
DNN Split Computing:
Quantization and Run-length Coding are Enough

Damiano Carra
University of Verona, Italy

damiano.carra@univr.it

Giovanni Neglia
Inria, Université Côte d’Azur, France

giovanni.neglia@inria.fr

Abstract—Split computing, a recently developed paradigm,
capitalizes on the computational resources of end devices to
enhance the inference efficiency in machine learning (ML)
applications. This approach involves the end device processing
input data and transmitting intermediate results to a cloud server,
which then completes the inference computation. While the main
goals of split computing are to reduce latency, minimize energy
consumption, and decrease data transfer overhead, minimizing
data transmission time remains a challenge. Many existing
strategies involve modifying the ML model architecture which
ultimately requires resource-intensive retraining.

In our work, we explore lossless and lossy techniques to
encode intermediate results without modifying the ML model.
Concentrating on image classification and object detection—
two prevalent ML applications—we assess the advantages and
limitations of each technique. Our findings indicate that simple
tools, such as linear quantization and run-length encoding,
already accomplish considerable information reduction, which
is on par with more complex state-of-the-art techniques that
necessitate model retraining. These tools are computationally
efficient and do not burden the end device.

I. INTRODUCTION

In recent years, the continuous growth of computational
power has facilitated the development of increasingly complex
Deep Neural Network (DNN) models. The accuracy and preci-
sion achieved in various tasks, such as image classification or
object detection, are approaching, if not surpassing, human
performance levels [1]. However, such model complexity
demands resources that may not always be available on the
device executing the task of interest [2].

For example, in image classification, the device capturing
the photo may be a smartphone with limited computational,
memory, and energy capabilities. Consequently, the image is
sent to the cloud, where dedicated servers perform the task
and send the response back to the device. An alternative to
this scenario, commonly referred to as Split Computing [3],
[4], [5], involves the device executing an initial portion of
the DNN and sending the intermediate result—represented as
tensors—to the cloud for processing to obtain the final output.

Split computing is beneficial for several reasons, including
the ability to reduce latency, energy consumption, and data
transfer overhead. In particular, if the split point is chosen
carefully, the amount of data sent over the network may be less
than the input data (e.g., the input image size) [2]. In addition,
the scheme leverages the device resources, relieving the cloud
(where the resources are shared among various tasks) of some

of the computation. Finally, transmitting intermediate tensors
may protect input data privacy, with theoretical guarantees
when differential-privacy-like techniques are used [6].

Existing literature has investigated split computing, consid-
ering the characteristics of different state-of-the-art architec-
tures [2], [7]. The ideal split point, in terms of minimizing
data transmission size, may often lie within the later lay-
ers. This unfortunately necessitates the device to shoulder a
significant portion of the computational load. Some studies
have then proposed introducing a bottleneck for encoding
the intermediate tensors of the initial layers to reduce the
data transmission [4], [5]. However, this solution necessitates
to carefully design a suited bottleneck and then retrain the
new model. Moreover, most studies have assumed that tensor
coefficients are transmitted as is [2], [8], overlooking whether
the statistical characteristics of these coefficients render them
suitable for effective compression or quantization. Only a few
papers have noted that moderate levels of quantization do not
impact the final accuracy [4], [9].

In this work, we systematically examine various lossless
and lossy techniques for encoding the intermediate tensor of a
DNN and their potential impact on final accuracy. Our focus
is on solutions that do not require any modifications to the
DNN architecture; instead, they can be applied to pre-trained,
out-of-the-box, state-of-the-art architectures and remain viable
if model parameters are updated to prevent progressive quality
deterioration [10].

We consider well-established techniques such as quantiza-
tion, differential coding, and run-length coding, which are
prevalent in different areas of information communication
or representation. We also explore other techniques, like the
identification of the most significant coefficients through Grad-
CAM, which are specific to the field under consideration.
Although these techniques have been used to investigate the
inner workings of DNNs, they can also be employed to explore
potential data compression. To our knowledge, no previous
study has analyzed them collectively, assessing their impact
on the amount of data transmitted and the accuracy of the
task to be accomplished.

We consider two tasks: image classification and object
detection for video sequences. In image classification, each
instance of the task can be treated as independent (e.g.,
the device needs to classify a single picture), while object
detection for videos allow us to examine potential temporal



correlations among tensors related to consecutive frames.
Our results reveal that extreme quantization—using merely

three bits per coefficient—effectively reduces the data to be
transmitted marginally affecting the accuracy of the final
output. Moreover, the abundance of zeros allows for run-
length encoding, further decreasing the data size. These low-
complexity techniques—requiring only two passes on the
tensor to produce the coded data and one pass for decoding—
achieve a compression ratio comparable to that of more
complex bottleneck approaches, which necessitate retraining
the DNN. At the same time, we find that there is minimal or
no spatial or temporal correlation within and between tensors,
limiting the potential benefits of compression techniques that
rely on such correlations.

The remainder of the paper is organized as follows. In
Section II, we provide background information and discuss
related work. In Section III, we investigate the spatial and
temporal correlation of the intermediate tensors, while in
Section IV, we explore Grad-CAM. We discuss quantization
in Section V and our coding approach in Section VI. Finally,
we conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

We consider two machine learning (ML) applications,
namely, image classification and object detection, in which
tasks are completed with a single forward pass. This allows
computation to be resumed at any layer using the input
tensor for that layer. For object detection, the DNN (such as
YOLO [11]) possess a more intricate structure, involving the
concatenation of different layers. Despite this complexity, the
first part of the architecture consists of a sequence of layers
that can be utilized as potential split points.

Split computing has garnered significant attention in recent
years, with a growing number of works in this area. In [7],
the authors present a survey on recent developments. Here, we
discuss some representative studies to highlight the limitations
of previous works.

Both Neurosurgeon [2] and JointDNN [8] explore the
optimal split point by taking into account the total delay,
which encompasses both processing time and transmission
time. Their findings indicate that the last layers of the DNN
are the most suitable for splitting. However, such a split would
require the device to carry out the majority of the work, and as
DNN architectures grow increasingly complex, this approach
might become impractical. For instance, in [2], the optimal
delay for the simpler AlexNet [12] was under 0.1 s, but it
rose to nearly 1 s for VGG16 [13], mainly due to increased
device processing latency.

To minimize the inference delay on the device, it is crucial
to target splitting the DNN at one of its initial layers. In image
classification tasks, two widely used DNN architectures are
VGG16, with 30 layers, and ResNet-50 [14], with 22 layers—
although most of the layers consist of blocks containing other
layers, such as convolutional and ReLU—along with its evo-
lution, ResNet-152 (56 layers). Table I shows the transmitted
tensor sizes for the two architectures under consideration at the

optimal splitting point, (the point that minimizes this size).
Sizes are expressed in bytes, assuming each coefficient is
represented by a 4-byte float. The table also includes the
average size of JPEG images in ImageNet validation dataset
(50000 images), which is commonly used to evaluate DNN
model accuracy. It is important to note that ImageNet images
generally require some pre-processing to be adapted to the
model, which expects a 3-channel 224x224 px image as input.
As a result, in practice the actual size of the input tensor is
on average more than 4.5 times larger than the original JPEG
image. Furthermore, the tensor size at the split points is 6–12
times the size of the input image.

TABLE I
CLASSIFICATION: SIZE OF THE JPEG INPUT (AVERAGE CONSIDERING THE

IMAGENET DATASET), OF THE INPUT TENSOR AND OF SOME INTERNAL
TENSORS FOR DIFFERENT DNN ARCHITECTURES.

Ratio w.r.t.

Size (kB) JPEG input tensor

Image (JPEG) 128.5 1.0 0.22

Input tensor 588.0 4.57 1.0

VGG16, layer 10 1568.0 12.20 2.67

VGG16, layer 17 784.0 6.10 1.33

ResNet-50, layer 4 784.0 6.10 1.33

ResNet-50, layer 8 1568.0 12.20 2.67

ResNet-152, layer 16 784.0 6.10 1.33

ResNet-152, bottleneck [4] 10.6 0.082 0.014

Due to the impracticality of transmitting tensors of such
large sizes, the authors of [15] explore model quantization,
which involves quantizing model weights and tensor coeffi-
cients. While this approach does reduce the amount of data
to be transmitted, the use of quantization for both weights
and coefficients substantially affects accuracy. In contrast,
our work focuses on tensor quantization without altering the
model, demonstrating that it does not negatively impact accu-
racy. Other studies [16], [17] consider lossy compression for
transmitted data but necessitate DNN retraining to minimize
accuracy loss. Furthermore, these studies, along with the ones
focused on tensor coding such as [18], do not discuss the com-
plexity of the compression scheme. Our solution quantizes and
encodes the tensor exclusively with minimal computational
complexity. By scanning the tensor coefficients only twice, the
process is remarkably fast, and its impact becomes negligible
when compared to the transmission time of the JPEG image
or the total inference time.

Another group of studies involves modifying the DNN [4],
[19], [20], [9]. Specifically, they introduce additional layers,
such as an Autoencoder, to create a bottleneck—a layer in
the network with minimal number of neurons—and split the
DNN at the bottleneck. This approach, commonly known as
bottleneck injection, achieves favorable compression ratios and
has a computational cost at inference time comparable to the
original DNN. For instance, the last row of Table I presents the



encoded data size for ResNet-152 with a bottleneck at layer 16
(results taken from Table 4 in [4]). This method significantly
reduces the amount of data to be transmitted, while maintain-
ing limited impact on accuracy. All these solutions based on
bottlenck injection share a common characteristic: they require
retraining a portion of the DNN, which poses a burden every
time a model is updated. In contrast, our strategy leaves the
DNN unaltered; it solely processes the tensor at the split point
while still achieving, as demonstrated in Section VI, the same
compression rate as the bottleneck approach.

The above observations apply to object detection as well.
Table II presents the average image size for the COCO dataset
[21] and the tensor size at the optimal splitting point for the
YOLOv5 architecture, which is currently the state-of-the-art
for this task. In [9], the authors introduce a bottleneck in
Faster R-CNN (the state-of-the-art at that time) resulting in a
transmitted tensor 0.64 times smaller than the input image [9,
Table IV]) and 0.066 times smaller than the smallest tensor in
the original architecture. As shown in the next sections, also
in this case, our solution obtains a comparable compression
rate with no modification to the DNN.

TABLE II
OBJECT DETECTION: SIZE OF THE JPEG INPUT (AVERAGE CONSIDERING

THE COCO DATASET), AND OF THE INTERNAL TENSOR.

Ratio w.r.t.

Size (kB) JPEG split tensor

Image (JPEG) 159.1 1.0 -

Yolov5m, layer 4.m 1800.0 11.31 1.0

Bottleneck (Faster R-CNN) [9] 101.8 0.64 0.066

III. SPATIAL AND TEMPORAL CORRELATION

We begin our analysis by investigating the potential to
compress the transmitted tensor by utilizing spatial and/or
temporal correlation. Specifically, we focus on the tensor
generated by a single image or frame at the split point. Unless
otherwise specified, we consider the split points with the
fewest coefficients for each architecture—layer 17 for VGG
and layer 4 for ResNet-50—although the same observations
apply to other split points and architectural variants, such as
ResNet-152.

Figure 1 shows the empirical CDF of the tensor
coefficients—we present results for four sample inputs, but the
same observations apply to any input. For VGG and ResNet-
50, the ReLU activation function produces many zeros, com-
prising between 40% and 50% of the coefficients, while the
remaining coefficients have values within a limited range (less
than 20 for VGG and less than 2 for ResNet). In the case of
YOLOv5 (Fig. 3, left), where the leaky ReLU is utilized, a
significant proportion of coefficients fall below zero, but they
have a limited range (between -1 and 0). In all cases, the
restricted range justifies the exploration of quantized repre-
sentations that may save bits during transmission (Section V).

0 10 20
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

VGG

0 1 2
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

ResNet

Fig. 1. Empirical CDF of the tensor coefficients for two DNN architectures.
Each figure contains the CDF derived from 4 randomly chosen input images
from the ImageNet dataset.

Spatial correlation. We examine the spatial correlation across
the three dimensions of the tensor (row, column, and channel)
by differentially encoding consecutive coefficients within the
same row, column, or channel, which involves subtracting
the previous coefficient from the current one. If neighboring
coefficients have similar values, the distribution of the dif-
ferentially encoded coefficients should display a significantly
smaller range, with a high concentration of values around zero.

Figure 2 depicts the distribution when differential encod-
ing is applied across rows (similar observations apply when
encoding over columns or channels). We can see that the
distribution support becomes more compact, with the range
being approximately halved for some images. However, this
reduction in support does not necessarily result in significant
savings when encoding the information. For instance, if we
maintain the same quantization error, a halved range would
only save a single bit per quantized coefficient.

−10 0 10
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

VGG

−1 0 1
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

D
F

ResNet

Fig. 2. Empirical CDF of the of differentially encoded tensor coefficients.

In the final step, we investigate spatial correlation in the
frequency domain as well. To achieve this, we vectorize the
tensor using various orders for its three dimensions, and then
apply a fast Fourier transform (FFT) to the resulting vector.
Transmitting only the lower-frequency coefficients results in
a substantial loss of inference accuracy (specific results are
not presented here due to space constraints). This further
indicates that there is no significant statistical regularity in the
spatial distribution of the coefficients that can be leveraged to
decrease the amount of transmitted information.

Temporal correlation. In the context of object detection for
video streams, two consecutive frames typically differ by only



a subset of pixels, given that the majority of the scene tends to
remain static. When applying split computing, it is reasonable
to expect that the intermediate tensors associated with two
consecutive frames might have some common coefficients.
As a result, applying differential encoding in these situations
should produce a more compact representation.

We conducted tests on various videos featuring nearly static
scenes, such as a person sitting in a chair who then stands up
and walks away. The chair remains at the same location and
is easily detectable, and the background does not contain any
objects of interest. Even in this simplified scenario, the range
of differentially encoded coefficients and uncoded ones differ
only by roughly a factor two, as illustrated in Figure 3.

−2 0 2 4
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

−2 0 2 4
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

Fig. 3. Empirical CDF of the the tensor coefficients (left) and differentially
encoded tensor coefficients (right) for a set of consecutive inputs (YOLO
architecture).

Conclusion. Although spatial and temporal correlation has
proven effective in coding images and videos, for split com-
puting, the tensor coefficients do not exhibit a significant
dependence that can be leveraged to reduce the amount of
information transmitted. However, the distribution of coeffi-
cients does possess a limited range and includes numerous
zeros, which can be directly utilized to achieve this goal.

IV. COEFFICIENT RELEVANCE: GRAD-CAM

In the previous section, we noted that at the examined split
point, a substantial portion (more than 40%) of the tensor
coefficients are zeros. This observation raises the question of
whether positive coefficients play a more crucial role in the
task. If they do, it would be beneficial to retain as much of
their information as possible during lossy processing.

To answer this question, we adopt a saliency-based ap-
proach [22]. Saliency-based approaches were originally pro-
posed to evaluate the relevance of input features x by cal-
culating the partial derivative of the softmax value yc for the
input’s predicted class c, i.e., ∂yc/∂x. As the derivative reveals
how much a change in each input feature would affect the
classification output, we can expect that the most relevant
features are indeed those that contribute the most to the
classification. A specific approach to identify relevant image
pixels, Grad-CAM, was proposed in [23]. Examples in [23]
show that, when training an image classifier to distinguish cats
and dogs, the relevant portion of the image is indeed that with
the cat or the dog, while the background and other objects

in the scene are ignored. Grad-CAM was extended in [19] to
identify which DNN layers have the highest impact on the
final result.

In our case, we evaluate the relevance of each tensor
coefficient at the split point, by applying the Grad-CAM
approach at the split point, instead of the last convolutional
layer.

Results. We consider the 10% most relevant coefficients as
identified by Grad-CAM. Figure 4 compares the distribution of
values for the most relevant coefficients with the distribution
of all coefficients. Although the relevant coefficients are more
likely to have larger values than non-relevant ones, we find
that there are relevant coefficients with very small values.
Specifically, for ResNet, Grad-CAM identifies most of the
null coefficients as relevant. We observed the same behavior at
different split points and with other architectures (e.g., ResNet-
152), as well as for different input images belonging to various
classes.

0 10 20
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

VGG

all coeff
relevant coeff

0 1 2
Coeff. value

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

ResNet

all coeff
relevant coeff

Fig. 4. Empirical CDF of the coefficients for two DNN architectures, and
comparison with the relevant coefficients identified by the saliency analysis.

Conclusion. The saliency approach can be employed to pin-
point the tensor coefficients that have the most significant
impact on the task output. However, these coefficients cannot
be easily distinguished based solely on their values.

V. QUANTIZATION

Quantization is a lossy form of compression, which in-
evitably affects the final model performance (e.g., in terms
of accuracy or precision). To mitigate such an impact, some
studies on quantized DNNs suggest re-training the DNN
by incorporating the effect of quantization into the loss
function [16]. Since our goal is to work with off-the-shelf
architectures, we focus on quantizing the coefficients to be
transmitted, which are then restored as 4-byte floats on the
cloud side before continuing with DNN processing. While
some research [4] has investigated the effects of quantization
in split computing, it has been limited to bottlenecked DNN
architectures and has considered at least 8 bits. In contrast,
we apply quantization to the split layer tensor coefficients and
explore extreme (linear) quantization, using as few as 2 bits
per coefficient.

Figure 5 demonstrates the effect of quantization on the clas-
sification task’s accuracy (left) for various architectures. For
all architectures except ResNet-50, using 4 bits per coefficient



does not significantly impact the accuracy compared to the
architecture without quantization. By removing an additional
quantization bit, image accuracy is still comparable to that
obtained by the bottleneck injection approach [5]. For the
object detection application, which is more complex and
involves estimating the bounding boxes of detected objects,
we present two precision metrics, mAP50 and mAP50-95,
which are typically provided when evaluating a model. A 4-bit
quantization has no impact on the metric (Fig. 5, right). A 3-
bit one suffers a slight loss in precision, which is comparable
to the loss experienced by bottlenecked architectures [9].

2 3 4 5 6 7 8 32
Num. bits

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

ResNet-152
ResNet-50
VGG

2 3 4 5 6 7 8 32
Num. bits

0.4

0.5

0.6

0.7

M
ea

n 
Av

er
ag

e 
Pr

ec
is

io
n

mAP50
mAP50-95

Fig. 5. Impact of the number of quantization bits on the classification accuracy
(left) and on the detection mean average precision (right).

Since quantization narrows down the set of possible co-
efficient values, it might enhance their spatial or temporal
correlation. For this reason, we also investigated the potential
for differential encoding of quantized coefficients, but this ap-
proach yielded limited advantages, similarly to what observed
in Section III. On the other hand, in the next section, we will
see that some specific form of spatial correlation (the long
sequences of zeros) can be beneficially exploited.

Conclusion. Quantization of the tensor coefficients to be
transmitted, up to 3 bits per coefficient, has minimal or no
impact on the accuracy or precision of the task performed
by the DNN. This observation holds true across various
tested architectures (VGG, ResNet-152, YOLOv5) and tasks
(classification, detection).

VI. TENSOR CODING

Quantization enables a more compact representation of
tensor coefficients. We now investigate the possibility of
achieving even more compact encoding. Previous research
has employed various schemes, such as conventional image
or video codecs [16] or entropy coding [17]. However, these
methods demand high computational resources, resulting in
additional coding delays. For example, compressing a tensor
using the zlib library [24] takes an average of 25.2 ms 1 which
is approximately 1/4 of the transmission time for a raw JPEG
image over a stable 10 Mbps channel.

We notice that, due to the presence of ReLU or Leaky
ReLU, after quantization, we often see long sequences of the

1Average computed over the ImageNet dataset, using ResNet-50 architec-
ture, tensor at layer 4.

minimum value of the quantization interval, which is repre-
sented by zero. In contrast, other quantized values typically do
not appear in sequences. For this reason, we employ a modified
version of run-length encoding, where zeros are coded with
run-length while other coefficients remain unchanged. The
first codeword bit indicates if what follows is the binary
representation of the coefficient (b = 0) or the number of
zeros in the sequence minus 1 (b = 1). For example, the 3-bit
quantized sequence:

3, 4, 0, 0, 0, 0, 0, 7

is translated into (spaces between coefficients added for clar-
ity)

0011 0100 1100 0111

Note that in this way we can use 4-bit codewords to represent
sequences of up to 8 zeros. In case of sequences of zeros
longer than 8 (e.g., 20), we code consecutive zero sequences
(e.g., 8, 8, 4), so the decoder needs always to process 4 bits
at a time. The extension to n-bit codewords is immediate.

From a computational standpoint, the quantization and
coding can be performed with two passes of the tensor. In
the first pass, we identify the minimum and maximum values.
In the second pass, each coefficient is quantized (using min-
max linear quantization) and coded in a single step. The
minimum and maximum values of the coefficients are placed
as 4-byte values at the beginning of the data to be sent. The
decoding can be done in a single pass: once the minimum
and maximum values have been read, each codeword can be
read and immediately translated into the corresponding tensor
coefficient. Note that the quantization scheme may easily be
made adaptive by specifying as metadata the number of bits
used for quantization.

Results. We applied our proposed tensor coding method to
the output of selected layers of the different architectures, and
compute the average size of the data to be transmitted over
the reference datasets, ImageNet (for classification) and COCO
(for detection). Figure 6 shows the result for different numbers
of quantization bits together with the average size of the JPEG
image in the corresponding dataset. The compression ratios
achieved through simple quantization and run-length coding
fall within a similar range as those obtained by bottleneck
DNNs in [4], [5], which require retraining the model. Notice
that our coding is lossless and any impact on the accuracy is
solely due to quantization and has been evaluated in Section V.

Comparison with standard compression. We compare our
tensor coding method with general-purpose compression tech-
niques like zlib [24], which can be applied to either the original
tensor or its quantized version. In the first case, we observed
that the transmitted tensor retains about 60% of its original
size, and then is nearly 4 times larger than the JPEG input
image. This option, besides being computationally expensive,
is not of practical interest. In the second case, significant size
reduction is achievable. Nevertheless, Figure 7 (left) shows
that our simple scheme achieves even larger savings, but for



2 3 4 5 6 7 8 32
Num. bits

101

102

103
D

at
a 

si
ze

 (K
B

yt
es

)

JPEG

ResNet-152
ResNet-50
VGG

2 3 4 5 6 7 8 32
Num. bits

101

102

103

D
at

a 
si

ze
 (K

B
yt

es
)

JPEG

YOLO

Fig. 6. Impact of the number of quantization bits on the size of the data to
be transmitted for classification (left) and detection (right). The black dashed
line indicates the average size of the input JPEG image.

extreme values of quantization (less than 4 bits). Moreover,
our scheme shines in terms of computational cost. The quan-
tization requires two tensor passes and run-length encoding
can be performed during the second pass essentially with
no additional cost. On the contrary, zlib requires additional
computation after the tensor is quantized. Figure 7 (right)
shows that, on an Intel i9-10900X CPU 3.70GHz, zlib may
require between two and three times more time if ResNet-50
is split after its 4th layer. Results for other architectures and
layers lead to similar conclusions.

4 6 8
Num. bits

101

102

103

D
at

a 
si

ze
 (k

B
yt

es
)

JPEG

zlib
our coding

4 6 8
Num. bits

0

2

4

6

8

10

R
un

ni
ng

 ti
m

e 
(m

s)

zlib
our coding

Fig. 7. Data size obtained using zlib compared to our scheme (left) and
running time for achievening it (left), with ResNet-50 architecture. The black
dashed line indicates the average size of the input JPEG image.

Conclusion. The abundance of zeros among the tensor co-
efficients allows for a straightforward and efficient coding
method that, in conjunction with quantization, can represent
the information within the tensor in a compact manner. This
approach has minimal or no impact on accuracy and does not
require any modification to the DNN architecture.

VII. CONCLUSION

The goal of split computing is to leverage the computational
resources of a device and reduce the load on cloud servers,
which are increasingly being used for various services. Achiev-
ing this is beneficial if data transmission does not significantly
impact the overall delay. Consequently, we explored different
compression techniques to address this challenge.

For two widely adopted machine learning applications,
classification and detection, we analyzed the advantages and
limitations of various mechanisms. Our focus was on pro-
cessing the tensor to be transmitted without considering any

architectural modification. Such modifications require updates
whenever the reference architecture changes, for instance, due
to re-training with new data.

Our findings revealed that the internal DNN tensors do not
exhibit a significant level of spatial or temporal correlation,
limiting the potential benefits of compression techniques re-
lying on such correlations. However, simple tools like linear
quantization and run-length encoding are sufficient to achieve
a considerable compression ratio.

As future work, we plan to investigate the effect of trans-
mission loss on final accuracy. This could provide insights into
the use of reliable or unreliable communication channels.

REFERENCES

[1] S. Dodge et al., “Human and dnn classification performance on images
with quality distortions: A comparative study,” ACM Transactions on
Applied Perception (TAP), vol. 16, no. 2, pp. 1–17, 2019.

[2] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

[3] A. E. Eshratifar et al., “Bottlenet: A deep learning architecture for
intelligent mobile cloud computing services,” in IEEE/ACM ISLPED,
2019, pp. 1–6.

[4] Y. Matsubara et al., “Head network distillation: Splitting distilled deep
neural networks for resource-constrained edge computing systems,”
IEEE Access, vol. 8, pp. 212 177–212 193, 2020.

[5] M. Sbai et al., “Cut, distil and encode (CDE): Split cloud-edge deep
inference,” in IEEE SECON. IEEE, 2021, pp. 1–9.

[6] J. Wang et al., “Not just privacy: Improving performance of private deep
learning in mobile cloud,” in ACM SIGKDD, 2018, pp. 2407–2416.

[7] Y. Matsubara et al., “Split computing and early exiting for deep learning
applications: Survey and research challenges,” ACM Computing Surveys,
vol. 55, no. 5, pp. 1–30, 2022.

[8] A. E. Eshratifar et al., “JointDNN: An efficient training and inference
engine for intelligent mobile cloud computing services,” IEEE Transac-
tions on Mobile Computing, vol. 20, no. 2, pp. 565–576, 2019.

[9] Y. Matsubara et al., “Neural compression and filtering for edge-assisted
real-time object detection in challenged networks,” in IEEE ICPR, 2021,
pp. 2272–2279.

[10] D. Vela et al., “Temporal quality degradation in ai models,” Scientific
Reports, vol. 12, no. 1, p. 11654, 2022.

[11] J. Redmon et al., “You only look once: Unified, real-time object
detection,” in IEEE CVPR, 2016, pp. 779–788.

[12] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Comm. of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[13] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016, pp. 770–778.

[15] G. Li et al., “Auto-tuning neural network quantization framework
for collaborative inference between the cloud and edge,” in ICANN.
Springer, 2018, pp. 402–411.

[16] H. Choi et al., “Deep feature compression for collaborative object
detection,” in IEEE ICIP, 2018, pp. 3743–3747.

[17] R. A. Cohen et al., “Lightweight compression of neural network feature
tensors for collaborative intelligence,” in IEEE ICME, 2020, pp. 1–6.

[18] S. R. Alvar et al., “Pareto-optimal bit allocation for collaborative
intelligence,” IEEE Transactions on Image Processing, vol. 30, pp.
3348–3361, 2021.

[19] F. Cunico et al., “I-split: Deep network interpretability for split comput-
ing,” in IEEE ICPR, 2022, pp. 2575–2581.

[20] G. Castellano et al., “Regularized bottleneck with early labeling,” in ITC
2022-34th International Teletraffic Congress, 2022.

[21] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in ECCV.
Springer, 2014, pp. 740–755.

[22] J. Adebayo et al., “Sanity checks for saliency maps,” Advances in neural
information processing systems, vol. 31, 2018.

[23] R. R. Selvaraju et al., “Grad-cam: Visual explanations from deep
networks via gradient-based localization,” in ICCV, 2017, pp. 618–626.

[24] zlib, https://www.zlib.net/, Accessed: 2023-04-15.


