
Seed Scheduling for Peer-to-Peer Networks
Flavio Esposito∗, Ibrahim Matta∗, Pietro Michiardi†, Nobuyuki Mitsutake∗ and Damiano Carra‡

∗ Computer Science Department
Boston University, Boston, MA

Email: {flavio, matta, mnobu}@cs.bu.edu
† Eurecom Institute

Sophia Antipolis, France
Email: pietro.michiardi@eurecom.fr
‡ Computer Science Department

University of Verona, Italy
Email: damiano.carra@univr.it

Technical Report BUCS-TR-2009-011
March 26, 2009

Abstract—The initial phase in a content distribution (file
sharing) scenario is a delicate phase due to the lack of global
knowledge and the dynamics of the overlay. An unwise distri-
bution of the pieces in this phase can cause delays in reaching
steady state, thus increasing file download times. We devise a
scheduling algorithm at the seed (source peer with full content),
based on a proportional fair approach, and we implement it on
a real file sharing client [1]. In dynamic overlays, our solution
improves up to 25% the average downloading time of a standard
protocol ala BitTorrent.

I. INTRODUCTION

A. Problem and Motivation

Swarming techniques have been widely studied recently in
the literature due to the vast number of applications that a
decentralized network such as peer-to-peer systems enable.
In particular, the purpose of these studies is to make content
distribution protocols efficient and robust. See BitTorrent [2]
and references therein.

However, most of the literature focus, even recently [3],
has been both on the analysis, and on the improvement of
downloaders in their strategies for selecting which neighbor
(peer) to download from, and which part of the content (piece)
to download next.

Measurements [4], simulation [5], and analytical studies [6]
on BitTorrent-like protocols have also shown that, even though
peers cooperate, leveraging each other’s upload capacity, this
operation is not done optimally in every possible scenario.

Other studies [7], [8] show that there are source bottlenecks
due to a non smart piece distribution during initial phases

This work has been partially supported by a number of National Science
Foundation grants, including CISE/CCF Award #0820138, CISE/CSR Award
#0720604, CISE/CNS Award #0524477, CNS/ITR Award #0205294, and
CISE/EIA RI Award #0202067.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

and churns — a churn is a transient phase characterized
by a burst of simultaneous requests for a content. In fact,
during churns downloaders’ strategies are less effective since
the connected (neighboring) peers have either no interesting
content, or no content at all. As a consequence, the time to
download increases.

We claim that the source (also called “seed”) can help
through scheduling of pieces, in a better way than simply re-
sponding immediately in a FCFS manner, upon downloaders’
requests by providing a notion of fairness in distributing the
content pieces. We propose to provide a piece-level fairness via
a proportional fair scheduling at the source of the content to
ensure that different pieces are uniformly distributed over the
peer-to-peer network, and thus peers can effectively exchange
pieces among themselves as quickly as possible. Specifically,
when the overlay is dynamic, we show that this translates into
shorter average time to download.

B. Contributions

The main contributions of this work are summarized as
follows:
• We devise and implement on a real file sharing client (we

call our modified file sharing client BUtorrent [1]) a seed
scheduling algorithm, that improves in dynamic overlays,
up to 25% the average downloading time.

• We adapt the analytical fluid model in [4] so it is valid
even during initial and churn phases, capturing the effect
of seed scheduling.

• We show that a smarter seed scheduling leads to higher
probability for downloaders to make use of swarming to
finish their downloads.

C. Paper Organization

The rest of the paper is organized as follows: In Section II
we give an overview of the BitTorrent protocol, defining
notions that we will use for the rest of the paper. Section III
describes the (NP-complete) problem of source scheduling of

pieces to allow downloaders to finish as fast as possible, and
points out why and when a file sharing protocol ala BitTorrent
does not work well in dynamic situations. In Section IV we
describe our solution: a new seed scheduling algorithm for
BitTorrent. In Section V we study analytically why scheduling
at the seed is important to reduce the time to download and
Section VI validates our analysis (i.e., effective swarming)
experimentally. Section VII discusses related work and finally
Section VIII concludes the paper.

II. BITTORRENT OVERVIEW

BitTorrent is a file sharing protocol for content dissemina-
tion. The content is divided into pieces (256 KB) so that peers
not having the whole content can speed up their download
exchanging pieces among themselves (swarming). A peer-to-
peer system applying a swarming protocol calls the peers
interested in downloading pieces leechers, and peers that only
act as servers (i.e., only upload content) seeders or seeds. In
this work, we consider a torrent T to be a set of at least
one seed, many leechers, a tracker, a special entity that helps
bootstrapping the peer-to-peer network, and a file F, split in
p pieces, to be distributed.
Definition (Neighborhood): given a peer v, we define as
neighborhood or peerset of v, Nv , the set of peers directly
connected to v, whose size |Nv| = kv .

Seed

Interested

[0,0]

B

Seed

A B

Unchoke

Seed
LRF

Request

A B

Seed
2

A B

piece to A

A

[0,0]

Seed

Round 1
piece 1 to A

[1,0]
B

Seed

Round 2

1

A B

1

piece 1 to B

Seed

Round 3
piece 2 to B

A B

Seed

Round 4

2

A B

2

piece 2 to A

A
[0,0] [1,0] [1,0] [1,0] [1,1] [1,1] [1,1]

Seed

A B

Have

have(2)

Seed

A B

Interested

[0,0]

(a)

(b)

LRF

Fig. 1. (a) BitTorrent protocol: from left to right, the sequence of messages.
(b) Global information leads to faster content distribution. Peers unaware of
each other cannot use swarming.

The BitTorrent protocol works as follows (see Figure 2(a)
for an illustration): if a peer vi, leecher or seed, has pieces that
another connected leecher vj does not have, an “interested”
message is sent from vj to vi. Together with the interested
message, a binary vector called bitfield, is sent. Every peer
has a bitfield, of length equal to the number of pieces of
F , and a bit is set to one if the peer has the corresponding
piece. Through the bitfield dissemination, each peer v has
information of the pieces present in Nv (only). Amongst all the
interested leechers, only four peers are given an opportunity
to download data, using the choke algorithm. The choke
algorithm, applied every re-choking interval Trc,1 is simply a
round robin among the peers in NS , in case a seed S is running

1Trc = 10 seconds in most implementations.

it, while choking is based on two mechanisms for leechers:
(i) tit-for-tat and (ii) optimistic unchoke. The tit-for-tat peer
selection algorithm adopted by leechers, captures the strategy
of preferring to send pieces to leechers which had served them
data in the past: upload bandwidth is exchanged for download
bandwidth, encouraging fair trading. Because at the beginning,
no leecher has pieces to upload and because leechers prefer
to unchoke faster peers so they can download and collaborate
faster, one leecher (potentially up to four leechers initially)
is selected at random to explore potentially faster leechers
(optimistic unchoke). In Figure 2(a) only two leechers (A and
B) are in NS so both are unchoked.

Unchoked leechers select one piece of the content they want
to download using the Local Rarest First (LRF) algorithm.
A leecher v applying LRF counts, thanks to the bitfield
dissemination, how many copies of each piece are present in
Nv and requests the rarest. Ties are broken at random. As
soon as a peer gets a request it replies with the piece. In
Figure 2(a) the piece with ID 2 goes to the leecher A. Upon
reception of a piece, leechers inform all their neighbors with
a “have” message. Now, if leecher B does not have piece 2
yet, B sends an interested message to A.
Definition (initial phase): Given a torrent T, and a file F split
into p pieces, we define the initial phase of T for F to be the
time interval between the first scheduling decision made by
a seed, to the time the pth piece of F has been completely
uploaded to one of the leechers in the seed’s peerset.
After the initial phase is complete, we say that the protocol
enters steady state.

III. PROTOCOL WEAKNESSES AND
PROBLEMS

We consider the problem of seed scheduling the piece
whose injection guarantees the maximum benefits for the
overlay. In this section we analyze why this is a challenge,
and when this is an important factor. To do so, we need the
following definitions:
Definition (Effectiveness): Given a peer-to-peer system, we
define effectiveness of a file sharing η as the probability that a
leecher v has at least an interesting piece for its neighborhood
Nv .
We discuss the effectiveness in detail in Section V-B.
Definition (Burstiness): Given a dynamic peer-to-peer sys-
tem, we define burstiness as the ratio of the peak rate of
leechers’ arrival to the average arrival rate during a period
of observation.

Observe that, the peak rate is defined as the ratio of the
size of a churn (number of newly arriving leechers) to the
length of the interval over which the churn occurs, and that
the average arrival rate is defined as the ratio of the total
number of leechers to the total considered time.
Definition (Seed Utilization): We define seed utilization as
the ratio of the number of uploads from a seed to the average
number of uploads from all leechers in the system.
Definition (Clustering Coefficient): Given a graph G=(V,E)
with V vertices and E edges, and denoting with Ei ⊆ E the

subset of edges that includes vertex i, we define Clustering
Coefficient for G [9]:

CC =
1
|V |

|V |∑
i=1

Ei(
kvi

+ 1
2

) . (1)

Although BitTorrent has been widely studied by the research
community and recognized as a robust protocol, it is far from
being an ideal protocol in every scenario. In the presence of
burstiness for example, i.e., churn phases, peersets can be too
small to significantly benefit from swarming [10]. Moreover,
for overlays with low clustering coefficient, seed utilization,
can be surprisingly high. Therefore it is natural to think about
improvement by adding intelligence to the seed as opposed
to investigating techniques that modify leechers’ strategies
(e.g., [3]).

To the best of our knowledge, only in [5] seeds have been
taken into consideration, assuming significant changes to the
whole BitTorrent protocol. In our approach, we only modify
the scheduling at the seed, leaving the rest of the BitTorrent
protocol intact.

A. Global vs Local Information

Consider Figure 2 (b): in the first round the seed uploads
piece 1 to leecher A which updates its bitfield vector. Since
A is not connected to B, no “have” message is sent. In the
second round, the seed uploads the same piece 1 to B. The
same happens in the third and fourth round for piece 2. Peers
unaware of each other cannot use swarming, which slows
down their downloading time as they ask the seed for the same
pieces. To use swarming, peers have to have neighbors with
interesting pieces. Seeds are interesting by definition as they
have the whole content; leechers may not be because, the LRF
algorithm does not yield an equal distribution of pieces (and
replicas), so it is less likely for a leecher to find its missing
pieces at other neighboring leechers since the view leechers
have is limited. Henceforth, we refer to the equal distribution
of pieces as “piece fairness”. The lack of piece fairness is
especially more pronounced when the clustering coefficient of
the overlay is low.

Without fairness, requests to the seed for the same pieces
can occur more frequently before the whole content is injected.
This can lead to torrent death if the seed leaves the system
prematurely and leechers are left with incomplete content.
In some other cases, uploading twice the same piece can be
even costly. For example, if the seed is run using the Amazon
S3 [11] service, higher seed utilization results in higher
monetary costs for using Amazon resources (bandwidth, CPU,
etc.)

B. Dynamic Overlays

At the end of this subsection we will prove that a smarter
scheduling decision may save some time and/or seed uploads.
The problem we present here is related to the the dynamic
nature of the overlays: lack of offline knowledge of which
peer will be present at which instant of time, makes the piece

distribution problem challenging. In fact, in case a seed or
a leecher schedules a piece to a leecher j that later goes
temporarily or definitively offline, the effectiveness of the
overlay segment containing j is reduced inevitably and so
performance decreases. Scheduling the optimal pieces is a hard
problem as we show in the following:
Theorem (NP-Completeness): Given a peer-to-peer overlay
with one seed and l leechers wishing to download a file,
and a natural number n, the problem of deciding whether
a given sequence of seed scheduling decisions permits all the
l leechers to complete their download within m scheduling
rounds is NP-complete.

Proof: Let us denote as L the language representing the
problem: L is the set of tuples < G,n > where G is a graph
(the peer-to-peer overlay with one seed) and n is a natural
number representing the scheduling rounds, such that, every
leecher in G download the content in at most n scheduling
rounds; formally we have:
L = {< G,n > | peers in G download in ≤ n rounds}. We
need to show that:

1) L ∈ NP .
2) L is reducible in polynomial time to another NP-

complete problem; in particular, we will show that
SAT ≤pm L.

1) Let us describe the behavior of the algorithm A that
decides non-deterministically in polynomial time whether the
number n of given rounds are enough guarantee that the
leecherss in the graph G will finish the download (L ∈ NP).
For every scheduling round: (i) each peer chooses (non-
deterministically) at random, one piece to download from one
of its neighborhoods. (ii) if the download of each peer is
complete, A accepts; otherwise A increases a round counter
by one and goes to the step (i). If the current round is grater
than n, A rejects. Step (ii) is simply a linear bitfield checking
for all leechers and it is done at most n times. So the execution
of A after the non deterministic choice of the piece it is done
in polynomial time.

2) Let us now show that exist a polynomial time reduction
from SAT to the language L, namely, given a formula F
in conjunctive normal form (CNF) 2, there exists a tuple <
G,n > such that if F is satisfied the leechers in the graph G
complete their download within n scheduling rounds.

Let us consider a subset S of all the possible CNF , where,
a formula F ∈ S if and only if each clause has n literals. Let
us show that each element of S can be mapped in polynomial
time to an element of L.

Consider p matrices A(k), k = 1, . . . , p, where p is the
number of pieces of the file to be disseminated. The matrices
have as rows the scheduling rounds and as columns the
leecher-IDs.

We define an element of the kth matrix as a literals of F as

2a formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses, where a clause is a disjunction of literals.

follows:

a
(k)
ij =

{
1 if at round i peer j got piece k
0 otherwise

F is a conjunction of clauses where each clause is a row of
the matrix A(k):

F = (a(1)
11 ∨a

(1)
21 ∨ . . .∨a

(1)
n1)∧ . . .∧(a(p)

11 ∨a
(p)
21 ∨, . . . ,∨a

(p)
n1)∧

. . .

∧(a(1)
1l ∨ a

(1)
2l ∨, . . . ,∨a

(1)
nl) ∧ . . . ∧ (a(p)

1l ∨ a
(p)
2l ∨, . . . ,∨a

(p)
nl).

F is satisfied when at least one of the literals is equal to one,
for each clause; that is, for each of the l leechers, there has to
be at least a round where each piece has to be downloaded.

The mapping between an element of the formula F and a
piece being downloaded at a particular round for a particular
leecher can be done in polynomial time. It is enough, given
an element of S, to check each of the literals and assign the
placement accordingly. Hence, each element of F ∈ S can be
reduced to an element of L in polynomial time.

(round 0)

(round 1) (round 3)

(round 4)

No Content Full Content

(round 2)

Fig. 2. One seed is connected with two leechers and uploads its content of
two pieces in n = 4 scheduling rounds.

Notice that if the overlay is static every normal form
contains exactly n terms, while in a dynamic peerset, where
peers temporarily abandon the system, the number of literals
may be less than n. As an example, we report the CNF F1,
relative the toy example in figure 2:

F1 = (a(1)
11 ∨ a

(1)
21 ∨ a

(1)
31 ∨ a

(1)
41) ∧ (a(2)

11 ∨ a
(2)
21 ∨ a

(2)
31 ∨ a

(2)
41)∧

(a(1)
12 ∨ a

(1)
22 ∨ a

(1)
32 ∨ a

(1)
42) ∧ (a(2)

12 ∨ a
(2)
22 ∨ a

(2)
32 ∨ a

(2)
42) =

= (1 ∨ 0 ∨ 0 ∨ 0) ∧ (0 ∨ 0 ∨ 0 ∨ 1)∧

(0 ∨ 0 ∨ 1 ∨ 0) ∧ (0 ∨ 0 ∨ 0 ∨ 1).

F1 tells us that one leecher completes its download thanks
to the first and the fourth scheduling round, while the other
leecher downloaded during the second and the third scheduling
round. Notice that there can be many assignments that satisfy
F1 and that it does not make sense (even though is not
impossible) to have a(k)

i1j
= a

(k)
i2j

for i1 6= i2, namely, it is not
convenient to use more than one round to transfer the same

piece to the same leecher. Denoting G0 the graph given in
figure 2 (round 0), we notice that the tuple x1 =< G0, 4 >∈ L
while x2 =< G0, 3 >/∈ L.

If instead we connect the two leechers in figure 2 then x2 ∈
L as well, namely, the download could have been completed
in three rounds using swarming properties. This last simple
observation is one of the intuitions that guided our study. When
two cliques are connected to a unique seed and connected one
another, then a smarter scheduling decision may save some
time and/or seed uploads.

C. The Initial Phase Problem

A third problem occurs during the initial phase of a torrent
(defined in Section II). During the initial phase of a torrent, the
seed is one of the few interesting peers. Recalling how the tit-
for-tat mechanism works (Section II), we realize that in this
phase, even though swarming techniques are used, leechers
have not yet downloaded many pieces, so every leecher will
most probably ask the seed for its missing pieces, making the
seed a bottleneck. Even though this congestion at the source
(seed) is inevitable, and may not last for too long, this phase
can be prolonged if the dissemination is inefficient. Moreover,
when a new group of leechers joins the overlay (churn phase),
no leechers is willing to unchoke peers with no pieces due to
the tit-for-tat mechanism, with the seeds being the exception,
and so another initial phase effectively takes place. We are
not the first to claim that source bottlenecks occur due to
inefficient piece dissemination during flash crowds and churn
phases [12]. So during all the intial phases of a torrent, a wise
seed scheduling is crucial.

D. Example of Inefficiency of the Initial Phase

We illustrate the inefficiency of the initial phase through an
example.
Definition (Collision): We define a collision event at round i,
Ci to be the event that two leechers ask the seed for the same
piece at round i.
Definition (Earliest Content Uploading Time): We define
earliest content uploading time, the time it takes for the seed
to upload at least once every piece of the file.
A collision event slows down performance with respect to both
the earliest content uploading time, and downloading time,
since the seed’s upload capacity is used to upload more than
once the same piece. If a collision occurs, an extra round may
be needed to inject the whole content.
Example of optimal seed scheduling: Let us consider one
seed, six pieces, and three leechers A,B and C. Assume that,
running LRF , the leechers end up asking the seed for pieces in
the following order: A = [1, 2, 3, 4, 5, 6], B = [4, 5, 3, 1, 6, 2]
and C = [3, 6, 2, 5, 1, 4]. Let us also assume the seed uploads
three requests in each round. After the first seed scheduling
round, pieces 1,4 and 3 are uploaded, and after the second
round, all the content is injected. This is the optimal case: to
inject six pieces the seed needs two rounds.
Collision example: If instead the LRF for B ends up with the
permutation B = [4, 2, 1, 3, 6, 5], we notice that in the second

scheduling round, we have a collision between leecher A and
B, both asking the seed for piece 2, and so two scheduling
rounds are not enough anymore; to inject the whole content
we need to wait three rounds.

Nowadays, BitTorrent-like protocols do not have policies for
the seed to schedule pieces, since the piece selection is done
by LRF . In the next sections we present an algorithm that
attempts to overcome the lack of leechers’ awareness of each
other, improving piece fairness, and we show that scheduling
is crucial for boosting swarming effects.

IV. SEED SCHEDULING

In this section we provide a detailed explanation of how
we propose to modify any swarming protocol ala BitTorrent.
Our solution, based on the Proportional Fair Scheduling algo-
rithm [13], [14], exploits and improves the method conceived
by Bharambe et al. [5], where memory about pieces scheduled
in the past was first introduced. Furthermore, we formally
present the scheduling algorithm that we applied at the seed.

A. Detailed Idea of our PFS Scheduling at the Seed

Smartseed [5] inserts an intelligence into the seed by ac-
tively injecting the pieces least uploaded in the past, changing
the nature of the BitTorrent protocol from pull (on demand)
to push (proactive). Our seed strategy instead, consists of
unchoking every possible leecher, so that all the requests
are taken into account, and uploading the (four) pieces
that are both requested the most in the current round and
uploaded the least in the past rounds, without changing the
way BitTorrent-like protocols work. The piece requested the
most in the current scheduling round represents the instan-
taneous need, namely, the present, while the least uploaded
piece represents the past scheduling decisions. We can view
Smartseed as considering only the past. The present need gives
the seed a rough view of which pieces leechers currently
need, perhaps because neighboring leechers do not have these
pieces. While past uploads gives the seed the ability to inject
the piece that is least replicated from its vantage point. By
equalizing the number of piece replicas, the probability that
leechers have pieces that are of interest to their neighboring
leechers increases.

Formally, if ri is the number of the requests for piece i at
the current round, and τi is the throughput vector for piece i,
namely, the number of times piece i has been uploaded in all
the previous rounds, PFS chooses the piece i∗ that maximizes
the ratio ri[t]/τi[t− 1]:

i∗[t] = max
i

{
ri[t]

τi[t− 1] + ε

}
(2)

where ε is just a small positive constant introduced to avoid
division by zero. The ri is decreased every time a piece
message is sent and τi is increased every time a piece has
been completely uploaded. The BitTorrent protocol splits
the 256 KB piece further into sub-pieces. We ignored this
further fragmentation in our simulations but not in our system
implementation (BUtorrent [1]).

B. History has to be forgotten

When peersets’ peer (neighborhoods) are dynamic, keeping
track of the pieces uploaded since the beginning of the torrent
is a bad idea, since some leechers may have left, others may
have arrived. The intuition is that the weights that τi brings
into the scheduling decision has to decrease over time. For
this reason, every time the seed uploads a piece, we update τi
using exponential weighted moving average (EWMA), namely:

τi[t+ 1] = β · Ii[t] + (1− β) · τi[t] (3)

where Ii[t] is an indicator function such that:

Ii[t] =
{

1 if piece i was uploaded at round (time) t
0 otherwise.

(4)
From power series analysis [15], we can express the smooth-

ing factor β in terms of N time periods (scheduling decisions)
as: β = 2

N+1 . This means that an upload decision is forgotten
after N rounds.

What is the best choice for N then? Let us assume that a
considered seed S has, at most Γ connections (in BitTorrent,
Γ = 80). Let us also assume a worse-case scenario, where
the seed’s neighborhood is made of leechers that do not serve
each other. When the peerset is static (peers are not coming
and leaving) then the seed can schedule the same piece i at
most Γ times, one for each leecher, since peers do not ask
again for a piece they already have.

If the seed happens again receive a request for piece i, it
means the request is coming from a new leecher which joined
the overlay after the first time i was uploaded by the seed.
So it is fine to upload that piece again. In other words, if a
seed has received Γ requests for the same piece, the (Γ+1)th

request should be counted as fresh and so, we set β = 2
Γ+1 so

the oldest upload decision for this piece gets to be forgotten.
We will see from our simulations the value of β should

depend on the level of burstiness of the system. The challenge
here is that the scheduling is an online process. If the seed does
not know in advance how dynamic the peerset is, a static value
of β may only work for certain cases. For classic BitTorrent
overlays, where burstiness values are not extremely high [8],
a value of β = 2

80+1
∼= 0.0247 is a good heuristic.

Notice that 0 ≤ β ≤ 1 and that, the difference between
BitTorrent and PFSβ=1 (no memory of the history at all),
is that PFSβ=1 serves the pieces requested the most in each
round, considering all its connections (peerset), while seeds in
BitTorrent apply FCFS and do round robin over the leechers
in its peerset. Moreover, if the peerset of the seed is static,
β → 0, i.e. remembering the whole history, is the best choice.

A more elaborate solution would be to use a control
approach to estimate β. We leave this approach for future
work.

C. Our PFS Algorithm

In this subsection we present formally the Proportional Fair
Seed Scheduling. We have implemented this algorithm in a
new file sharing client that we call BUTorrent [1].

Input: Γ (seed connections), Trc (re-choking interval),
T (timeout for collecting requests).
Output: Set of M pieces to schedule per round.
while Seed S has connected leechers do

if Rechoking interval time Trc expires then
foreach Leecher i in peerset of S do

unchoke i;
end
while S receives requests for pieces within T do

update vector of requests R = {r1, . . . , rp}
foreach q = 1, . . . , M do

S sends piece q (seed applies FCFS);
update R and τ ;

end
end
if collected requests > M then

β ← 2
Γ+1

foreach k = 1, . . . , M do
i∗k ← maxi

{
ri

τi+ε

}
(break ties at random)

ri∗k ← ri∗k − 1,
foreach j = 1, . . . , p do

if j = i∗k then
Ij = 1 ;

else
Ij = 0 ;

end
τj ← β Ij + (1-β) τj ;

end
end
S chokes the N −M peers whose request
were not scheduled ;

end
Keep serving leechers which requested i = i∗k ;
Update R and τ as above every uploaded piece;

end
end

Algorithm 1: Seed Scheduling in BUtorrent [1].

In order to have a global view, the seed unchokes every
leecher in its peerset, allowing them to request their LRF .
Then a timer T is started. The first M requests (in BitTorrent
and in our experiments M = 4) are served by the seed as
BitTorrent does (FCFS). This is because the collection of
requests may take some time due to congestion in the underlay
network, and we do not want to waste seed uploading capacity.
Moreover, some of the Γ requests the seed is expecting may
never arrive. That is why we need the timer T : leechers send
their “interested” messages to all their neighborhood peerset,
so it is possible that in the time between the “interested”
message arrives at the seed and the unchoke message is sent by
the seed, a leecher may have started downloading its remaining
pieces from other peers, having nothing else to request from
the seed.

When the timer T expires, PFS is run on the collected
requests. Since the seed upload capacity has to be divided by

M , if the collected requests are less than M there is no choice
to make and so no reason to apply PFS. After choosing
the best PFS pieces, up to M other uploads begin, namely,
the seed does not interrupt the upload of the first M pieces
requested during the time T . Lastly, the N −M requests that
were not selected, are freed by choking the requesting peers
again. After the PFS decision, for a time Trc the M peers
whose requests were selected are kept unchoked and so they
may request more pieces. So M PFS decisions are made
every Trc. 3

V. ANALYTICAL RESULTS

In this section we show analytically that scheduling in the
initial phase of a torrent is crucial to boosting swarming
effects. Starting from the fluid model in [4], we also show
how seed scheduling can be captured during the initial phase
by the effectiveness of file sharing (η), defined in Section III,
that our algorithm improves, therefore reducing downloading
time.

A. Expected Number of Wasted Uploads in initial phase

Under our assumptions, we will show that there is, on
average, a wasted upload per leecher in the seed neighborhood.

During the initial phase of the torrent, we assume, because
of the tit-for-tat mechanism, that leechers do not serve each
other. Because the probability that they are interested in
one another is very low. Since during initial phases leechers
are unlikey to find interesting pieces at other leechers if
optimistically unchoked by those leechers, we also ignore opti-
mistic unchockes in this analysis. Of course these assumptions
become invalid as the torrent approaches steady state since
leechers are more and more likely to be interested in each
other.

We now compute the expected number of times a seed uses
its upload capacity to upload the same piece in a torrent with L
leechers, p pieces and one seed. During the initial phase almost
all pieces are equally rare, so for the LRF algorithm it is
just a random selection of pieces. We consider a discrete time
scenario4, where the time is given by the current scheduling
round. If we define a random variable Xi = {0, 1}, where
Xi = 1 if and only if a pair of leechers have requested the
same piece at round i, the expected number of collisions for
a given leecher during its download of all p pieces from the
seed is given by:

E

[
p∑
i=1

Xi

]
=

p∑
i=1

E[Xi] =

p∑
i=1

(0 · P (Xi = 0) + 1 · P (Xi = 1)) =
p∑
i=1

1
p

= p · 1
p

= 1

3The choice of Trc is not trivial and it should not be static as overlays are
not. We leave the exploration of this parameter for future work. BitTorrent
implementation has it set to 10 seconds.

4This hypothesis of the time discrete is important or the probability of
having the same request at the same instant goes to zero.

For simplicity, we assume here that requests are independent
and uniformly distributed. This is in general not true, since if
a peer got a piece at round i, at round i + 1, the peer will
have one less piece to request. Relaxing this, the number of
collisions will be even higher as one can imagine. Since we
assume the independence of the pieces’ s requests, we have
that each leecher requests all its p pieces in p rounds. We
analyze the collisions during this rounds with the following:

Theorem (Collision bounds): The expected number of
collisions for L leechers in the first p rounds is at least(
L
2

)
−
(
L
2

)2 1
p .

Proof:
Given a single scheduling round l we define a random

variable X l
ij , as

X l
ij =

{
1 collision between leecher i and j in l
0 otherwise

For a single round, since the random variable is binary, we
have that

E[X l
ij] = Pr[X l

ij] = (5)

=
∑p
n=1 Pr[i requests n] · Pr[i requests n |j requests n] =

=
p∑

n=1

1
p
· 1
p

= p · 1
p
· 1
p

=
1
p
. (6)

A collision at each round can happen for each possible
combination of i and j. For the Bonferroni inequalities [16],
given n events, A1 . . . An, we have in general:

Pr[Al1∪ . . .∪Aln] ≥
n∑
k=1

Pr[Ali]−
∑

k,m;k 6=m

Pr[Alk∩Alm] (7)

So if we map, for a round l an event Alk with a possible
collision even between leecher i and j, we have that:

Pr[Akl] = E[
L−1∑
i=1

L∑
j=i+1

Xij] =

L−1∑
i=1

L∑
j=i+1

E[Xij] =
L−1∑
i=1

L∑
j=i+1

1
p

=
(
L

2

)
1
p
. (8)

Notice also that:

Pr[X l
i,j = X l

i′ ,j′
] =

1
p
· 1
p

=
1
p2
.

And so, the second term of the Bonferroni inequality is:∑
k,m;k 6=m

Pr[Alk ∩Alm] =
L−1∑
i=1

L∑
j=i+1

L−1∑
i
′
=1

i 6=ii∨j 6=j
′

L∑
j′=i′+1

1
p2

=

(9)

=
1
p2
·
(
L

2

)[(
L− 1

1

)
·
(
L

1

)
+
(

1
1

)
·
(
L− 1

1

)]
=

1
p2
·
(
L

2

)
· [(L− 1)L+ L− 1] =

(
L

2

)
· [L2 − 1].

But since
(
n
k

)
≤ nk, we have:(

L

2

)
· [L2 − 1] ' L2 · L2 ≥

(
L

2

)2

≥ 1
p2
·
(
L

2

)2

. (10)

So summing up all the rounds we have that the expected
number of collisions E[X] bounded as follow:

E[X] ≥
∑
p

(
L

2

)
· 1
p
−
∑
p

(
L

2

)2

· 1
p2

=
(
L

2

)
−
(
L

2

)2

· 1
p

(11)

Notice that when p � L then E[X] '
(
L
2

)
. As discussed

in Section III, every collision is a potential waste of one slot
of seed upload capacity. If the leechers requesting the same
piece serve each other, they could have exchanged the piece
maximizing the swarming effect and so minimizing the time
to download the whole file.

B. Effectiveness during initial phases

In this section we extend the Qiu-Srikant model [4] to
capture the initial phase of a torrent, modeling the seed
scheduling effect through one of its crucial parameter, the
effectiveness of file sharing η, defined in Section III. In
particular, in [4] there is the assumption that each leecher has
a number of pieces uniformly distributed in {0, . . . , p − 1},
where p is the number of pieces of the served file.

This assumption is invalid in the initial phase of a torrent.
Consider Figure 3: 350 leechers join at once a torrent for
downloading a file of 400MB with only one seed. We stop the
simulation before leechers can possibly reach the steady state.
We notice that (i) the number of pieces each downloaders has
in the initial phase of a torrent follows a power law distribution
and (ii) using the proportional fair scheduling, the skewness
α of the Zipf distribution is higher (α = 1.4 for a first come
first serve ala BitTorrent and α = 1.9 for our PFS). The
higher is alpha, the higher is the probability that the a peer
has interesting pieces for its neighbors, and so the higher are
the swarming effects. Notice how for 400MB, with a piece
size of 256 we have 1600 pieces, but the probability of having
more than 100 is less than 0.1. More precisely, the simulation
is being stopped after 1600 seed scheduling decisions, i.e.,
the time needed from an ideal round robin seed scheduling to
inject the whole content.

The Qiu-Srikant fluid model captures the evolution of seeds
y(t) and leechers x(t) in the overlay. Let λ be the new leechers
arrival rate, c and µ the download and upload bandwidth of
all leechers, respectively, θ the rate at which downloaders
abort the download, γ as the seed abandon rate and η as
effectiveness. From [4] we have:

{
dx
dt = λ− θx(t)−min{cx(t), µ(ηx(t) + y(t))},
dy
dt = min{cx(t), µ(ηx(t) + y(t))} − γy(t).

(12)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

First Come First Serve

Proportional Fair Scheduling

0 10 20 30 40 50 60 70 80 90 100

10
0

10
1

10
!3

10
!2

10
!1

10
0

Pieces

P
ro

b
ab

il
it

y
 o

f
h

av
in

g
 a

 p
ie

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
b

ab
il

it
y

 o
f

h
av

in
g

 a
 p

ie
ce

Fig. 3. The number of pieces each downloaders has in the initial phase of
a torrent follows a power law distribution. In particular, the skewness α of
the Zipf distribution is α = 1.4 for a first come first serve ala BitTorrent and
α = 1.9 for our PFS.

Our experiments revealed that the number of pieces that
a leecher has in initial and churn phases is not uniformly
distributed but follows a power law distribution. For lack of
space, we do not show such experiments. So we have:

η = 1− P
{

leecher i has no
piece useful for its peerset

}
,

and so for two leechers i and j:

η = 1− P
{

leecher j needs no
piece from leecher i

}k
= 1− P k,

where:

P = P
{

leecher j has all pieces of leecher i
}
.

Thus:

P =
1
c2

p−1∑
nj=1

nj∑
ni=0

1
(ni nj)α

·

(
p− ni
nj − ni

)
(

p
nj

) ; (13)

where c =
∑p
i=1 i

−α is the normalization constant of the Zipf
distribution. Hence we obtain: From a property of the binomial
coefficient which follows by the definition we have that:(

a
b

)
=
(

a
a− b

)
so in our case(

p− ni
nj − ni

)
=
(

p− ni
p− ni − nj + ni

)
=
(
p− ni
p− nj

)
;

hence,

P =
1
c2

p−1∑
nj=1

nj∑
ni=0

1
(ni nj)α

· (p− ni)! nj !
(nj − ni)! p!

(14)

and so:

η = 1−

 1
c2p!

p−1∑
nj=1

nj !
nαj
·
nj∑
ni=0

(p− ni)!
nαi (nj − ni)!

k

. (15)

1) Leechers: In Figure 4, we present the evolution of the
number of leechers (x(t) in Equation 12). Admissible values
of η depend on the typical values of skewness α ∈ [1, 4],
plugged into Equation (15). Results in this section are obtained
under the stability conditions described in [4]; in particular,
θ = 0.001, γ = 0.2, c = 1, µ = 1 and λ = {0, 2, 5}
representing different levels of burstiness of the arrival process
of new peers. Starting with one seed and 350 leechers, i.e.
x(0) = 350 and y(0) = 1, set as in our later simulations, we
plot the number of leechers in the system to study the impact
of λ and the effectiveness η of file sharing.

The analytical model provides the insight that for static
peersets (λ = 0), the improvement we can achieve is limited
even if we bring effectiveness to one through judicious seed
scheduling. When burstiness increases, even a small improve-
ment in η is significant in terms of reduction in total time
to download. Note that shortest downloading time implies a
smaller number of leechers in the system.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N
u
m

b
er

 o
f

L
ee

ch
er

s
in

 t
h
e

S
y
st

em

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

Time [s]

N
u
m

b
er

 o
f

L
ee

ch
er

s
in

 t
h
e

S
y
st

em

Burstiness Impact on Effectiveness

! = 2

! = 0

! = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

! = 0.8

! = 0.9

! = 1

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

Time [s]

N
u
m

b
er

 o
f

L
ee

ch
er

s
in

 t
h
e

S
y
st

em

Burstiness Impact on Effectiveness

! = 2

! = 0

! = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

! = 0.8

! = 0.9

! = 1

Fig. 4. Number of leechers in the system decreasing faster over time indicates
a shorter downloading time. We study here the impact of different rate of
arrival λ on the effectiveness η of file sharing. We notice how for high arrival
rate, higher effectiveness has a higher impact on the completion time of the
initial 350 leechers.

2) Seeds: In Figure 5, 6 and 7 we show, the impact of
the effectiveness on the evolution of the number of seeds in
the system (y(t) in Equation 12). In Figure 5 three different
constant leechers’ arrival rate are represented. In Figure 6,
we tested the impact of effectiveness for a random leechers
arrival rate with average λ = 10 and in Figure refseedEvo-
lutionEffectiveessBigBurst we show the seed evolution with

random leechers’ arrival rate and average λ = 30. The
common results is that, independently from the level of peers
arrival (burstiness), at the beginning of the torrent — the
initial phase — higher values of effectiveness increment the
number of seeds present at the same time in the system,
namely, more leechers complete faster their download for
higher effectiveness.

10
1

10
2

10
3

0

10

20

30

40

50

60

Time [s]

N
u
m

b
er

 o
f

S
ee

d
s

in
 t

h
e

S
y
st

em

Burstiness Impact on Effectiveness (Seeds Evolution)

! = 5

! = 2

! = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

! = 0.8

! = 0.9

! = 1

Fig. 5. Impact of effectiveness η on the evolution of the number of seeds
in the system. Leechers departs when their download is complete. Constant
leechers’ arrival rate λ = {0, 2, 5}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

! = 1

! = 0.9

! = 0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

! = 1

! = 0.9

! = 0.8

10
1

10
2

10
3

0

10

20

30

40

50

60

Time [s]

N
u

m
b

er
 o

f
S

ee
d

s

Burstiness Impact on Effectiveness (Seed Evolution)

Fig. 6. Impact of effectiveness η on the evolution of the number of seeds
in the system. Leechers departs when their download is complete. Random
leechers’ arrival rate with average λ = 10.

3) Skewness Impact on Effectiveness: As we showed in
Figure 3, during the initial phase of a torrent the number
of pieces a leecher has, follows a power law distribution.

10
1

10
2

10
3

15

20

25

30

35

40

45

50

55

60

65

Time [s]

N
u
m

b
er

 o
f

S
ee

d
s

Burstiness Impact on Effectiveness (Seeds Evolution)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

! = 1

! = 0.9

! = 0.8

Fig. 7. Impact of effectiveness η on the evolution of the number of seeds
in the system. Leechers departs when their download is complete.Random
leechers’ arrival rate with average λ = 30.

As the torrent approaches steady state, the skewness of the
Zipf distribution grows until, it became reasonable to assume
a uniform distribution among the pieces a leecher has. In Fig-
ure 8 we show the impact of the skewness on the Efectinvess,
having the average outdegree of a node k as parameter. k
is measuring the number of active connections (downloads)
a leecher maintains during its lifetime in the torrent. The
first observation coming from Figure 8 is that, fixing k, the
effectiveness grows with the skewness; this confirm that during
a life time of a torrent, the skewness grows. The second
observation is that the effectiveness grows with the average
number of active connection a leecher has, namely, when
a leecher on average is unchoked by more peers, it has
more chance to get more pieces, therefore the effectiveness
increases.

VI. EXPERIMENTAL RESULTS

We performed a series of experiments to assess the perfor-
mance of our Proportional Fair Seed Scheduling, both using
the GPS simulator [17], creating our own random physical
topologies, and over PlanetLab [18]. Overlay topologies are
created by the tracker, which randomly connects together a
maximum of eighty peers. In all the simulation experiments,
we set a homogeneous bandwidth of 2 Mbps. For our Planet-
Lab testing we have implemented PFS on a real client [1],
starting from the mainline instrumented client [19], and we left
unconstrained the link bandwidth and measured, on average,
about 1.5 Mbps. In all our experiments, there is only one seed
and leechers leave when they are done. This choice of one
seed was made to show results in the worse case scenario. In
the following plots, 95% confidence intervals are shown.

1 1.5 2 2.5 3 3.5 4
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Skewness Impact on Effectiveness (outdegree k as parameter)

Skewness (!)

E
ff

ec
ti

v
en

es
s

("
)

k = 1

k = 1.5

k = 2.5

k = 3

k = 4

k = 2

Fig. 8. For highly connected peersets (bottom curve only one neighbor, top
curve 101 neighbors), the skewness α has less impact on the effectiveness
(η) when the number of average active connection increase. The maximum
number of connection is kept to 80 as in the original version of the BitTorrent
protocol.

A. Simulation Experiment 1: Average Downloading Time

Figure 9 shows the average downloading time of a 400
MB file for an overlay of 350 peers for different values of
Burstiness (defined in Section III). For PFS, we set the
forgetting factor β to 0.02 as explained in Section IV. We
also show performance of Global Rarest First (GRF), where
each peer is connected to every other peer. GRF serves as
lower bound on the average download time. We observe that
PFS improves up to 25% the leecher average downloading
time, depending on the level of burstiness in arrival process.

To obtain a value of burstiness of 200 for example, we
have used a peak rate of 10 meaning that, 10 leechers join
the overlay in 1 second, for a simulation period of 7000
seconds. In this way we have an average arrival rate of 350
peers / 7000 s = 0.05 peers/s. With a peak rate of 10 and
average arrival rate of 0.05, we obtain a burstiness level of
B = peak

average = 10
0.05 = 200. When the burstiness level is

high, leechers have too small peersets to make good use of
swarming. When instead the burstiness is too low for the
chosen value of β, then forgetting too fast has the same
effect as not remembering at all (as BitTorrent does). Even
for situations where there is no significant gain in time to
download (the first point of Figure 9 shows burstiness = 1),
Section 11 shows that it is still beneficial to use PFS to reduce
seed utilization.

B. Simulation Experiment 2: Seed with Global View

In Figure 10 we show results for a slight variation of
the PFS algorithm — the seed is connected with, and so
unchokes, all the leechers in the network. We see that the
average time to download for different level of burstiness,

200 300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Burstiness Impact on Average Time to Download (95% conf.int.)

Burstiness

A
v

er
ag

e
T

im
e

to
 D

o
w

n
lo

ad
 [

s]

BitTorrent

Proportional Fair Scheduling

Global Rarest First

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
349

349.2

349.4

349.6

349.8

350

350.2

350.4

350.6

350.8

351

N
u

m
b

e
r

o
f

L
e

e
c
h

e
rs

 i
n

 t
h

e
 S

y
s
te

m

First Come First Serve

FCFS

Fig. 9. Average download time for different burstiness values: 350 peers
are sharing a 400 MB file. Leechers always depart when they are done with
their download. The proportional fair scheduling guarantees up to 25% of
improvement over the First Come First Serve approach used by the BitTorrent
protocol.

0 100 200 300 400 500 600 700 800 900
3000

4000

5000

6000

7000

8000

9000

Burstiness Impact on Average Time to Download (95% conf.int.)

Burstiness

 A
v
er

ag
e

T
im

e
to

 D
o
w

n
lo

ad
 [

s]

200 300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Burstiness Impact on Average Time to Download (95% conf.int.)

Burstiness

A
v

er
ag

e
T

im
e

to
 D

o
w

n
lo

ad
 [

s]

BitTorrent

Proportional Fair Scheduling

Global Rarest First

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
349

349.2

349.4

349.6

349.8

350

350.2

350.4

350.6

350.8

351

N
u
m

b
e
r

o
f
L
e
e
c
h
e
rs

 i
n
 t
h
e
 S

y
s
te

m

First Come First Serve

FCFS

Fig. 10. Average download time for different burstiness values and seed
with full view over the peerset. 350 peers sharing a 400 MB file. Leechers
always depart when they are done with their download. The proportional fair
scheduling guarantees up to 25% of improvement over the First Come First
Serve approach used by the BitTorrent protocol.

with exactly the same simulation setting of the experiment
described in Figure 9, has improved slighly.

A second observation is that, for unitary value of burstiness,
the average downloading time does not change significantly
regardless the scheduling algorithm. Section VI-C shows why
it is useful to adopt a proportional fair scheduling strategy at
the seed even for low level of burstiness.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
349

349.2

349.4

349.6

349.8

350

350.2

350.4

350.6

350.8

351

N
u
m

b
e
r

o
f
L
e
e
c
h
e
rs

 i
n
 t

h
e

 S
y
s
te

m

First Come First Serve

FCFS

100 200 300 400 500 600 700 800 900
10

20

30

40

50

60

70

80

Burstiness = 1

File size [MB]

S
ee

d
 U

ti
li

za
ti

o
n

BttTorrent

Proportional Fair Scheduling

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
349

349.2

349.4

349.6

349.8

350

350.2

350.4

350.6

350.8

351

N
u
m

b
e
r

o
f
L
e
e
c
h
e
rs

 i
n
 t
h

e
 S

y
s
te

m

First Come First Serve

FCFS

100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

Burstiness = 25

File size [MB]

S
ee

d
 U

ti
li

za
ti

o
n

BitTorrent

Proportional Fair Scheduling

(a) (b)

Fig. 11. Seed Utilization with 350 peers. Seed applying PFS is less congested due to better piece distribution. (a) Burstiness = 1. (b) Burstiness = 25. Note
the different scale.

C. Simulation Experiment 2: Seed Utilization

Figure 11 shows the utilization (defined in Section III) of
the unique seed present for different file sizes and unitary
burstiness value for case (a) and 25 in case (b). We notice
how:

• with PFS, seeds are less congested by leechers’ requests,
• since leechers leave when they are done, a lot more

requests are made to the seed at the end of the torrent
when fewer connections are active.

Leechers find themselves alone at the end thus they all ask
the seed being the only one left with interesting content. So
seeds using PFS receive less requests due to better piece
distribution. Moreover, lower seed utilization means higher
effectiveness and so delay in reaching the phase where leechers
are alone with the seed, (iii) the seed utilization is decreasing
monotonically with the file size. When file size increases, there
is more time for leechers to use swarming. Overall, requests
to the seed are less if seed scheduling is smarter. For static
peerset (every peer joins at the same simulation time), the seed
is the only source and so it gets many requests, but many less
if the scheduling algorithm is smarter (Figure 11(a)). For an
higher value of burstiness instead (Figure 11(b)), we notice
smaller improvement of the seed utilization because smaller
groups of peers at the time are downloading the file. In fact,
we also notice fewer requests to the seed.

We conclude that, even for static cases or small values
of burtiness that do not lead to a significant improvement
in downloading time, a better seed scheduling guarantees a
better seed utilization. Viceversa, we observed that, when the
burstiness is high, we have less improvement in seed utilization
but the average time to download is smaller due to the more
effective piece distribution.

D. Planetlab Experiment
To validate our results, we tested our BUtorrent on Planet-

Lab. We run simultaneously the scheduling algorithms we wish
to compare to minimize the difference in bandwidth available
to different experiments.

PlanetLab Results
Protocol Burstiness ADT [s] Improvement

BitTorrent
No 839 –
Low 1328 –
High 2183 –

BUtorrent
No 733 12.6 %
Low 1120 15.6 %
High 2171 0.5 %

BUtorrent (β = 0.02)
No 809 3.5 %
Low 1031 22.3 %
High 1924 11.8 %

TABLE I
PLANETLAB EXPERIMENT WITH A PEERSET OF 350 ACTIVE LEECHERS

AND A UNIQUE INITIAL SEED. IN DYNAMIC OVERLAYS THE FORGETTING
FACTOR β BRINGS IMPROVEMENT IN AVERAGE DOWNLOADING TIME

(ADT).

We ran a set of experiments with 350 PlanetLab nodes
sharing a 400 MB file and we report the results in table VI-D.
We found that BUtorrent improves the average download time
by 11.8% over BitTorrent in static overlays (no burstiness),
22.3% improvement for low burstiness (B = 400) and 12.6%
improvement for high burstiness (B = 800).

We show the cumulative distribution function of down-
loading time for static (Figure 12) and dynamic peersets
(Figure 13). In Figure 12, a file of 400 MB is shared among
the 350 leechers in a static peerset case. As always in our
experiments, leechers departs after their download is complete.
Notice how the forgetting factor β decrease performance.
Notice also that there is not much to improvement for the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Downloading Time [s]

First Come First Server
Proportional Fair Scheduling

Proportional Fair Scheduling (!=0.025)

Fig. 12. Cumulative Distribution Function (CDF) of the downloading time
for 350 leechers downloading a file of size 400 MB and joining the overlay
at once (no burstiness). Leecher depart when they finish their download.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Downloading Time [s]

First Come First Server
Proportional Fair Scheduling

Proportional Fair Scheduling (!=0.025)

Fig. 13. Cumulative Distribution Function (CDF) of the downloading time
for 350 leechers downloading a file of size 400 MB. Burstiness value of 400.
Leechers depart when they finish their download.

group of leechers, with lower download capacity, that are
rarely unchoked by other leechers.

In Figure 13 we introduce a burstiness level of 400. We can
see how that the forgetting factor plays a pretty crucial rule
in improving the downloading time.

For such dynamic scenarios, the effect of the slow peers
have less impact because in burstiness cases, smaller group
of peers must collaborate using swarming to finish as fast as
possible. Namely, when there is a small group of peers to
download from, leechers do not have much choice when they
apply the peer selection algorithm.

Notice also that the average downloading time is higher
when the peerset is dynamic because many leechers arrive
later in the torrent.

VII. RELATED WORK

Swarming techniques have received strong interest by the
research community, peer-to-peer traffic being a consistent
amount of the whole internet traffic. “Between 50 and 65%
of all download traffic is P2P related. Between 75 and 90%
of all upload traffic is P2P related” [20]. The most popular
protocol using swarming is BitTorrent [2].

A. Improving BitTorrent

Many proposals on how to improve the BitTorrent protocol,
by modifying the behavior of leechers, have appeared in
literature. Recent work [21] argues for greedy strategies, we
cite BitTyrant [22] as an example. Other work [3] considered
game theoretical approaches. Our focus is only on the seeds
without modifying leechers.

Smartseed [5], [14] applies some strategies at the seed
to boost performance. However, Smartseed is not backwards
compatible with the BitTorrent protocol, as opposed to our
seed scheduling proposal that keeps every other fundamental
algorithm of BitTorrent intact. Moreover, Smartseed does not
take into account dynamic scenarios, one of the key aspects of
our results. Another unpublished approach involving the seed
is given by the superseed mode of Bittornado [23]. The goal of
superseed is to enable under provisioned seeds to effectively
inject content.

B. Churn and transient phases

More generally, the authors in [24] show strategies for
selecting resources that minimize unwanted effects induced
by churn phases. In our case the resources are the pieces that
the seed has to schedule.

Scheduling for BitTorrent is also discussed by Mathieu
and Reynier in [7], which analyzes starvation in flash-crowd
phases. They focus on the end game mode, where leechers
are missing their last pieces. We take a more system-oriented
approach that analyzes initial phases.

Measurement studies were also carried out, with focus on
BitTorrent transient phases [12]. The goal is to understand,
given a peer-to-peer system, how quickly the full service
capacity can be reached after a burst of demands for a
particular content, namely, how long the system stays in the
transient phase. We studied initial phases using the fluid model
adopted by Qiu and Srikant in [4]. We fixed their notion of
effectiveness to capture seed scheduling effects during initial
phases.

VIII. CONCLUSION

In this work we considered the piece selection of content
distribution protocols ala BitTorrent. We studied analytically
and we provided simulation and real evidence that improving
the scheduling algorithm at the seed can be crucial to shorten
the initial phase of a torrent therefore reducing the average
downloading time of the leechers. Our idea is to give seeds a
more global view of the system supporting and not substituting
the Local Rarest First piece selection algorithm used by
BitTorrent like protocols. We devised our seed scheduling

algorithm, inspired by the Proportional Fair Scheduling [13],
implementing it into a real file sharing client that we call
BUtorrent [1]. We found in simulation and PlanetLab ex-
periments that BUtorrent, in dynamic overlays, increases the
effectiveness of file sharing, reduces the congestion of requests
at the seed improving up to 25% the average downloading time
over BitTorrent.

IX. ACKNOWLEDGMENT

We are grateful to Ilir Capuni and Heiko Röglin for their
valuable comments.

REFERENCES

[1] [Online]. Available: http://csr.bu.edu/butorrent
[2] B. Cohen, “Incentives build robustness in bittorrent,” bittorrent.org,

Tech. Rep., 2003.
[3] D. Levin, K. Lacurts, N. Spring, and B. Bhattacharjee, “BitTorrent is an

auction: analyzing and improving BitTorrent’s incentives,” in SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4. New York, NY, USA: ACM,
2008, pp. 243–254.

[4] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in SIGCOMM ’04: Proceedings
of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM,
2004, pp. 367–378.

[5] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and im-
proving a bittorrent networks performance mechanisms,” in INFOCOM,
2006.

[6] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” J. of Scheduling, vol. 11, no. 2, pp. 105–120,
2008.

[7] F. Mathieu and J. Reynier, “Missing piece issue and upload strategies
in flashcrowds and p2p-assisted filesharing,” in Telecommunications,
2006. AICT-ICIW ’06. International Conference on Internet and Web
Applications and Services/Advanced International Conference on, 2006,
p. 112.

[8] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra, and
L. Garces-Erice, “Dissecting bittorrent: Five months in a torrent’s
lifetime,” in Proceedings of the 5th Passive and Active Measurement
Workshop, 2004.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks.” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.

[10] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang, “Improving traffic locality in bittorrent via biased neighbor
selection,” in ICDCS ’06: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems, 2006.

[11] [Online]. Available: http://aws.amazon.com/s3/
[12] X. Yang and G. de Veciana, “Service capacity of peer to peer networks,”

in Proceedings of 23th IEEE International Conference on Computer
Communications (INFOCOM 2004), 2004.

[13] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing
algorithms under general conditions,” Wireless Communications, IEEE
Transactions on, vol. 3, no. 4, pp. 1250–1259, July 2004.

[14] P. Michiardi, K. Ramachandran, and B. Sikdar, “Modeling seed schedul-
ing strategies in BitTorrent,” in Networking 2007, 6th IFIP international
conference on Networking, May 14 -18, 2007, Atlanta, USA — Also
published as LNCS Volume 4479, May 2007.

[15] J. C. B. and H. Burkill, A Second Course in Mathematical Analysis.
Cambridge University Press, 2002.

[16] K. Dohmen, Improved Bonferroni Inequalities via Abstract Tubes.
Springer, 200.

[17] W. Yang and N. Abu-Ghazaleh, “Gps: a general peer-to-peer simulator
and its use for modeling bittorrent,” in Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems, 2005. 13th IEEE
International Symposium on, 2005, pp. 425–432.

[18] B. N. Chun, D. E. Culler, T. Roscoe, A. C. Bavier, L. L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay testbed for
broad-coverage services,” Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[19] http://www-sop.inria.fr/planete/Arnaud.Legout/Projects/.

[20] “http://torrentfreak.com/peer-to-peer-traffic-statistics/.”
[21] D. Carra, G. Neglia, and P. Michiardi, “On the impact of greedy

strategies in bittorrent networks: the case of bittyrant,” in In Proc. of
IEEE P2P, 8th International Conference on Peer-to-Peer Computing,
RWTH Aachen University, SEPTEMBER 8th-11th, 2008.

[22] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent?” in Proceedings of
4th USENIX Symposium on Networked Systems Design & Implementa-
tion (NSDI 2007). USENIX, April 2007.

[23] [Online]. Available: http://bittornado.com/docs/superseed.txt
[24] B. P. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in distributed

systems,” in SIGCOMM ’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2006, pp. 147–158.

