
Taking two Birds with one k-NN Cache
Damiano Carra

University of Verona
damiano.carra@univr.it

Giovanni Neglia
Inria, Université Côte d’Azur

giovanni.neglia@inria.fr

Abstract—k-Nearest Neighbors aims at efficiently finding items
close to a query in a large collection of objects, and it is used in
different applications, from image retrieval to recommendation.
These applications achieve high throughput combining two dif-
ferent elements: 1) approximate nearest neighbours searches that
reduce the complexity at the cost of providing inexact answers
and 2) caches that store the most popular items.

In this paper we propose to combine the approximate index
for the whole catalog with a more precise index for the items
stored in the cache. Our experiments on realistic traces show
that this approach is doubly advantageous as it 1) improves the
quality of the final answer provided to a query, 2) additionally
reduces the service latency.

I. INTRODUCTION

The availability of vast amount of data today requires
diversified ways for sifting through it. Exact search is just one
option, while other approaches, such as similarity search [1],
offer the possibility to explore the data to enrich user experi-
ence. Many applications, such as image retrieval systems [2],
contextual advertising systems [3], and recommendation sys-
tems [4] are indeed based on similarity search, which in turn
is usually implemented using k-Nearest Neighbor (k-NN) [5],
[1]. In k-NN, the instances are represented as points (called
embeddings) in a metric space, and a function measures how
close a new instance is to the stored ones. Upon a query, k-NN
provides an answer by retrieving the k closest instances in the
dataset and opportunely processing them.

The simplicity and flexibility of k-NN algorithms come at
the cost of (i) permanently storing the whole set of instances
(or at least their embeddings) and (ii) performing expensive
searches upon each query. In particular, exact k-NN in high-
dimensional metric spaces is unfeasible for large databases,
as the search practically reduces to a linear scan [6]. The
widespread use of k-NN has then motivated research on
Approximate Nearest Neighbor (k-ANN) algorithms [7], [8]
and the development of general-purpose k-ANN libraries [9],
including Facebook FAISS [10] and Microsoft SPTAG [11]. k-
ANN algorithms trade off accuracy against search speed: they
find in a short time k close neighbors, but not necessarily
the closest ones. They also trade off accuracy versus memory
requirements: they need to store opportune data-structures in
a fast memory (RAM or GPU memory) with larger data-
structures allowing more precise answers.

While k-ANN works on instances’ embeddings, when in-
stances are large multimedia contents, their retrieval is also
time-consuming Instances are stored in a database that usually
employs inexpensive, but slow, disks. A common network

architectural component to speed up the retrieval is a fast,
expensive, smaller storage memory usually referred to as
cache. Despite its limited size, the cache can take advantage of
instances’ different popularities (some instances tend to appear
more often in the replies). If the caching policy correctly
identifies the “hot” instances and stores them in the cache,
they can be used to reply quickly [12]. Even a small increase
in the fraction of requests satisfied by the cache may turn into
significant delay savings [13].

Usually, the cache is oblivious to the goal of the whole
system, that is to provide a set of close/similar instances. The
cache simply receives a batch of k queries for the instances
in the k-ANN list, provides those that are stored locally, and
updates its local set of instances using a classic caching
policy like LRU. We refer to this behaviour as oblivious
cache. One contribution of this paper is to provide the first
analytical model to compute the hit ratio of an oblivious cache,
i.e., the fraction of instances served by the cache. Our main
contribution is a different way to manage the cache to improve
the quality of the final answer provided by the system.

Our idea is to conceive the cache as a distinct k-NN database
with its own k-ANN index. We refer to this operation as a
k-NN cache. As the cache stores a small set of instances in
comparison to the catalog, it can employ a more precise index,
even if more demanding in terms of memory per instance. The
more precise index can identify in the cache some instances
closer to the query than those found by the more approximate
k-ANN search over the whole catalog. The final answer is
composed by combining the best answers from the two k-
ANN searches. The cache can still be updated using a classic
policy as LRU, but now taking into account the final answer
provided.

Despite seeming a straightforward solution, the works in
the literature have not properly considered its implications. For
instance, we observe that the choices of the two indexes is not
trivial. First, they have different requirements: the main index
needs to manage a large, relatively stable, catalog, the cache
index to support fast updates to track its highly dynamic set
of instances. Second, both indexes should support compatible
similarity measures to be able to quickly combine their search
results. In designing our solution, we discuss sensible choices
for the both indexes.

We evaluate the proposed k-NN cache with realistic datasets
and request traces and show that it is able not only to improve
the quality of the final answer, but also to increase the hit ratio
in comparison of an oblivious cache.

J1

J3

q1

q2

J2

a b

c

Fig. 1: PQ approach: example.

The paper is organized as follows. In Sect. II we provide
background information and discuss related work. In Sect. III
we define the problem we study and provide a model for
the oblivious cache. Section IV presents our solution, which
is evaluated in Sect. V, and Sect. VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Exact and approximate Nearest Neighbor search. In many
applications, similarity is quantified using supervised machine
learning techniques that collectively go under the name of
distance metric learning [14]. These techniques learn how
to map similar objects to vectors in a d−dimensional space,
where a distance function, e.g., the Euclidean one, quantifies
their dissimilarity. A query qi is a point in the same space and
may or may not belong to the collection. The aim of the k-NN
is to find the k points closest to qi.

A straightforward solution is to index the collection, e.g.,
with a tree based data structure, to find the exact k neighbors.
Unfortunately, for values of d over 10, such an approach
has a computational cost comparable to a full scan of the
collection [6]. Approximate Nearest Neighbor Search (k-ANN)
techniques provide k points close to qi but not necessarily the
closest, sometimes with a guaranteed bounded error. Promi-
nent examples are the solutions based on Locality Sensitive
Hashing (LSH) [15], Product Quantization (PQ) [10], [16],
pivots [17], or graphs [18].

We illustrate the PQ technique for k-ANN search as used
by Faiss library [10], since we adopt such index for the main
catalog. Objects are first grouped together using a coarse
centroid-based quantization, and then the residual error is
quantized with a fine grained quantization. Figure 1 depicts
a set of points (white circles) clustered into three groups
corresponding to 3 different centroids (big squares labeled J1,
J2, and J3). The small squares identify the final quantization
of the points. We assume that, for each query, the index first
considers the two closest clusters, and then refines the search
in the set of objects associated to those clusters. In case of
k = 2, for query q1, the two closest clusters are J1 and J2, so
the search correctly returns elements a and b. For query q2,
the two closest clusters are J2 and J3, so the search returns
elements b and c, missing that a is closer to q2 than c.
Serving architecture and cache management. In a large, dis-
tributed setting, we can identify different entities. The catalog

k-NN
queries

Database

Cache

Application Server
(k-NN processing)

Fig. 2: Reference architecture.

(set of instances) is stored in a distributed database, which
is materialized in different disks. These storage resources are
orchestrated by an Application Server (AS), which maintains
the index of the collection (called the main index). The AS
is also responsible for processing the queries coming from
different clients (see Fig. 2) When a query arrives, the AS
performs the k-ANN search, using the main index (usually
maintained in RAM), and obtains the references to the k
objects. The AS then retrieves the objects from the database
and serves them back. In order to speed up the process, the
AS may be enriched by a cache, i.e., a portion of the RAM
(or some other fast memory) that stores the “hot” objects, so it
can serve them directly, without the need to access the slower
database. The answer will in general be composite with some
instances retrieved by the databases, other from the cache.

Some works [3], [19] propose instead to introduce also a
cache index to support k-ANN search on the cache content.
Upon a query, if the k instances found in the cache are of
acceptable quality (evaluated through some heuristics), they
are used to compose the answer without querying the main
index. The advantage of this solution is to potentially speedup
the answer at the cost of serving more approximate answers.
This idea was proposed almost at the same time in [3], [19]
under the name of similarity caching. Reference [12] proposed
a front-end similarity cache for search engines to replace them
during downtime periods. Theoretical studies of similarity
caching policies are in [20], [21].

Other studies proposed to integrate the k-NN search of the
cache content and of the main catalog in the AS. For example,
[22] uses a single index, embedding the information about
cached objects in the index itself. The solution speeds up the
index search phase, but does not improve the quality of the
main index. The authors of [23] propose an early-termination
approximate search that exploits the different retrieval times
from the hard-disk and the RAM to compose the final answer.

Our solution relies on two indexes (one for the collection
and one for the cache content) as in [3], [19], but departs from
previous work as the role of the cache is not only to reduce
the load on the database, but also to improve answers’ quality.

III. OBLIVIOUS CACHE

In this section we consider the usual operation of a similarity
search system as described above and describe how to manage
the cache. When a query arrives, the AS performs a k-
ANN search over the whole catalog, using the main index,
and identifies k objects to retrieve. The most natural way to
manage the cache in this setting is to let it operate obliviously
to the query process, i.e., as a traditional exact cache driven by

the object request process generated by the AS. Under a Least
Recently Used (LRU) policy, for example, the cache maintains
an ordered queue, serves the objects stored locally, retrieves
the other objects from the database and stores all requested
objects at the front of the queue, evicting other objects from
the rear of the queue if needed. We refer to this operation as
oblivious cache.

Caching policies like LRU and its variants have been studied
extensively (see for instance [24]), but our oblivious cache
differs from the usual setting as requests arrive in batch for
k-objects and are correlated (two close objects are more likely
to appear in the same batch than two far objects). To the best
of our knowledge, we present the first model that accurately
predicts the hit ratio of a oblivious cache.
Analytical model. We propose a model that predicts the hit
ratio under some assumptions on the traffic arrival pattern. We
assume queries for Q possible values and follow the standard
independent reference model (IRM) [25], i.e., queries for the
i-th value occur according to a Poisson process with rate λi
independently from queries for other values. If we normalize
the total request rate to 1 (i.e.,

∑Q
l=1 λl = 1), the numerical

value of λi corresponds also to the probability that a given
request is for the i-th value. A query for the i-th value is
mapped by the AS to a set Lm(i) of k objects in a catalog
of N objects. Requests for object j at the cache then follow
a Poisson process with rate: ρj =

∑
i|j∈Lm(i) λi. Note that∑Q

l=1 ρl = k, as the cache receives k requests per time unit.
Given a query, an object j currently in the cache is moved

to the front (refreshed) with probability ρj , independently
from the past. Using Che’s approximation for LRU [24],
we can assume that, if not refreshed, the content stays in
the cache for a deterministic time-interval of duration Tc
(called the characteristic time), before being evicted due to
the insertion of new objects. Che’s approximation allows us to
study the cache as a simpler TTL-based cache [26] and it has
been mathematically justified in a number of works (see [27]
and the references therein). Given a query, content j is in
the cache if its previous request arrived less than Tc time
earlier. This occurs with probability oj = 1 − e−ρjTc [24].
The characteristic time can then be computed imposing that
the expected cache occupancy is equal to its size C, i.e.,
C =

∑N
j=1 oj =

∑N
j=1 1−e−ρjTc , which can be easily solved

for Tc by bisection.
The hit rate for object j is equal to its request rate (ρj)

times the probability to find the object in the cache (oj). The
total hit rate can be computed summing the hit rates. Finally,
the hit ratio (h) is equal to the total hit rate divided by the
total request rate, i.e.

h =

∑N
j=1 ρj(1− e−ρjTc)

k
. (1)

Figure 3 shows that our model is very precise (see Sect. V
for more information about the dataset). The figure focuses
on very small cache values for which estimating correctly the
hit rate is particularly difficult.

Fig. 3: Comparison of our approximate model (1) with exper-
iments. SIFT1M dataset with equivalent tail α = 1.2.

Limits of oblivious cache. We illustrate the limits of a
oblivious cache going back to the example in Fig. 1. Consider
now that q1 and q2 are two consecutive queries. After serving
q1, the cache will store both contents a and b. Upon a request
for content q2, the AS will look for b and c and retrieve b from
the cache, despite the fact that the cache also stores a closer
object a. While this is a limit of the approximate index used
for the catalog, a more accurate search could be performed
among the smaller set of objects stored at the cache, taking
opportunistically advantage of closer objects the main index
may have failed to identify.

IV. INDEXING THE CACHE CONTENT

In order to improve on a oblivious cache, we propose to
index the objects in the cache to enable another accurate k-
ANN search. We denote k-ANNm and k-ANNc the k-ANN
search in the main index and in the cache index, respectively.
The final answer to the query will combine the closest objects
from k-ANNm and k-ANNc and will then be more accurate
in general. For example, in Fig. 1 k-ANNc could return both
elements a and b, improving on k-ANNm. Given a query q
we denote by Lm(q) and Lc(q) the results of k-ANNm and
k-ANNc searches, respectively.

Illustrative experiment. We show the potential benefit of
using two indexes with the following experiment. We consider
consecutive queries for two close objects qi and pi and check
how many objects from the reply to qi can be used in the
reply to pi. Note that the objects in qi’s reply would be stored
in a LRU cache at the time of pi. We consider the dataset
SIFT1M [28], which contains one million objects, and Faiss
Polysemous [10] for k-ANNm over the whole dataset. We
determine 1,000 pairs of close objects (qi, pi) by selecting
uniformly at random qi from SIFT1M and pi as the closest
point to qi in the dataset.

Table I shows which fraction of objects in qi’s reply (and
then in the cache) could be used in the final answer for the
set of 1,000 queries. The label “Both” refers to cached objects
that are both in Lm(qi) and in Lm(pi). These are the objects
a oblivious cache would be able to serve. The label “Usable”
refers to objects in Lm(qi) that do not appear in Lm(pi),
but are closer to pi than some of those in Lm(pi). If the
cache index is able to correctly identify such objects, they can
be included in the final answer improving over the answer

of the main index. Numerical results reveal large potential
improvements from using the cache to integrate the answers
from the main index: Given m the number of objects appearing
in both answers from the main index, the cache can find almost
m/2 that are closer to the query.

In summary, using the cache as indexed storage may bring
benefits in answering k-ANN queries. Nevertheless, our ex-
ample assumes that the cache is able to perform exact k-NN,
while in practice it would rely on another approximate index.
Moreover, requests qi and pi may be interspaced with other
requests that contribute to evict the objects in Lm(qi) from
the cache.

Proposed Solution. We assume the AS maintains in RAM
both indexes k-ANNm and k-ANNc. The portion of the RAM
dedicated to the cache can be managed by any in-memory
key-value store such as Memcached [29] or Redis [30]. The
steps followed by the AS are described in Algorithm 1. We
refer to this solution as the k-ANN cache.

Algorithm 1: Query processing with the k-ANN cache
approach

input: C, catalog stored in the database
input: pm, parameters for the main index
input: pc, parameters for the cache index
input: k, number of neighbors to look for
input: Q, query sequence

1 index main ← new Index(C, pm);
2 index cache ← new Index([], pc);
3 foreach query q in Q do

// Lm and Lc are built in parallel
4 Lm ← index main(q,k);
5 Lc ← index cache(q,k);
6 Lres ← mergesort(Lm,Lc, k);
7 Ores ← retrieve(Lres);
8 build reply(Ores);
9 update cache index(Lres);

10 update cache(Ores);

When a query arrives, the AS interrogates in parallel the
two indexes, obtaining the list of references of the objects in
the database and in the cache. It then merges the two lists,
ordering the references by their distance to the query. Using
this new list (Lres), the AS retrieves the k nearest objects
from the database and from the cache (Ores), and sends them
to the client. Finally, the answer is used to update the cache
and its index. In what follows we consider the cache is updated
according to LRU, putting the Ores objects served at the front

TABLE I: Fraction of objects common to two k-ANNm

searches for close queries qi and pi (Both) and fraction of
objects in Lm(qi) that are not also in Lm(pi), but are closer to
pi (Usable). SIFT1M dataset indexed by FAISS Polysemous.

k = 5 k = 10 k = 20

Both 0.2826 0.2916 0.3082

Usable 0.1358 0.1406 0.1351

of the cache and evicting other contents from the rear. The AS
will need to keep the cache index and the cache aligned.

Indexes’ choice. When we consider the storage memory, we
have to distinguish between (i) the objects themselves, (ii) their
representations (feature vectors) in a d−dimensional space
where we compute distances, and (iii) the index, including all
its different data structures and the references to the objects
(e.g., in case of a hash, the hash table).

For the index of the items stored in the database (k-ANNm),
we assume that the main catalog is big, and the efficiency is
a key aspect. In addition, we need an index that provides not
only the references, but also the distances (to be compared
with the distances obtained by the k-ANN on the cache index).
Among the different possibilities, we use an index based on
PQ, such as Faiss, since it provides a fast lookup for large
datasets, and an approximate distance for each reference in
the answer. As future work, we will investigate alternative
solutions, such as the ones based on LSH [15], which we
do not consider here since they need to retrieve the feature
vectors after the references have been found to compute the
distances—this may cause significant additional delays as it
may not be possible to keep all feature vectors in RAM [10].

As for the index of the cached objects (k-ANNc), we need
an accurate solution where we can add and remove easily
the items. In addition, in order to merge and order answers
from two separate indexes (line 6 in Alg. 1), the system
should compute and compare easily the distances for both.
Given these requirements, we adopt a graph-based approach—
Hierarchical Navigable Small World (HNSW) [18]—which is
fast and accurate. We modified HNSW adding the delete
API. Upon deletion deletion of node v, we check, for each
neighbor of v, if its number of neighbors fell below a certain
threshold (50% of the parameter M , for each level) and, in
such a case, we call the select-neighbors-heuristic
[18] to restore the appropriate amount of neighbors.

V. EXPERIMENTAL RESULTS

A. On the datasets and traces

One of the main focus in the k-ANN search works has been
the design of efficient indexes. There are many datasets, with
different number of objects and dimensionality; they usually
contain a few thousand representative queries to evaluate the
quality of the index. Instead, we aim at evaluating the benefits
of a cache in a production scenario, and we need a large
trace (e.g., millions) of timestamped queries to evaluate the
performance of caches with reasonable sizes, accounting for
heterogeneous objects’ popularities and temporal correlations
in the request process. Despite a thorough search, we were not
able to find any public repository with both a large dataset and
a large number of queries. Therefore, we resorted to create two
synthetic evaluation settings from (i) the SIF1M dataset [28]
and (ii) an Amazon trace [31], [32].

For the SIFT1M dataset, we generated a trace according to
the independent reference model (IRM) introduced in Sect. III,
where objects i is requested with a constant probability λi,

which we refer to as popularity. In particular, we consid-
ered the barycenter of the whole dataset and we assigned
a probability to each point i (in our experiments the set of
possible queries coincides then with the catalog) according
to the distance di to the barycenter, i.e., λi ∝ d−βi . The
parameter β was chosen such that the slope of the tail of
the popularity distribution is similar to those found empirically
[2]—see Fig. 4, left. Once we built the popularity distributions,
we generated a trace with one million requests. We also tested
other traces generated through the same procedure, obtaining
similar results.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

α = 0.9

re
q

u
es

t
fr

eq
.

obj rank

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

α = 1.5

re
q

u
es

t
fr

eq
.

obj rank

Fig. 4: Popularity distrib.: SIFT1M (left) and Amazon (right).

In order to have a more realistic time correlation in the
request trace, we got about 900 thousand timestamped reviews
for 63,891 Amazon products in the category “Baby” [31].
Reference [33] proposes a technique to embed the images of
these products in a 100-dimensional space, where close points
(according to the Euclidean distance) correspond to similar
“styles.” We have considered the timestamp of each review as
timestamp of a corresponding query. While this trace is long
enough for our purpose, a centroid-based Faiss index works
best with catalogs larger than one million objects [34]. We
have then artificially expanded the dataset by multiplying each
product embedding with 15 different vectors with components
in {1,−1} and adding the new points to the dataset. Each
of this vector induces an isometric mapping of the original
dataset, as it does not change the mutual distances of the
embeddings. We checked that in the final catalog, the set of
k closest neighbours is not modified by this operation and
that we preserve the topological properties. The popularity
distribution of the requests is shown in Fig. 4, right.

B. Parameter Settings and Performance metrics
The AS manages the two indexes: k-ANNm and k-ANNc.

For k-ANNm, we use Faiss Polysemous, with 256 centroids.
The cache supports a hash table to be able to find which objects
in the k-ANNm answer are stored locally, but also an additional
index k-ANNc based on HNSW. We set the same k for all
queries in a trace. We tested different values of k (5, 10 and
20). Due to space constraints, we report the results only for
k = 10, but results for the other cases are similar.

As for the performance metrics, we consider the hit ratio,
i.e., the portion of the objects that can be retrieved from the
cache. In addition, we measure the recall @k, i.e., the number
of objects that are in the true k nearest neighbor list.

As for the overall run-time, since both indexes are queried
in parallel, each individual index run-time is not affected. The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000

H
it

 r
at

io

Cache size (# objects)

k = 10, distance-based

oblivious cache
k-ANN cache

k-ANN cache - only from cache
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000

H
it

 r
at

io

Cache size (# objects)

k = 10, Amazon

oblivious cache
k-ANN cache

k-ANN cache - only from cache

Fig. 5: Hit ratio: SIFT1M (left) and Amazon (right).

only additional operation w.r.t. a single index is the merge and
sort shown in line 6 of Alg. 1, which is very fast since we are
merging two ordered sets (k elements each), and it does not
affect the overall delay.

C. Results

Hit ratio. Figure 5 shows the hit ratio for different cache sizes
for the SIFT1M and the Amazon dataset. We show the two
approaches described in the previous section: the oblivious
cache described in Sect. III (the cache is not indexed and
simply returns the objects found by k-ANNm), and the k-ANN
cache, which is our proposed solution. When using the k-ANN
cache, we keep track of the objects that we find in the cache
only (curve labeled “only from the cache”), i.e., objects that
will be part of the final answer, but have not been returned
by Faiss for that specific query. This means that those objects
were brought in the cache as answers to other queries, but they
are useful, i.e., their distance is smaller than the references
indicated by Faiss.

For the SIFT1M dataset, the k-ANN cache obtains con-
sistently an increase of 3-4% in the hit ratio compared to
oblivious cache – note that even a small increase in the hit
ratio may turn into significant delay savings [13]. In addition,
there is a significant fraction of results that are found only
from the cache index, i.e., the cache improves the quality of
the answer (see the discussion about the recall in the next
paragraphs).

For the Amazon dataset, whose request trace exhibits time
correlation, we have qualitatively different results: The hit
ratio with a k-ANN cache improves by a factor at least 4
in comparison to the oblivious cache approach over a wide
range of cache values. By analyzing the results, we noted that
Faiss returns only few references that are close to the target:
this leaves room for objects in the cache to improve over the
references proposed by the main index.
Recall. Figure 6 shows the recall (fraction of exact k-NNs
returned) for the SIFT1M dataset. With the oblivious cache
(left) the recall is determined by the quality of the k-ANN
search on the main index through Faiss Polysemous: 42% of
the objects returned to the client are in the true k nearest
neighbor list. The cache size only affects how many of those
objects can be retrieved from the fast cache. On the contrary,
k-ANN cache’s use of the two indexes is able to boost the recall
up to 64% storing only 2000 objects (0.2% of the catalog).

As for the Amazon dataset (Fig. 7), the k-ANN cache
significantly increases the recall with respect to the oblivious

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000

R
ec

al
l

Cache size (# objects)

k = 10, distance-based

recall
from oblivious cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000

R
ec

al
l

Cache size (# objects)

k = 10, distance-based

recall
from k-ANN cache

Fig. 6: Recall of the oblivious cache scheme (left) and with
k-ANN cache (right). SIFT1M dataset.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000

R
ec

al
l

Cache size (# objects)

k = 10, Amazon

recall
from oblivious cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000

R
ec

al
l

Cache size (# objects)

k = 10, Amazon

recall
from k-ANN cache

Fig. 7: Recall of the oblivious cache scheme (left) and with
k-ANN cache (right). Amazon trace.

cache, even if not as much as the hit ratio improvement in
Fig. 5 would suggest. This means that many objects provided
by k-ANNc, even if closer than those provided by k-ANNm,
are still quite far from the query and do not contribute to
improve the recall of the system. Overall, the k-ANN cache
appears promising: for example storing 500 objects (less than
8% of the whole catalog) leads to a 1.5x improvement in terms
of accuracy and 7.5x improvement in terms of hit ratio (and
then service time reduction).

VI. CONCLUSION

In this work we showed how, by properly indexing the cache
content, we can improve the performance of k-ANN searches,
not only by reducing the overall service time, but by increasing
the quality of the answers. This in turn has an impact on the
perceived Quality of Experience.

As next step, we plan to investigate how to derive analytical
formulas as those in Sect. III also for the k-NN cache. The
difficulty is that, while in an oblivious cache the instances
requested to the cache are determined exogenously by the
catalog index, in a k-NN cache they are also determined by
the cache index and then by the set of instances in the cache.

REFERENCES

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n, “Searching
in metric spaces,” ACM Comput. Surv., vol. 33, no. 3, pp. 273–321.

[2] F. Falchi, C. Lucchese, S. Orlando, R. Perego, and F. Rabitti, “Simi-
larity caching in large-scale image retrieval,” Information processing &
management, vol. 48, no. 5, pp. 803–818, 2012.

[3] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii, “Nearest-neighbor caching for content-match applica-
tions,” in Proceedings of the 18th international conference on World
wide web, 2009, pp. 441–450.

[4] D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data
mining and recommendation system using k-nearest neighbor (knn)
classification method,” Applied Computing and Informatics, vol. 12,
no. 1, pp. 90–108, 2016.

[5] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in Soda, vol. 93, 1993, pp. 311–21.

[6] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB, vol. 98, 1998, pp. 194–205.

[7] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”
Information Systems, vol. 87, p. 101374, 2020.

[8] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate nearest neighbor search on high dimensional data-
experiments, analyses, and improvement,” IEEE Transactions on Knowl-
edge and Data Engineering, 2019.

[9] “Benchmarking nearest neighbors,” https://github.com/erikbern/
ann-benchmarks, Accessed: 2021-04-16.

[10] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, 2019.

[11] Q. Chen, H. Wang, M. Li, G. Ren, S. Li, J. Zhu, J. Li, C. Liu, L. Zhang,
and J. Wang, SPTAG: A library for fast approximate nearest neighbor
search, 2018. [Online]. Available: https://github.com/Microsoft/SPTAG

[12] B. B. Cambazoglu, I. S. Altingovde, R. Ozcan, and Ö. Ulusoy, “Cache-
based query processing for search engines,” ACM Transactions on the
Web, vol. 6, no. 4, pp. 1–24, 2012.

[13] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:
Dynamic cloud caching,” in Proc. of the USENIX HotCloud, 2015.

[14] A. Bellet, A. Habrard, and M. Sebban, Metric learning. Morgan &
Claypool Publishers, 2015, vol. 9, no. 1.

[15] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in IEEE FOCS, 2006, pp.
459–468.

[16] A. Babenko and V. Lempitsky, “The inverted multi-index,” IEEE Trans.
on Pattern An. and Machine Intell., vol. 37, no. 6, pp. 1247–1260, 2014.

[17] B. Naidan, L. Boytsov, and E. Nyberg, “Permutation search methods are
efficient, yet faster search is possible,” arXiv:1506.03163, 2015.

[18] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Trans. on Pattern An. and Machine Intell., 2018.

[19] F. Falchi, C. Lucchese, S. Orlando, R. Perego, and F. Rabitti, “A metric
cache for similarity search,” in Proc. of the 2008 ACM workshop on
Large-Scale distrib. systems for inform. retrieval, 2008, pp. 43–50.

[20] F. Chierichetti, R. Kumar, and S. Vassilvitskii, “Similarity caching,” in
Proc. of the ACM PODS, 2009, pp. 127–136.

[21] M. Garetto, E. Leonardi, and G. Neglia, “Similarity caching: Theory
and algorithms,” in Proc. of IEEE INFOCOM, 2020.

[22] N. R. Brisaboa, A. Cerdeira-Pena, V. Gil-Costa, M. Marin, and O. Pe-
dreira, “Efficient similarity search by combining indexing and caching
strategies,” in SOFSEM. Springer, 2015, pp. 486–497.

[23] F. Nalepa, M. Batko, and P. Zezula, “Combining cache and priority
queue to enhance evaluation of similarity search queries,” in Proc. of
the ICNC-FSKD. IEEE, 2018, pp. 956–963.

[24] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[25] E. G. Coffman and P. J. Denning, Operating Systems Theory. Prentice
Hall Professional Technical Reference, 1973.

[26] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212–231, 2014.

[27] B. Jiang, P. Nain, and D. Towsley, “On the convergence of the TTL
approximation for an LRU cache under independent stationary request
processes,” ACM TOMPECS, vol. 3, no. 4, pp. 1–31, 2018.

[28] “Datasets for approximate nearest neighbor search,” http:
//corpus-texmex.irisa.fr/, Accessed: 2021-04-16.

[29] Memcached, https://memcached.org/, Accessed: 2021-04-16.
[30] Redis, https://redis.io/, Accessed: 2021-04-16.
[31] “Amazon trace,” https://sim-cache.gitlabpages.inria.fr/

similarity-caching-traces/, Accessed: 2021-04-16.
[32] A. Sabnis, T. S. Salem, G. Neglia, M. Garetto, E. Leonardi, and R. K.

Sitaraman, “Grades: Gradient descent for similarity caching,” in IEEE
INFOCOM, 2021.

[33] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proc. of the ACM SIGIR,
2015, pp. 43–52.

[34] “Faiss: Guidelines to choose an index,” https://github.com/
facebookresearch/faiss/wiki/Guidelines-to-choose-an-index, Accessed:
2021-04-16.

