neq \lambda_j T(s_j)/s_j \) for every \(i \neq j \).

Note that the hit probability \(h_i \), associated to the content \(i \) for the \(q_i\text{-LRU} \) policy is given by the following formula (see [9])

\[
h_i(\beta, \tau_c) = \frac{q_i(\beta)(1 - e^{-\lambda_i \tau_c})}{e^{-\lambda_i \tau_c} + q_i(\beta)(1 - e^{-\lambda_i \tau_c})}, \quad (9)
\]

where \(\tau_c \) is the eviction time that, under Che’s approximation [6], is assumed to be a constant independent of the selected content \(i \).

Now, by exploiting the constraint:

\[
C = \sum_i s_i h_i(\beta, \tau_c)
\]

it is possible to express \(\tau_c \) as an increasing function of \(\beta \) and prove that \(\lim_{\beta \to \infty} \tau_c(\beta) = \infty \). This result follows [9], but, \(^7\)

\(^6\)The reader may wonder why we have chosen this particular relation and not simply \(q_i \) proportional to \(T(s_i)/s_i \). The choice was originally motivated by the fact that proportionality leads to very small \(q_i \) values for some contents. Our analysis below shows that Eq. (8) is a sensible choice.

\(^7\)What is actually proven in [9] is that there exist two constants \(k_1 \) and \(k_2 \) with \(k_1 \leq k_2 \) such that the most popular \(k_1 \) contents are stored with probability one and the least popular \(N - k_2 \) contents with probability 0. The two constants are not estimated and it is unknown what is the asymptotic behaviour of the hit probabilities for the \(k_2 - k_1 \) contents with intermediate popularity.
for the sake of completeness, we present it extensively in our TR [10], Appendix A.

We can now replace \(q_i = e^{-\beta \tau_i} \) in Eq. (9) and express the hit probability as a function of \(\beta \) only as follows:

\[
h_i(\beta) = \frac{1 - e^{-\lambda_i \tau_i(\beta)}}{e^{\tau_i(\beta)}} + 1 - e^{-\lambda_i \tau_i(\beta)}.
\]

(11)

Let us imagine to start filling the cache with contents sorted as defined above. Let \(\xi \) denote the last content we can put in the cache before the capacity constraint is violated\(^8\) i.e.

\[
\xi = \max \left\{ k \left| \sum_{i=1}^{k} s_i \leq C \right. \right\}.
\]

We distinguish two cases: the first \(\xi \) contents fill exactly the cache (i.e. \(\sum_{i=1}^{\xi} s_i = C \)), or they leave some spare capacity, but not enough to fit content \(\xi + 1 \). Next, we prove that \(q_i \)-LRU is asymptotically optimal in the second case. The first case requires a more complex machinery that we develop in our TR [10], Appendix B.

Consider then that \(\sum_{i=1}^{\xi+1} s_i < C < \sum_{i=1}^{\xi+2} s_i \). As an intermediate step we are going to prove by contradiction that

\[
\lim_{\beta \to \infty} \frac{\beta}{\tau_i(\beta)} = \lambda_i \frac{T(s_{i+1}) - s_{i+1}}{s_{i+1}}.
\]

(12)

Suppose that this is not the case. Then, there exists a sequence \(\beta_n \) that diverges and a number \(\epsilon > 0 \) such that \(\forall n \in \mathbb{N} \)

\[
\frac{\beta_n}{\tau_i(\beta_n)} \leq \frac{1}{\lambda_i \tau_i(\beta_n)} \left(\frac{1}{s_{i+1}} T(s_{i+1}) - \epsilon \right)
\]

(13)

or

\[
\frac{\beta_n}{\tau_i(\beta_n)} \geq \frac{1}{\lambda_i \tau_i(\beta_n)} \left(\frac{1}{s_{i+1}} T(s_{i+1}) + \epsilon \right)
\]

(14)

If inequality (13) holds, then \(\forall i \leq \xi + 1 \)

\[
\frac{\beta_n}{\tau_i(\beta_n)} - \frac{\lambda_i T(s_i)}{s_i} \leq \frac{\beta_n}{\tau_i(\beta_n)} - \frac{\lambda_i \frac{T(s_{i+1}) - s_{i+1}}{s_{i+1}}}{s_i} \leq -\epsilon
\]

From Eq. (11) it follows immediately that

\[
\lim_{\beta_n \to \infty} h_i(\beta_n) = 1 \quad \forall i \leq \xi + 1,
\]

but then it would be

\[
\lim_{n \to \infty} \sum_{i=1}^{\xi+1} h_i(\beta_n) s_i = \sum_{i=1}^{\xi+1} s_i > C
\]

contradicting the constraint (10). In a similar way it is possible to show that inequality (14) leads also to a contradiction and then Eq. (12) holds.

Because of the limit in Eq. (12) and of Eq. (11), we can immediately conclude that, when \(\beta \) diverges, \(h_i(\beta) \) converges to 1, for \(i \leq \xi \) and to 0 for \(i > \xi + 1 \). Because of the constraint (10) it holds that

\[
\lim_{\beta \to \infty} h_{\xi+1}(\beta) = 1 - \lim_{\beta \to \infty} \sum_{i=\xi+1}^{\xi+\xi+1} h_i s_i = 1 - \sum_{i=\xi+1}^{\xi+1} s_i
\]

\[
\lim_{\beta \to \infty} h_{\xi+1}(\beta) = \frac{C \sum_{i=1}^{\xi} s_i}{s_{\xi+1}} + \frac{C - \sum_{i=\xi+1}^{\xi+1} s_i}{s_{\xi+1}}.
\]

\(^8\)We consider the practical case when \(s_1 < C < \sum_{i=1}^{N} s_i \).

The same asymptotic behavior for the hit probabilities holds when \(\sum_{i=1}^{\xi} s_i = C \), as it is proven in our TR [10], Appendix B.\(^9\) We can then conclude that:

Proposition III.1. When the parameter \(\beta \) diverges the hit probabilities for the \(q_i \)-LRU policy converge to the solution of the fractional knapsack problem (4), i.e.

\[
\lim_{\beta \to \infty} h_i(\beta) = \begin{cases} 1, & \text{for } i \leq \xi, \\ \frac{C - \sum_{i=1}^{\xi} s_i}{s_{\xi+1}}, & \text{for } i = \xi + 1, \\ 0, & \text{for } i > \xi + 1. \end{cases}
\]

Then the \(q_i \)-LRU policy asymptotically minimizes the load on the hard-disk.

B. Reverse-Engineering \(q_i \)-LRU

In [8], the authors show that existing policies can be thought as implicitly solving the utility maximization problem (6) for a particular choice of the utility functions \(U_i(h_i) \). In particular they show which utility functions correspond to traditional policy like LRU and FIFO. In what follows, we “reverse-engineer” the \(q_i \)-LRU policy and we show in a different way that it solves the fractional knapsack problem. We proceed similarly to what done in [8], extending their approach to the case where content sizes are heterogeneous (see our TR [10], Appendix C). We show that the utility function for content \(i \) is

\[
U_i(h_i) = -\lambda_i s_i \int_0^{1-h_i} \frac{dx}{\ln \left(1 + \frac{1-x}{q_i} \right)}
\]

(15)

that is defined for \(h_i \in (0, 1] \) and \(q_i \neq 0 \). Each function \(U_i(.) \) is increasing and concave. Moreover, \(U_i(h_i) \) increases concave to \(-\infty\). We are interested now in studying the asymptotic behavior of the utility functions \(U_i(h_i) \) when \(\beta \) diverges, and then \(q_i \) converges to zero. First, we note that the following inequalities are true for every \(\beta > 0 \) such that \(q_i^\delta < 1 - h_i \):

\[
\int_0^{1-h_i} \frac{dx}{\ln \left(1 + \frac{1-x}{q_i} \right)} \geq \int_{q_i^\delta}^{1-h_i} \frac{dx}{\ln \left(1 + \frac{1-x}{q_i} \right)} \geq \frac{1 - h_i - q_i^\delta}{\ln \left(1 + \frac{1-q_i^\delta}{q_i} \right)}
\]

(16)

where the last inequality follows from the fact that the integrand is an increasing function of \(x \).

Similarly, it holds

\[
\int_0^{1-h_i} \frac{dx}{\ln \left(1 + \frac{1-x}{q_i} \right)} \leq \frac{1 - h_i}{\ln \left(1 + \frac{h_i}{q_i+1} \right)} \leq \frac{1 - h_i}{\ln \left(1 + \frac{1}{q_i} \right)}
\]

(17)

Asymptotically, when \(q_i \) converges to zero, the lower bound in Eq. (16) is equivalent to \(\frac{1-h_i}{(1+\delta \ln(1/q_i))} \), and the upper bound

\(^9\)When \(\sum_{i=1}^{\xi} s_i = C, h_{\xi+1}(\beta) \) converges to \((C - \sum_{i=1}^{\xi} s_i)/s_{\xi+1} = 0. \)
in (17) is equivalent to \(\frac{1-h_i}{\ln(1/q_i)^{\alpha}} \).\(^{10}\) We obtain the following (asymptotic) inequalities when \(q_i \) converges to 0
\[
\frac{1-h_i}{(1+\varepsilon)\ln(1/q_i)} \leq \int_0^{1-h_i} \frac{dx}{\ln(1+\frac{1-x}{q_i})} \leq \frac{1-h_i}{\ln(1/q_i)}, \tag{18}
\]
for every \(\delta > 0 \) (when \(q \) converges to 0, \(q_i^\delta < 1 - h_i \) asymptotically). Thus, when \(q_i \) converges to 0, we get
\[
\int_0^{1-h_i} \frac{dx}{\ln(1+\frac{1-x}{q_i})} \sim \frac{1-h_i}{\ln(1/q_i)},
\]
since, otherwise, we could find an \(\varepsilon > 0 \) and a sequence \(q_{i,n} \) converging to 0 such that for large \(n \)
\[
\int_0^{1-h_i} \frac{dx}{\ln(1+\frac{1-x}{q_{i,n}})} \leq (1-\varepsilon) \frac{1-h_i}{\ln(1/q_{i,n})}.
\]
But, this would contradict the left-hand inequality in (18) which is valid for every \(\delta > 0 \). We conclude that, when \(q_i \) converges to 0,
\[
U_i(h_i) = -\lambda_i s_i \int_0^{1-h_i} \frac{dx}{\ln(1+\frac{1-x}{q_i})} \sim -\lambda_i s_i \frac{1-h_i}{\ln(1/q_i)}.
\]
Next, we consider \(q_i = e^{-\beta q_i^\gamma} \) and we can write
\[
U_i(h_i) \sim -\frac{\lambda_i T(s_i)(1-h_i)}{\beta}, \quad \text{when } \beta \to \infty.
\]
Note that the maximization problem (6) is over the hit probabilities \(h_i \) and the solution of the problem will be the same even if the functions \(U_i(.) \) are multiplied by a positive constant. We conclude that, when \(\beta \) diverges, the problem (6) can be formulated as follows
\[
\text{maximize} \quad \sum_{i=1}^N \lambda_i h_i T(s_i) \tag{19}
\]
subject to
\[
\sum_{i=1}^N h_i s_i = C
\]
which is exactly the formulation of the fractional knapsack problem.

IV. EXPERIMENTS

In this section we evaluate the performance of our \(q_i \)-LRU policy. Here we take a numerical perspective, and design a trace-driven simulator that can reproduce the behavior of several caching policies, which we compare against \(q_i \)-LRU. We have used both synthetic traces generated according to the IRM and real traces collected at two vantage points of the Akamai network \[1\]. We proved that \(q_i \)-LRU is optimal under the IRM and indeed our experiments confirm it and show significant improvement in comparison to other replacement policies. For this reason, in this section we focus mainly on the

\(^{10}\)We say that \(f(x) \) is equivalent to \(g(x) \) when \(x \) converges to 0 if \(\lim_{x \to 0} f(x)/g(x) = 1 \), and we write \(f(x) \sim g(x) \).

\(^{11}\)As a future work, we plan to deploy our policy in a real production system. In this case, the methodology to perform a comparative analysis is substantially different.
TABLE II
TRACES: BASIC INFORMATION.

<table>
<thead>
<tr>
<th></th>
<th>30 days</th>
<th>5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of requests received</td>
<td>2.22 · 10^9</td>
<td>4.17 · 10^9</td>
</tr>
<tr>
<td>Number of distinct objects</td>
<td>113.15 M</td>
<td>13.27 M</td>
</tr>
<tr>
<td>Cumulative size</td>
<td>59.45 TB</td>
<td>2.53 TB</td>
</tr>
<tr>
<td>Cumulative size of objects requested at least twice</td>
<td>20.36 TB</td>
<td>1.50 TB</td>
</tr>
</tbody>
</table>

similar qualitative results.\(^{12}\) For the \(q_i\)-LRU policy, the default value of the constant \(\beta\) is chosen such that \(\min_{i \in N} q_i = 0.1\) (see Eq. (8)).

B. Trace characteristics

We consider two traces with different durations and collected from two different vantage points. The first trace has been collected for 30 days in May 2015, while the second trace for 5 days at the beginning of November 2015. Table II shows the basic characteristics of the traces.

Fig. 3 shows the number of requests for each object, sorted by rank (in terms of popularity), for both traces. For the 30-day trace, there are 25-30 highly requested objects (almost 25\% of the requests are for those few objects), but the cumulative size of these objects is less than 8 MB. Since they are extremely popular objects, any policy we consider stores them in RAM, so they are not responsible for the different performance we observe for the different policies.

Next, we take a closer look at our policy, \(q_i\)-LRU, in comparison to the reference LRU policy. We now consider the contribution to the overall hit ratio of each object, to

\(^{12}\)As a representative set of results, we show here the case with \(T = 256\) KB, \(N = 5\) and \(M = 1\) hour.
understand their importance to cache performance. For the 5-day trace, we sorted the objects according to their rank (in term of popularity) and their size, and plot the difference between LRU hit ratio and \(q_i \)-LRU hit ratio. Fig. 6 shows that both policies store the same 1000 most popular objects; then, the \(q_i \)-LRU policy gains in hit ratio for medium-popular objects. Switching now to object size, both policies store the same set of small objects, while \(q_i \)-LRU gains hit ratio with the medium-size objects.

Fig. 7 considers the contribution to the disk service time of each object (ordered by rank or by size) and shows the difference between \(q_i \)-LRU and LRU. Clearly, medium popular objects and medium size objects contribute the most to the savings in the service time that our policy achieves.

D. Sensitivity analysis

Next, we study the behavior of \(q_i \)-LRU as a function of the parameter \(\beta \), but we plot the results for the parameter \(q_{\text{min}} = \min_{i \in N} q_i \), that is easier to interpret, being the minimum probability according to which a content is stored in the RAM.

Figure 8 provides two different views. On the left-hand side, it shows the percentage of HDD service time offloaded to the RAM by \(q_i \)-LRU, both under the 30-day trace and a synthetic IRM trace generated using the same empirical distributions for object size and popularity as in the 30-day trace. As expected, under IRM, the improvement from \(q_i \)-LRU increases as \(q_{\text{min}} \) decreases, i.e. as \(\beta \) increases. Interestingly, the HDD benefits even more under the 30-day trace, with more than 80% of the service offloaded to the RAM. This is due to the temporal locality effect (see e.g. [11]), i.e. to the fact that requests typically occur in bursts and then the RAM is more likely to be able to serve the content for a new request than it would be under the IRM model. We observe also that the performance of \(q_i \)-LRU are not very sensitive to the parameter \(q_{\text{min}} \) (and then to \(\beta \)), a feature very desirable for practical purposes. The right-hand side of Fig. 8 shows the relative improvement of \(q_i \)-LRU in comparison to LRU (calculated as difference of the HDD service time under LRU and under \(q_i \)-LRU, divided by the HDD service time under LRU). While \(q_i \)-LRU performs better and better as \(q_{\text{min}} \) decreases with the IRM request pattern, the gain reduces when \(q_{\text{min}} \) approaches 0 (\(\beta \) diverges) with the 30-day trace. This is due also to temporal locality: when the probabilities \(q_i \) are very small, many contents with limited lifetime have no chance to be stored in the RAM by \(q_i \)-LRU and they need to be served by the HDD. Despite this effect, \(q_i \)-LRU policy still outperforms LRU over a large set of parameter values and obtain improvements larger than 20% for \(0.02 < q_{\text{min}} < 0.4 \).

Table III

Results for the 30-day trace with 4 GB RAM.

<table>
<thead>
<tr>
<th></th>
<th>% reqs</th>
<th>bytes served</th>
<th>service time</th>
<th>(\Delta (%)) w.r.t. LRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU RAM</td>
<td>73.06</td>
<td>507 TB</td>
<td>1597 h</td>
<td>-</td>
</tr>
<tr>
<td>HDD</td>
<td>26.94</td>
<td>157 TB</td>
<td>1663 h</td>
<td>+ 3.02%</td>
</tr>
<tr>
<td>SIZE</td>
<td>76.38</td>
<td>512 TB</td>
<td>5055 h</td>
<td>-8.90%</td>
</tr>
<tr>
<td>HQ-LRU</td>
<td>23.62</td>
<td>154 TB</td>
<td>1515 h</td>
<td>+7.89%</td>
</tr>
<tr>
<td>RAM</td>
<td>84.27</td>
<td>489 TB</td>
<td>5294 h</td>
<td>-23.28%</td>
</tr>
<tr>
<td>HDD</td>
<td>15.73</td>
<td>177 TB</td>
<td>1276 h</td>
<td>-</td>
</tr>
</tbody>
</table>

Table IV

Results for the 5-day trace with 4 GB RAM.

<table>
<thead>
<tr>
<th></th>
<th>% reqs</th>
<th>bytes served</th>
<th>service time</th>
<th>(\Delta (%)) w.r.t. LRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU RAM</td>
<td>79.61</td>
<td>159 TB</td>
<td>1058 h</td>
<td>-</td>
</tr>
<tr>
<td>HDD</td>
<td>20.39</td>
<td>219 h</td>
<td>1058 h</td>
<td>+ 0.57%</td>
</tr>
<tr>
<td>SIZE</td>
<td>80.31</td>
<td>160 TB</td>
<td>1064 h</td>
<td>-2.74%</td>
</tr>
<tr>
<td>HQ-LRU</td>
<td>19.69</td>
<td>213 h</td>
<td>1064 h</td>
<td>+1.51%</td>
</tr>
<tr>
<td>RAM</td>
<td>84.72</td>
<td>149 TB</td>
<td>1074 h</td>
<td>-7.31%</td>
</tr>
<tr>
<td>HDD</td>
<td>15.28</td>
<td>33 TB</td>
<td>203 h</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 6. Difference between hit ratios when objects are ordered by popularity (left) and by size (right) for the 30-day trace.

Fig. 7. Difference between service time (served by the RAM) when objects are ordered by rank (left) and by size (right) for the 30-day trace.

Fig. 8. Sensitivity analysis to the value of \(q_{\text{min}} \).
V. RELATED WORK

Cache replacement policies have been the subject of many studies, both theoretical and experimental. We focus here on the more analytical studies, which are closer to our contribution in this paper. Moreover, our policy is explicitly designed to mitigate the burden on the HDD, a goal not considered in most previous experimental works, despite its practical importance.

Most of the theoretical work in the past has focused on the characterization of the performance of LRU, RANDOM, and FIFO [6][12][9][13]. All these works do not assume different levels of caches, where one level replicates the content stored in the other level to decrease the overall response delay.

The work in [14], instead, considers a 2-level hierarchy, with the content stored in the SSD and DRAM. They design a policy which decreases the response time by pre-fetching the content from SSD to DRAM. To this aim, they focus on a specific type of content, videos divided into chunks, for which the requests are strongly correlated, and a request for a chunk can be used to foresee future requests for other chunks of the same content. In our work, instead, we provide a model for the q_i-LRU policy which does not assume any correlation on the requests arrivals, but prioritize the content that imposes a high burden on the HDD.

A different approach is taken in [15]. The authors consider that caching policies could be designed with other purposes than maximizing the local hit probability. For example, they propose a heuristic that takes into account the cost to retrieve the contents from expensive inter-domain links. Cost-aware caches have been the subject of many experimental studies [16][17][18]. While these studies are similar in spirit, none of them considers cost functions analogous to the HDD service time that is the focus of this paper. Moreover, they did not prove the optimality of the replacement policies proposed.

The most related work to ours is the cache optimization framework in [8], that we have widely discussed through the paper. We stress again here, that they assume content popularities to be known (or to be explicitly estimated) and the utility functions to be strictly concave, and this is not the case in our problem.

VI. CONCLUSION

Caches represent a crucial component of the Internet architecture: decreasing the response time is one of the primary objectives of the providers operating such caches. This objective can be pursued by exploiting the RAM of the cache server, while keeping most of the content on the HDD.

In this paper we presented a new cache replacement policy that takes advantage of the access-time difference in the RAM and in the HDD to reduce the load on the HDD, so that to improve the overall cache efficiency for a capacity constrained storage systems. Our policy, called q_i-LRU, is a variant of q-LRU, where we assign a different probability q_i to each content based on its size.

We proved that q_i-LRU is asymptotically optimal, and we provided an extensive trace-driven evaluation that shown between 10% and 20% reduction on the load of the HDD with respect to the LRU policy.

ACKNOWLEDGMENT

The authors would like to thank Bodossaki Foundation to support Dimitra Tsigkari’s internship at Inria.

REFERENCES

APPENDIX A
Proof of \(\lim_{\beta \to \infty} \tau_C(\beta) = \infty \)

We define the function \(f \) as follows

\[
f(\tau_C, \beta) = \sum_i s_i h_i = \sum_i \frac{s_i(e^{\lambda_i \tau_C} - 1)}{e^{\lambda_i \tau_C} + e^{\lambda_i \tau_C} - 1},
\]

as we discussed in Sec. III-A, Che’s approximation implies that \(f(\tau_C, \beta) = C \).

We will prove that \(\lim_{\beta \to \infty} \tau_C = +\infty \). We differentiate the formula (20) with respect to \(\beta \) and \(\tau_C \) and we obtain

\[
\frac{\partial f}{\partial \tau_C} = \sum_i s_i \lambda_i e^{\lambda_i \tau_C + \beta \frac{s_i}{\tau_C(\beta)}} \frac{1}{(e^{\lambda_i \tau_C} + e^{\lambda_i \tau_C} - 1)^2},
\]

\[
\frac{\partial f}{\partial \beta} = \sum_i s_i e^{\lambda_i \tau_C + \beta \frac{s_i}{\tau_C(\beta)}} (e^{\lambda_i \tau_C} - 1)^2.
\]

The first partial derivative is strictly positive while the second is negative for all the values \(\beta > 0 \) and \(\tau_C > 0 \) and, therefore, by the implicit function theorem \(\tau_C \) can be expressed locally as a \(C^1 \) function of \(\beta \) and

\[
\frac{\partial \tau_C}{\partial \beta} = -\frac{\partial f/\partial \beta}{\partial f/\partial \tau_C} > 0.
\]

This is true in some open set (whose existence is assured by the theorem) containing the points \((\tau_C, \beta) \) that verify \(f(\tau_C, \beta) = C \). So, \(\tau_C \) is an increasing function with respect to \(\beta \) and the limit \(\lim_{\beta \to \infty} \tau_C(\beta) \) exists.

We prove by contradiction that the limit is equal to \(+\infty \). Suppose that \(\lim_{\beta \to \infty} \tau_C(\beta) < \infty \), then, by (20), we get \(\lim_{\beta \to \infty} f(\tau_C(\beta), \beta) = 0 \). This would contradict the fact that \(f(\tau_C, \beta) = C \) and therefore we conclude that \(\lim_{\beta \to \infty} \tau_C = +\infty \).

APPENDIX B
When Contents Fill Exactly the Cache
In this section we study the case where \(\sum_{i=1}^N s_i = C \). Note that the results up to Lemma B.3 (included) are general, i.e., they do make any assumption on \(\sum_{i=1}^N s_i \), while the rest of the section focuses on the case \(\sum_{i=1}^N s_i = C \).

We start introducing some additional notation. Remember that contents are labeled according to the reverse order of the values \(\lambda_i \frac{T(s_i)}{s_i} \). Given a point \(y \), we denote by \(r(y) \) the largest index such that \(\lambda_i \frac{T(s_i)}{s_i} \) is larger than \(y \) (or 0 if all the values are smaller), and by \(l(y) \) the smallest index such that \(\lambda_i \frac{T(s_i)}{s_i} \) is smaller than \(y \) (or \(N + 1 \) if all the values are larger), i.e., we have

\[
r(y) = \max \left(\left\{ 0 \right\} \cup \left\{ k = 1, \ldots, N \mid \lambda_k \frac{T(s_k)}{s_k} > y \right\} \right),
\]

\[
l(y) = \min \left(\left\{ N + 1 \right\} \cup \left\{ k = 1, \ldots, N \mid \lambda_k \frac{T(s_k)}{s_k} < y \right\} \right).
\]

We recall here the definition of a cluster value [19, Exercise 5.10.11], that allows us to express more synthetically some of the following results.\(^{13}\)

Definition B.1. Given a function \(f : A \to \mathbb{R} \), where \(A \subseteq \mathbb{R} \) and \(x_0 \in [-\infty, +\infty] \) an accumulation point of \(A \), we say that \(y^* \in \mathbb{R} \) is a cluster value of \(f(x) \) at \(x_0 \) if it exists a sequence \(x_n \in A - \{x_0\} \) such that \(\lim_{n \to \infty} x_n = x_0 \) and \(\lim_{n \to \infty} f(x_n) = y^* \). We also say that \(f(x) \) has a cluster value \(y^* \) at \(x_0 \).

In what follows we only consider cluster values at \(+\infty \). For the sake of coinesence, we will omit to specify “at \(+\infty \)”.

We start establishing some connections between the asymptotic behaviour of \(\frac{\beta}{\tau_C(\beta)} \) and \(h_i(\beta) \) in terms of their cluster values.

Lemma B.1. If \(y^* \) is a cluster value of \(\frac{\beta}{\tau_C(\beta)} \), then it exists a diverging sequence \(\beta_n \) such that, for all \(i \leq r(y^*) \), \(h_i(\beta_n) \) converges to 1 and, for all \(j > l(y^*) \), \(h_j(\beta_n) \) converges to 0.

Proof. From the definition of a cluster value it exists a diverging sequence \(\beta_n \) such that \(\lim_{n \to \infty} \beta_n/\tau_C(\beta_n) = y^* \). For each \(i \leq r(y^*) \), it holds

\[
\lim_{n \to \infty} \left(\frac{\beta_n}{\tau_C(\beta_n)} - \lambda_i \frac{T(s_i)}{s_i} \right) = y^* - \lambda_i \frac{T(s_i)}{s_i} < 0.
\]

Since \(\lim_{\beta \to \infty} \tau_C(\beta) = \infty \), it holds

\[
\lim_{n \to \infty} \tau_C(\beta_n) \left(\frac{\beta_n}{\tau_C(\beta_n)} - \lambda_i \frac{T(s_i)}{s_i} \right) = -\infty.
\]

From Eq. (11), it follows that

\[
\lim_{n \to \infty} h_i(\beta_n) = 1.
\]

The reasoning for \(j \geq l(y^*) \) is analogous.

\(\square \)

A consequence of Lemma B.1 is that if \(y^* \) is a cluster value of \(\beta/\tau_C(\beta) \), then \(1 \) is a cluster value of \(h_i(\beta) \) for all \(\beta \leq r(y^*) \) and 0 is a cluster value of \(h_j(\beta) \) for all \(j \geq l(y^*) \).

We can derive results about the convergence of the hit probabilities if we know bounds for the cluster values of \(\beta/\tau_C(\beta) \).

Lemma B.2. If the set of cluster values of \(\beta/\tau_C(\beta) \) is a subset of the interval \([a, b] \), then, when \(\beta \) diverges, \(h_i(\beta) \) converges to 1, for \(i < r(b) \), and to 0, for \(i > l(a) \).

Proof. For all \(\epsilon > 0 \), it exists a \(\beta_\epsilon \) such that, for all \(\beta > \beta_\epsilon \),

\[
\frac{\beta}{\tau_C(\beta)} < b + \epsilon
\]

and

\[
\frac{\beta}{\tau_C(\beta)} - \lambda_i \frac{T(s_i)}{s_i} < b - \lambda_i \frac{T(s_i)}{s_i} + \epsilon.
\]

\(^{13}\)It is also referred to as a cluster point or a limit point (in analogy to the corresponding concept for a sequence).
For $i < r(b)$, it is $\lambda_i T(s_i)/s_i > b$ and we can choose ε sufficiently small so that the left term is bounded away from 0 by a negative constant for large β

$$\frac{\beta}{\tau_i(\beta)} - \lambda_i T(s_i) / s_i < -\delta < 0.$$

From Eq. (11), it follows that, for large β,

$$1 \geq h_i(\beta) \geq \frac{1 - e^{-\lambda_i \tau_i(\beta)}}{e^{-\lambda_i \tau_i(\beta)} - 1 - \varepsilon^2} + 1 - e^{-\lambda_i \tau_i(\beta)}$$

and then $h_i(\beta)$ converges to 1 when β diverges.

The result can be proven following a similar reasoning.

The constraint on the expected cache’s occupancy under the Che’s model leads to the following result:

Lemma B.3. If y^* is a cluster value of $\frac{d}{\tau_i(\beta)}$, then

$$\sum_{i=1}^{r(y^*)} s_i \leq C \leq \sum_{i=1}^{l(y^*)-1} s_i.$$

Proof. Consider the following inequalities that are true for any value of β:

$$\sum_{i=1}^{r(y^*)} h_i s_i \leq \sum_{i=1}^{l(y^*)-1} s_i \leq \sum_{i=1}^{l(y^*)} s_i + \sum_{i=l(y^*)}^{N} h_i s_i.$$

Because of Eq. (5), the middle term is equal to C for all β, then:

$$\sum_{i=1}^{r(y^*)} h_i s_i \leq C \leq \sum_{i=1}^{l(y^*)-1} s_i + \sum_{i=l(y^*)}^{N} h_i s_i.$$

Finally, Lemma B.1 leads to conclude that the terms h_i in the left (resp. right) sum can be made simultaneously arbitrarily close to 1 (resp. 0).

Now from we conclude that $\sum_{i=1}^{C} s_i = C$. Bounds for the cluster values of $\beta/\tau_i(\beta)$ easily follow from Lemma B.3.

Lemma B.4. All the cluster values of $\frac{d}{\tau_i(\beta)}$ are in the interval

$$\left[\frac{\lambda_{c+1} T(s_{c+1})}{s_{c+1}} - \frac{\lambda_1 T(s_1)}{s_1}, \frac{\lambda_{c+1} T(s_{c+1})}{s_{c+1}} - \frac{\lambda_{c+1} T(s_{c+1})}{s_{c+1}}\right].$$

Proof. We prove it by contradiction. Let y^* be a cluster value of $\frac{d}{\tau_i(\beta)}$ and assume that $y^* < \lambda_{c+1} T(s_{c+1})/s_{c+1}$. Then, it would be $r(y^*) \geq c+1$, leading to

$$C \leq \sum_{i=1}^{c+1} s_i \leq \sum_{i=1}^{l(y^*)} s_i \leq C,$$

where the first inequality follows from the definition of c and the second inequality from Lemma B.3.

If we assume that $y^* > \lambda_{c+1} T(s_{c+1})/s_{c+1}$ we arrive also to a contradiction.

Proposition B.5. If $\sum_{i=1}^{C} s_i = C$, then

$$\lim_{\beta \to \infty} h_i(\beta) = \begin{cases} 1, & \text{for } i \leq c; \\ 0, & \text{for } i > c+1. \end{cases}$$

Proof. We first observe that from Lemma B.2 and Lemma B.4 it immediately follows that $h_i(\beta)$ converges to 1 for $i \leq c$ and to 0 for $i > c+1$. We need to consider only $i = c$ and $i = c+1$.

We prove that $h_{c+1}(\beta)$ converges to 0. Let us assume that it is not the case, then $h_{c+1}(\beta)$ has a cluster value $h^* > 0$. Because of Lemmas B.2 and B.4 this implies that $\beta/\tau_i(\beta)$ has a cluster value in $\lambda_{c+1} T(s_{c+1})/s_{c+1}$. But from Lemma B.1 it follows that it exists a diverging sequence β_n such that $\lim_{n \to \infty} n^c = 1$, for all $i \leq c$. Then, for each $\epsilon > 0$, it exists an n_ϵ, such that for $n \geq n_\epsilon$,

$$C = \sum_{i=1}^{N} h_i(\beta_n)s_i \geq \sum_{i=1}^{c+1} h_i(\beta_n)s_i \geq C + h^* s_{c+1} - \epsilon,$$

leading to a contradiction.

We have shown that $h_{c+1}(\beta)$ converges to 0. Because $\sum_{i=1}^{N} h_i s_i = C$, it follows that

$$h_{c+1}(\beta) = \frac{C - \sum_{i \neq c} h_i(\beta)s_i}{s_c}$$

converges to 1.

APPENDIX C

THE LANGRANGE METHOD FOR THE UTILITY MAXIMIZATION PROBLEM

In this appendix we study q_i-LRU in the cache utility maximization framework introduced in [8]. We derive the corresponding utility functions that appear in the maximization problem (6).

We look for increasing, continuously differentiable, and strictly concave functions $U_i(.)$. Moreover, we look for the following functional dependency

$$U_i(h_i) = \lambda_i s_i U_0(h_i, q_1),$$

where U_0 is increasing and concave in h_i. In what follows we will consider s_i, λ_i and q_1 to be constant parameters, so that U_i and $U_0(h_i, q_1)$ are only functions of h_i.

The Lagrange function associated to problem (6) is

$$L(h, \alpha) = \sum_{i=1}^{N} (U_i(h_i) - \alpha h_i s_i) + \alpha C,$$

where α is the Lagrange multiplier associated to the constraint.

Under q_i-LRU (for finite $\beta > 0$) the hit probabilities h_i are in $(0, 1)$, because every content has some chance to be stored and no content is guaranteed to be stored. Then, if the hit probabilities of q_i-LRU are the solutions of problem (6) for a given choice of the functions $U_i(.)$, they belong to the interior part of the definition set of the concave problem (6). The hit probabilities can then be obtained by equating to 0 the Lagrangian derivatives:

$$\frac{\partial L}{\partial h_i} = \frac{dU_i}{dh_i} - \alpha s_i = 0.$$

Therefore, from the above equation we get14

$$h_i = \frac{U_i^{-1}(\alpha s_i)}{}.$$

14The existence of the inverse functions of $U_i(.)$ follows from the assumption that $U_i(.)$ are strictly concave.
Taking into account the specific functional dependency in Eq. (22), it holds:

\[h_i = U'_0^{-1} \left(\frac{\alpha}{\lambda_i}, q_i \right). \]

We equate the expression above to that in Eq. (9) and obtain

\[\frac{1 - e^{-\lambda_i \tau_C}}{q_i e^{-\lambda_i \tau_C} + 1 - e^{-\lambda_i \tau_C}} = U'_0^{-1} \left(\frac{\alpha}{\lambda_i}, q_i \right). \]

The expressions on the LHS and the RHS depend on \(\lambda_i \) respectively through the products \(\lambda_i \tau_C \) and \(\lambda_i/\alpha \). It follows that we should consider \(\alpha \) proportional to \(1/\tau_C \), in particular we choose:

\[\alpha = \frac{1}{\tau_C}. \]

By substituting the above equation into the formula of \(h_i \) (as given in (9)), we obtain

\[h_i = \frac{q_i (1 - e^{-\frac{\lambda_i}{\tau_C}})}{e^{-\frac{\lambda_i}{\tau_C}} + q_i (1 - e^{-\frac{\lambda_i}{\tau_C}})}. \]

Next, we solve (25) with respect to \(\alpha \) and we get

\[\alpha = \frac{\lambda_i}{\ln \left(1 + \frac{h_i}{q_i(1-h_i)} \right)}. \]

Finally, by replacing this expression for \(\alpha \) in \(U'_i(h_i) = \alpha s_i \)

\[U'_i(h_i) = \frac{\lambda_i s_i}{\ln \left(1 + \frac{h_i}{q_i(1-h_i)} \right)}. \]

By integrating (27) we obtain for \(h_i \in (0, 1] \)

\[U_i(h_i) = -\lambda_i s_i \int_{h_i}^{1} \frac{dx}{\ln \left(1 + \frac{x}{q_i(1-x)} \right)} = -\lambda_i s_i \int_{0}^{1-h_i} \frac{dx}{\ln \left(1 + \frac{1-x}{q_i x} \right)}. \]

The function is well defined for \(h_i \in (0, 1] \), since

\[\int_{h_i}^{1} \frac{dx}{\ln \left(1 + \frac{x}{q_i(1-x)} \right)} \leq \int_{h_i}^{1} \frac{dx}{\ln \left(1 + \frac{x}{q_i} \right)} \leq q_i \int_{1+\frac{h_i}{q_i}}^{1+\frac{1}{q_i}} \frac{dy}{\ln y} < \infty. \]

For \(h_i \to 0^+ \), the integral diverges.