
A Dynamic and Collaborative Deep Inference
Framework for Human Motion Analysis

in Telemedicine
Michele Boldo, Damiano Carra, Davide Quaglia

Dept. of Computer Science
University of Verona

Verona, Italy
{michele.boldo,damiano.carra,davide.quaglia}@univr.it

Nicola Bombieri
Dept. of Engineering for Innovation Medicine

University of Verona
Verona, Italy

nicola.bombieri@univr.it

Abstract—Human pose estimation software has reached high
levels of accuracy in extrapolating 3D spatial information of
human keypoints from images and videos. Nevertheless, de-
ploying such intelligent video analytic at a distance to infer
kinematic data for clinical applications requires the system to
satisfy, beside spatial accuracy, more stringent extra-functional
constraints. These include real-time performance and robustness
to the environment variability (i.e., computational workload,
network bandwidth). In this paper we address these challenges
by proposing a framework that implements accurate human
motion analysis at a distance through collaborative and adaptive
Edge-Cloud deep inference. We show how the framework adapts
to edge workload variations and communication issues (e.g.,
delay and bandwidth variability) to preserve the global system
accuracy. The paper presents the results obtained with two large
datasets in which the framework accuracy and robustness are
compared with a marker-based infra-red motion capture system.

Index Terms—Human pose estimation, split computing, tensor
quantization, run-length encoding, Edge-Cloud computing.

I. INTRODUCTION

One of the main open challenges in telemedicine is to
implement marker-less human motion analysis at a distance
through high-end RGB cameras and human pose estimation
(HPE) software [1]. Delivering such a service in telemedicine
requires the system to satisfy both functional and extra-
functional constraints at the same time, such as high accuracy,
real-time, portability, and privacy compliance. A trend solution
is to offload HPE software, based on deep neural networks
(DNNs), on mobile/IoT computing devices at the edge (end
devices in the follows), by which the video streams (i.e.,
the sensitive information) are elaborated close to the camera,
while only the process results are sent over the communication
network (i.e., WiFi/Ethernet, Internet) [2].

To deal with the resource limitations of the edge devices,
different solutions have been proposed, such as model com-
pression (e.g., neural network pruning [3], quantization [4],
and compact network design [5]), and early exiting [6]. In
all these solutions, the goal is to reduce the resource con-
sumption through a tuning of the model structure or through
the discretization of the model parameters. In general, such a
model abstraction, results in a significant accuracy loss, which
prevents the software to be used in clinical applications. In

Kinematic results

Video 
acquisition

Kn
ee

an
gl

e 
(d

eg
re

e)

f1f2
fn

f0….

3D Human 
pose 

estimation

3Dkeypoints(f0)

….

3Dkeypoints(fn) …

Joint angle 
extrapolation

Interpolation

Dicrepancy in 
knee flexion

range of
motion

Fig. 1: The pipeline of motion analysis and impact of frame
rate on the accuracy.

the context of human motion analysis, the accuracy of the
inferred kinematic information strictly depends on two factors:
(i) the spatial accuracy of HPE keypoints in each single frame,
and (ii) the real-time performance to extrapolate the keypoints
from the video without losing any frame [7]. Even assuming
a spatial accuracy close to 100% for each keypoint, reducing
the frame rate may lead to discrepancies in the joint flexion
range of motion and, as a consequence, to different clinical
interpretations. For example, the plot in Fig. 1 shows the
knee angle extrapolated by a 100 frame/s marker-based motion
capture system (i.e., the ground truth represented by the red
line in the figure) compared to the same information obtained
by the OpenPose HPE system [8] limited to 4 frame/s by the
available computational resources with value interpolation for
the missing frames (blue line).

Collaborative deep inference has been introduced to over-
come accuracy degradation by partitioning the DNN between
multiple devices (i.e., end-devices and the cloud) [9]. In this
distributed solution, the performance depends on the computa-
tional capability of the end-device (e.g., a resource constrained
board) and on the condition of the communication network
(e.g., frequently there is a wireless between the end-device
and the edge-server/cloud). Even more challenging is the case



in which both aspects are time-varying. This work addresses
this challenge, by presenting an edge-cloud collaborative and
adaptive framework for human motion analysis at a distance.
The main contributions are:

• An analysis of the DNN partitioning technique applied
to the HPE software, with particular emphasis on the the
accuracy of the extrapolated kinetic results. So far, only
classification has been considered in split computing.

• A framework in which the DNN partition point is tuned
at run time to deal with workload variations on the end-
device beside on the communication channel. Differently
from the state of the art techniques that implement model
abstraction, the proposed technique does not require re-
training of the DNN, which would limit the dynamic
adaptability.

• An extended analysis conducted with a standard dataset
and an additional dataset of clinical trial videos with a
marker-based infra-red motion capture system (Vicon)
as ground truth to measure the system accuracy and
robustness.

II. BACKGROUND AND RELATED WORK

DNN partitioning consists of executing the first N layers
of the DNN in a given computing node and the remaining
ones in another node. Each layer partition has its computation
overhead and latency while the transmission of intermediate
tensor data also consumes communication bandwidth and
leads to further delay depending on data amount. The research
on model partitioning mostly focused on finding the optimal
partition solution by considering total latency, energy con-
sumption, and accuracy [10], [11]. Adaptive frameworks [9],
[12], [13] dynamically split DNN layers between the front-
end and the back-end node according to the instantaneous
communication bandwidth. Nevertheless, they do not address
edge workload variations and tensor quantization. Indeed, a
crucial point is the way to arrange data for their transmission
on the communication channel. The main trend is to reduce
data amount by simplifying the inference model [14], [15]
thus reducing the accuracy. This approach requires to re-
train the neural network which is time-consuming and limits
the dynamic adaptability of the split. For this reason, other
researchers propose to decrease tensor size by recurring to
traditional compression techniques. If the compression scheme
is lossless, e.g., in case of run-length encoding and entropy
coding [16], [17], data reduction does not lead to accuracy loss
as in case of quantization and JPEG-based techniques [18].
Regarding the effect of packet loss on accuracy, some research
showed that reliable transmission protocols are not always the
best option especially if they introduce further delay [19].
However, packet drop has been mainly considered as an
effect of network problems and not an opportunity to reduce
channel occupancy. Our approach aims at filling these gaps
by providing an adaptive framework which takes into account
the workload of the end-device and the available network
bandwidth at runtime and dynamically chooses the partition
point and the transmission strategy. In addition, it is worth
noting that most of this literature focuses on DNN split for
classification task, where real-time is not a constraint. In

Forwarding unit

Tensor encoding

RGB

End device Shared
communication

network

Server

Quantization

Tensor_l4

Compression

Protocol
Logic

l1 l2 l3 l4 l5 l6

DNNc1 c2
l1 l2 l3 l4 l5 l6

feedback
Send

RGB

Runtime 
system

Network

FPS

End device

FPS

Performance 
monitor

Encoded tensor
Bench

mark

results
Protocol

Logic
Receive

Tensor decoding

Dequantization

Tensor_l4

Decompression

DNN

3D keypoint
interpolation

and post 
processing

Split point
SP

f1f2fn

f0
…. Kn

ee
an

gl
e 

(d
eg

re
e)

Kinematic results

TensorSPf0

….

TensorSPfn--

Fig. 2: Framework overview.

contrast we address complex inference applications, i.e., HPE
systems, for which the realtime constraint is crucial for the
accuracy of the kinematic data extrapolation [20].

III. METHODOLOGY

Fig. 2 shows the overview of the proposed framework,
which partitions the DNN model between the end-device and
a server connected by a communication network. The end-
device processes the video frames of the RGB sensors by
using the first inference layers up to the split point. The end-
device also implements a runtime system, which dynamically
sets the split point according to the available resources on the
end-device and on the communication network (see Section
III-A). The runtime system selects the split point among a set
of candidate layers, whose impact on the performance system
is extrapolated statically through a preliminary benchmarking
phase (Section III-B). The tensor at the split point undergoes 4-
bit sample quantization and run-length encoding before being
sent over the channel together with additional information on
the current split layer (Section III-C). The server node decodes
the tensor and forwards the result to the next DNN layer to
complete the inference process. It also interpolates the two
sets of 2D keypoints to generate the set of 3D keypoints. It
applies spatial and temporal filtering to eliminate outliers and
performs a cubic spline interpolation to generate spatial and
angular kinematic data.

A. Runtime system for two-level adaptability
Considering that the application is a pipeline of end-device

computation, tensor transmission and server computation, the
global working frequency is limited by the slowest stage
(assuming no computational constraints for the server). Since
the resources of the end-device and of the transmission net-
work are shared among several processes and data flows,
respectively, their availability can vary during the execution of
the healthcare application. This fact can increase the latency of
the corresponding stage of the pipeline thus compromising the
global working frequency. Algorithm 1 shows the pseudocode

2



Algorithm 1 Run-time manager
Require: current layer, E,D, F,Bcurrent, EndFPScurrent

1: max data size← Bcurrent
F

2: slow down← E(current layer)
EndFPScurrent

3: if Bcurrent
data sizecurrent layer

< F then
4: new layer ← argmaxi(D(i) < max data size)
5: if EndFPSnew layer · slow down < F then
6: jump to line 4 excluding the current new layer from D
7: else
8: new layer is the new splitting layer
9: end if

10: else if EndFPScurrent < F then
11: new layer ← argmaxi(E(i) < F · slow down)
12: if data sizenew layer < max data size then
13: jump to line 11 excluding the current new layer from

E
14: else
15: new layer is the new splitting layer
16: end if
17: end if

of the proposed runtime system that dynamically changes the
split point to compensate such variations.

The procedure is called whenever the total system fre-
quency, defined as min(EndFPScurrent,

Bcurrent

data size ), where
EndFPScurrent is the current edge device working fre-
quency, Bcurrent is the current network bandwidth and
data size is the size of the compressed tensor at the current
splitting layer, is less than the target frequency F for our
application. An ad-hoc UDP-based protocol (Protocol logic
in Fig. 2) is used to transmit the tensor and estimate Bcurrent

by measuring the time between the transmission of the first
UDP packet and the reception of the ack of the last one.

Given, as inputs, the identifier of the current split-
ting layer current layer, the two ordered lists E and D
generated by the benchmark (see Section III-B), the tar-
get working frequency F , the current network bandwidth
Bcurrent, and the current working frequency of the edge
EndFPScurrent, the system first computes the maximum
tensor size max data size that allows the system to keep
pace with the current available bandwidth (Line 1). Assuming
that an increase of the end device workload impacts propor-
tionally on the inference step and tensor encoding of each
layer, the algorithm extrapolates a slow down factor from the
optimal FPS (i.e., with no interferences) of the current layer
collected in the benchmarking phase and the current frequency
EndFPScurrent (Line 2).

Then, the runtime manager identifies the issue that slows
down the system between the network bandwidth reduction
and the workload increase on the end device (Lines 3-10).
In the first case, it identifies the new split layer from D
through argmax, which retrieves the right-most layer from D
among all candidates that solve the issue (Lines 3-4). Since
the selected layer may involve a different workload in the end
device and, in turn, may lead the system performance slower
than F , the manager checks if the new layer performance
satisfies F before switching (Line 5). If not, it selects a new
candidate from the list. The algorithm selects the new layer
similarly by checking the workload increase in the end device.

If there is no candidate layer that satisfies the constraint, the
runtime manager selects, as the new layer, the candidate that
provides the best tradeoff between network and end-device
performance.

B. Benchmarking and candidate identification
To find the candidate split layers, we selected a representa-

tive set of video streams from the standard H3.6M dataset [21].
The benchmark phase runs the HPE application over such a
dataset on the end-device. As a result, each split point at layer
i-th is characterized in terms of average inference time ti,
average tensor quantization and compression time tenci , and
average size of the compressed 4-bit tensor data sizei. An
additional task incrementally scans the DNN layers to retrieve,
for each layer i, the memory footprint (MemFootprinti)
required to store and run the partial inference up to layer i.
The algorithm for the candidate identification takes as input the
final number of candidates and the target working frequency
of the system F (poses per second) and consists of two steps.
First, all split points that do not satisfy the following equations
are discarded:

MemFootprinti ≤ EndDeviceMem

EndFPSi =
1

(
∑i

j=0 tj) + tenc
i

≤ F

NetFPSi =
B

data sizei
≤ F

(1)

(2)

(3)

The first equation represents the architectural constraint on
the end-device, and limits the selection to the layers that can
be hosted in the available memory of the board. The second
and third equations derive from the consideration that the ap-
plication is a pipeline of end-device computation (EndFPSi),
tensor transmission (NetFPSi) and server computation. As a
consequence, the global working frequency is limited by the
slowest stage (assuming no computational constraints for the
server). Tensor transmission time depends on the instantaneous
network bandwidth B and the size (data sizei) of the com-
pressed tensor.

The second step implements a clustering phase, by which
the remaining layers are grouped, in order from the left to
right, into n equal sets. For each set sj , the algorithm identifies
a candidate split layer as the layer that represents the local
maximum performance:

FPSj = max[min(EndFPSi, NetFPSi)], li ∈ sj

This clustering approach allows the system to execute the
maximum part of the inference phase in the end device
while satisfying the performance constraint. The framework is
independent of this choice and other voting solutions, which
are part of our future work, can be adopted. The final result
of the benchmarking phase is two ordered lists E and D,
which contain the EndFPS and data size, respectively, of
the selected candidates.

C. Tensor encoding
To limit the amount of data sent across the communica-

tion channel, the end-device encodes the tensor information
through quantization and compression to reduce the tensor
size while guaranteeing a negligible impact on the overall
system accuracy. We implement quantization directly on a

3



single element of the output tensor. Both DNN weights and
activation functions do not change and, thus, no retraining is
required.

We adopt a scheme that uniformly quantizes the interval
between the minimum and the maximum value [22]. Given n
bits for the quantization, the quantized coefficients are integers
that represent the identifiers of the 2n possible intervals. To
correctly rebuild the tensor coefficients at the destination, the
minimum and the maximum values (32 bits each) are included
in the message together with the quantized coefficients. An
irreversible quantization error is generated but, as confirmed
by our experimental results, it has a negligible effect on the
application accuracy.

With quantization, the smallest coefficients are mapped to
the value of zero. Furthermore, the rectifier linear unit (ReLu)
activation function, which is largely adopted in HPE DNNs
for pooling the convolutional layer results, transforms all
the negative numbers into zeros. The combinations of these
two steps produces a large amount of zeros in the resulting
multidimensional tensor1, which can be exploited by a run-
length encoding compression scheme that works on a single
pass on the input with small complexity.

IV. EXPERIMENTAL RESULTS

Settings. We evaluated the proposed framework using a plat-
form composed by an NVIDIA Jetson Nano (4-cores CPU,
128-cores GPU, 4 GB RAM) as end-device, and a server
Desktop with Intel i5 7400 CPU, 2xNvidia RTX 2070 GPUs
(SLI), 16GB DDR4 RAM, and Ubuntu 18.04 LTS OS. The
end-device is connected to a Ubiquiti UAP-AC-M access
point with a 50 Mbps WiFi connection. Without loss of
generality, we assume that the server is directly accessible
through the WiFi link. We implemented the HPE applications
with OpenPose [8] and BODY 19 DNN (see Fig. 3) trained
with COCO and MPII datasets. We assessed the framework
accuracy and robustness using two different datasets. The first
is the standard Human3.6M dataset [21], which includes high-
resolution videos (1,000x1,000 pixels) from 17 scenarios with
11 actors. The second is a collection of videos taken in a
clinical laboratory on a group of five healthy adults using
ZED 2 RGB sensors (848x480 pixels) (15 minutes of videos
in total). For such a dataset, the ground truth is provided by
a 8-camera infrared motion capture system (MoCap) VICON2

MX 13. For the MoCap, the kinematic data were collected
at 100 Hz and the reflective markers (14 mm in diameter)
were placed over the following bony landmarks bilaterally:
cheekbones, medial and lateral epicondyle of the humerus,
acromion, ulnar and radial styloid processes, hand dorsum,
greater trochanter, medial and lateral epicondyle of the femur,
medial and lateral malleolus ankle, heel, 5th metatarsal of the
foot, tip of the big toe.
Results on single frames. We evaluated the impact of the
tensor quantization and compression proposed in Sec. III-C on
the HPE accuracy, i.e., the difference between the inferred key-
points and the ground truth on 25,200 frames. Table I reports

1In our experimental analysis, we measured from 60% to 80% of coeffi-
cients equal to zero in all datasets.

2https://www.vicon.com

TABLE I: Impact of the tensor quantization and compression
on the HPE spatial accuracy (average with the H3.6M dataset).

Q Level MAE:AVG
(px)

MAE:STD
(px) RMSE:AVG RMSE:STD Corr (ρ)

16 bit 0.000 0.010 0.010 0.011 0.999
8 bit 0.068 0.428 0.436 0.483 0.999
6 bit 0.256 0.713 0.769 0.704 0.999
4 bit 0.993 1.325 1.694 1.146 0.998

Fig. 3: The adopted BODY 19 model and the corresponding
layers for the candidate selection.

Fig. 4: Tensor size with different levels of quantization and
compression (upper side lines and left-most ordinate axis).
Inference throughput (FPS) on the Nvidia Jetson end-device
(dotted line at the bottom and right-most ordinate axis).

the results of the mean average error (MAE), averaged on all
keypoints, and the corresponding standard deviation, the root
mean square error (RMSE), and Pearson correlation between
the inferred keypoints without and with the quantization and
compression. For the sake of space, the table reports only the
results of the most meaningful layers (i.e., VGG-19 of Fig.
3). The results show that the impact of the tensor quantization
on the spatial accuracy of all keypoints is negligible. The
impact on the Pearson correlation, which is a key value for
the accuracy of kinematic data, is also negligible. Even with a
strong quantization (i.e., 4 bit), the average discrepancy w.r.t.
the ground truth is less than one pixel in 1,000x1,000 pixels
input frames. The adopted run-length encoding scheme is loss-
less and therefore does not impact on the accuracy.

Fig. 4 and 5 show the results of the micro-benchmarking
(Sec. III-B). As expected, the pooling layers reduce the tensor
size and, as a consequence, they are good candidates as split
points. In the V GG− 19 subnetwork, the more the input data
undergoes the inference process (i.e., from the left to the right)
the smaller the tensor size is. The size starts increasing after
the VGG model and remains constant across the sequential
stages. This is due to the fact that the considered DNN
(and many other state-of-the-art DNN adopted in the HPE

4



Fig. 5: Result of the benchmarking and candidate identifica-
tion procedure: system performance (in FPS) with different
workloads in the end-device and Wifi available bandwidth.

platforms) is based on a residual model, and the output tensor
(e.g., F in the example of Fig. 4) is concatenated to the other
tensors (S and L) after every stage. The high number of
zeros after the ReLu activation function leads to an efficient
compression. Fig. 4 (curve at the bottom, which refers to the y-
axis on the right) shows also the performance (FPS) obtained
by the end-device, as it processes more and more layers: this
provides an indication of the candidate layers that can be used
as split points given a target frame rate.
Results on a sequence of frames. Table II reports, for each
identified candidate split layer (and for some additional layers
for completeness), the system performance (in FPS), with
and without compression/quantization, and the corresponding
accuracy with no interference on the end-device workload
or WiFi bandwidth (i.e., 50 Mbps available). Starting from
the 3D spatial position of the keypoints provided by the
HPE framework and by the MoCap, the human joint angles
are extrapolated geometrically (e.g., ankle, knee, and hip
keypoints for the knee angle) according to [23]. For the sake
of space, we report the results obtained for the right knee
angle, as (i) it is one of the most representative and clinically
meaningful in the context of walking, and (ii) its extrapolation
relies on one of the most sensitive 3D keypoints (i.e., the
ankle keypoint). The magnitude and polarity of the angle were
described such that when the knee was fully extended, it was
described as 0 degrees flexion, and when the shank moved to
a posterior direction relative to the thigh, the knee joint angle
was said to be in flexion (knee angle > 0). Two vectors are
generated from the inferred keypoints to get the orientation of
the knee articulation. The hip keypoint is then defined in the
knee reference system. In this way, the angle corresponding
to the sagittal plane is derived through standard trigonometric
formulas. Without tensor quantization and compression (i.e.,
state-of-the-art techniques of collaborative deep inference [9]),
the stage2 out split layer provides the best performance
(6.77 FPS), and it has 7.29°maximum error in the inferred
right knee angle. The performance and the corresponding
accuracy sensibly decrease with the other split layers. With
compression and quantization, the stage2 out layer provides
similar results, while the left-most layers allow for better
performance and higher accuracy (down to 4.84°). In general,
we find that the system keeps the maximum inferred angle
error within reasonable limits with computational performance
≥ 7 FPS. Fig. 5 shows the overall system performance with the
proposed 4-bit quantization and compression when the runtime

system switches the split point among the candidate layers as
a consequence of interference on the end-device workload and
Wifi bandwidth. We characterize the end-device workload with
an increasing number of additional applications of intelligent
video analytic with ∼ 30% (medium) and ∼ 50% (high) of
additional GPU workload. As for the network resources, we
use the Linux traffic control tools tc6 and tc-netem7 to create
a bottleneck and reduce the available bandwidth considering
some representative values of 25, 10, 5 and 2 Mbps. Starting
from conv4 3 CPM as initial split layer (i.e., with no
interference on the end-device and WiFi) and by adopting a
4-bit encoding, the runtime system addresses congestion on
the end-device and on the WiFi by moving the split point on
the left-most or right-most layers, respectively. As summarized
by the results in Fig. 5, we find that, in general, the proposed
framework achieves the minimum computational performance
to keep the maximum inferred angle error within reasonable
limits (i.e., 7 FPS) in all conditions except for high workloads
on the end-device combined to WiFi bandwidth lower than 2
Mbps. Thanks to the low complexity of the runtime manager
algorithm, the switching latency is negligible (2-3 ms).

Previous work showed limited accuracy of markerless mo-
tion capture gait analysis compared to IMU or MoCap methods
and recommended caution in using these systems in clinical
movement analysis [1], [24]. In partial agreement with these
considerations, our analysis shows some discrepancies in knee
flexion’s range of motion estimations between the proposed
framework and MoCap. As reported in Table II, the differences
between the two systems range between 4.84° and 5.97° within
the entire gait cycle. Therefore, a crucial question about the
accuracy of the framework analysis concerns the acceptability
of this measured error. In general, the literature suggests that
a measurement error in joints range of motion estimation
greater than 5-7° could be large enough to lead to misleading
clinical consideration [25]. In contrast, errors lower than 5° are
considered acceptable. A recent reliability study on MoCap
gait analysis found relatively large repeated measure errors
and suggested a minimal detectable change (MDC) of 6.5° in
knee flexion and 6.4° in knee total ROM [26]. The correlation
between joints angles assessed during repeated gait analysis
with a MoCap system in their study was surprisingly in line
with our results comparing data from MoCap and the HPE
system ranging around 0.99° in different gait phases. Although
some discrepancies in the knee flexion angle estimation be-
tween the proposed adaptive HPE framework and the MoCap
system could occur, it is conceivable that this should not lead
to different clinical interpretations.

V. CONCLUSION

This paper addressed the challenge of applying human pose
estimation software through collaborative deep inference in
edge-cloud systems. It focused on the functional and extra-
functional constraints that such a system should satisfy to be
applied in telemedicine. It presented framework that adapts to
edge workload variations or communication issues (e.g., delay
and bandwidth variability), which otherwise may compromise
the global system accuracy and, as a consequence, could
lead to different clinical interpretations. The paper presented

5



TABLE II: System performance with Jetson Nano and Wifi 50 Mbps in terms of FPS for each candidate layer: Inference
on end-device (End FPS), Wifi with no compression/quantization (WiFi full), WiFi with 4-bit quantization+compression, the
corresponding MAE, Maximum error, and Pearson correlation on the right knee angle degree.

Candidate Edge inf.
(FPS)

Edge inf. +
quant/ compr
(FPS)

Wifi full
(FPS)

Wifi 4 bit
(FPS)

MAE Full
(deg)

MAX err
Full (deg)

Corr. (ρ)
Full

MAE 4 bit
(deg)

MAX err
4 bit (deg)

Corr. (ρ)
4 bit

pool1 stage1 46.73 18.70 1.37 61.48 15.14 61.33 0.255 0.65 5.28 0.99
pool2 stage1 15.21 11.99 2.74 103.13 9.43 37.40 0.71 0.69 5.01 0.99
pool3 stage1 9.70 8.93 5.49 234.71 1.68 10.39 0.99 0.82 4.84 0.99

conv4 3 CPM 7.47 7.03 5.49 360.78 1.68 10.39 0.99 1.10 5.97 0.99
stage2 out 6.77 6.36 7.60 54.33 1.27 7.29 0.99 1.27 7.29 0.99
stage4 out 2.54 2.48 7.60 55.34 11.26 41.19 0.62 11.26 41.19 0.62
stage7 out 1.31 1.30 24.67 220.65 16.04 61.95 0.10 16.04 61.95 0.10

the results obtained with two large datasets in which the
framework accuracy and robustness are compared with a
marker-based infra-red motion capture system.

ACKNOWLEDGEMENTS

The work has been partially supported by Fondazione
Cariverona with the grant “Ricerca & Sviluppo”. The study
was carried out within the PNRR research activities of the con-
sortium iNEST (Interconnected North-Est Innovation Ecosys-
tem) funded by the European Union Next-GenerationEU (Pi-
ano Nazionale di Ripresa e Resilienza (PNRR) – Missione
4 Componente 2, Investimento 1.5 – D.D. 1058 23/06/2022,
ECS 00000043). This manuscript reflects only the Authors’
views and opinions, neither the European Union nor the
European Commission can be considered responsible for them.

REFERENCES

[1] E. D’Antonio, J. Taborri, E. Palermo, S. Rossi, and F. Patanè, “A
markerless system for gait analysis based on OpenPose library,” in Proc.
of IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), 2020, pp. 1–6.

[2] M. Sassi and M. Abid, “Security and privacy protection in the e-health
system: Remote monitoring of covid-19 patients as a use case,” Smart
Innovation, Systems and Technologies, vol. 237, pp. 829–843, 2022.

[3] B. Li, B. Wu, J. Su, and G. Wang, “EagleEye: fast sub-net evaluation
for efficient neural network pruning,” LNCS, vol. 12347, pp. 639–654,
2020.

[4] P. Wang, X. He, G. Li, T. Zhao, and J. Cheng, “Sparsity-inducing
binarized neural networks,” in Conference on Artificial Intelligence,
2020, pp. 12 192–12 199.

[5] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, Q. Le, and H. Adam, “Searching for
mobilenetv3,” in IEEE ICCV, 2019, pp. 1314–1324.

[6] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in Proc. of
International Conference on Pattern Recognition, vol. 0, 2016, p. 2464
– 2469.

[7] E. Martini, M. Boldo, S. Aldegheri, N. Valè, M. Filippetti,
N. Smania, M. Bertucco, A. Picelli, and N. Bombieri, “Enabling
gait analysis in the telemedicine practice through portable and
accurate 3d human pose estimation,” Computer Methods and Programs
in Biomedicine, vol. 225, p. 107016, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169260722003984

[8] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2D
pose estimation using part affinity fields,” in Proc. of IEEE CVPR, 2017,
pp. 1302–1310.

[9] L. Zhang, L. Chen, and J. Xu, “Autodidactic neurosurgeon: Collaborative
deep inference for mobile edge intelligence via online learning,” in Web
Conference. ACM, 2021, p. 3111–3123.

[10] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
Efficient Offloading for DNN-Based Smart IoT Systems in Cloud-Edge
Environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 3, pp. 683–697, 2022.

[11] M. Odema et al., “LENS: Layer distribution enabled neural architecture
search in edge-cloud hierarchies,” in ACM/IEEE DAC, 2021, pp. 403–
408.

[12] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications. IEEE, Apr. 2019.
[Online]. Available: https://doi.org/10.1109/infocom.2019.8737614

[13] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and
N. D. Lane, “SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud,” 2020. [Online]. Available:
http://arxiv.org/abs/2008.06402

[14] M. Sbai, M. R. U. Saputra, N. Trigoni, and A. Markham, “Cut, distil
and encode (cde): Split cloud-edge deep inference,” in 2021 18th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), 2021, pp. 1–9.

[15] V. Goyal, V. Bertacco, and R. Das, “Myml: User-driven machine
learning,” in Proc. ACM/IEEE Design Automation Conference, 2021,
pp. 145–150.

[16] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
accuracy-and latency-aware deep structure decoupling for edge-cloud
execution,” in IEEE Int. Conf. on Parallel and Distributed Systems
(ICPADS), dec 2018, pp. 671–678.

[17] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms,” in IEEE AVSS, 2018,
pp. 1–6.

[18] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep
learning architecture for intelligent mobile cloud computing services,”
in IEEE/ACM Int. Symposium on Low Power Electronics and Design
(ISLPED), 2019, pp. 1–6.

[19] J. Liu and Q. Zhang, “To improve service reliability for ai-powered time-
critical services using imperfect transmission in MEC: An experimental
study,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9357–9371,
2020.

[20] N. Saini et al., “AirPose: Multi-view fusion network for aerial 3D human
pose and shape estimation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4805–4812, 2022.

[21] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6M:
Large scale datasets and predictive methods for 3D human sensing in
natural environments,” IEEE Trans. on Pattern An. and Machine Intell.,
vol. 36, no. 7, pp. 1325–1339, jul 2014.

[22] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. of the IEEE CVPR,
2018, pp. 2704–2713.

[23] D. A. Winter, Biomechanics and motor control of human movement.
John Wiley & Sons, 2009.

[24] A. Pfister et al., “Comparative abilities of Microsoft Kinect and Vicon
3D motion capture for gait analysis,” J. of Med. Engin. and Tech., vol. 38,
no. 5, pp. 274–280, 2014.

[25] J. L. McGinley, R. Baker, R. Wolfe, and M. E. Morris, “The reliability of
three-dimensional kinematic gait measurements: A systematic review,”
Gait & Posture, vol. 29, no. 3, pp. 360–369, Apr. 2009.

[26] M. Geiger, A. Supiot, D. Pradon, M.-C. Do, R. Zory, and N. Roche,
“Minimal detectable change of kinematic and spatiotemporal parameters
in patients with chronic stroke across three sessions of gait analysis,”
Human Movement Science, vol. 64, pp. 101–107, Apr. 2019.

6


