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Abstract—Manufacturing systems require a careful scheduling
of the resource usage to maximize the production efficiency.
In a completely automated environment, the transport system
should be orchestrated to work smoothly with the other resources.
While the impact of job characteristics, such as fixed or variable
processing times of the tasks composing the jobs, or task depen-
dencies, has been extensively studied, the role of the transport
system has received less attention.

In this paper we consider a conveyor belt as a mean of
transportation among a set of production machines. In this
scenario, there is no input or output buffer at the machines, and
the transport times depend on the availability of the machines.
We propose a heuristic based on randomization, called SCHED-
T, which is able to find a near optimal joint schedule for job
processing and transfer in few seconds. We test our solution on
known benchmarks, along with real-world instances, showing
that our scheduler is able to predict accurately the overall
processing time of a production line.

I. INTRODUCTION

The continuous evolution of manufacturing systems aims at
reaching the complete automation of the production process
[1]. This allows for an effective scheduling of all the opera-
tions involved in the production, which in turn improves the
production efficiency. For this reason, the scheduling problem
has been studied extensively in the last decades [2], [3]. In its
simplest form, such a problem is usually referred to as the job
shop scheduling (JSS) problem [4]. Given a set of machines
and a set of jobs, considering that each job is composed by a
set of tasks that must be processed in a given order by different
machines, the problem consists in finding an assignment for
the tasks that minimizes an objective function, such as the
total completion time or makespan.

The introduction of different features in the manufacturing
technology, such as the ability for a machine to perform
different types of tasks, led to various extensions to the JSS
problem – the flexible JSS (FJSS) problem being an example.
A key element that has only been taken into consideration in
recent years is the automation of the transfer of jobs from
one machine to the next. While the execution of the tasks on
machines can be characterized by their processing time, the
transfer has a variety of settings that include (i) the means
of transportation, such as automatic guided vehicle (AGV) or
a conveyor belt, and (ii) the input and output buffers at the
machines, e.g., their ability to store the jobs to be processed
(e.g., while finishing another task) and to store the processed

job (while waiting for the transport system to be available)1.
Some specific combinations of transport system and buffer

may be modeled with a constant time [5]. This is the case
in which the transport facility is always available and the
machines have sufficiently large input and output buffers. In
such a scenario, it is easy to include the transfer time into
the processing time and use the numerous solutions proposed
in the literature [2]. In other cases, the transfer time depends
on the availability of the transport system and the destination
machine [6]. Overall, no single model could cover all the
alternatives, so specific combinations require ad-hoc modeling.

In this work, we consider a setting inspired by a completely
automated production line that includes a conveyor belt as a
mean of transportation, and no buffer at the machines. In this
scenario, once a task is finished, the job will be immediately
put on the belt to free the machine. If the next machine is busy,
the job will remain on the belt until the destination machine is
ready. It is well known that the JSS problem is NP-hard, and
the variant considered here is at least as difficult. Therefore,
we propose a heuristic, called SCHED-T, which is able to
provide an approximate solution in reasonable time. SCHED-T
represents an instance of the Stochastic Local Search (SLS)
approach [7] – SLS includes well known algorithms such
as Simulated Annealing, Evolutionary Algorithm and Tabu
Search.

The main issue we need to face is the evaluation of the
potential move when exploring the solution space. A small
change in the scheduling sequence, in fact, has a cascading
effect on the remaining tasks, since the sequence depends on
the transfer times, which in turn depends on the execution
sequence. While the solutions proposed in the literature are
based on approximate evaluation of each move (e.g., compu-
tation of the critical path), we take a randomize approach, in
which we assess accurately few random neighbors.

We evaluate SCHED-T on a publicly available set of in-
stances that do no include transfer times [8]. In such a case,
our heuristic is able to obtain the same results as other previ-
ously proposed heuristics. We then analyze a set of instances
generated from a production line for which the transfer times
are available. In this case, when the instances are small, one
may find the optimal solution using standard approaches based
on Mixed Linear Integer programming (MILP). We show that

1Our definition of transfer refers to the time between the end of task and
the start of the next one for a given job.



these approaches are not able to find a solution in reasonable
time, so SCHED-T is the only viable approach. We also
show that, when the scheduling is actually executed on a
the production line, we achieve the makespan predicted by
SCHED-T.

The remainder of the paper is organized as follows. In
Section II we provide some background on the scenario we
consider and discuss the related work. In Section III we for-
mulate the problem, and we discuss our solution in Section IV.
We evaluate SCHED-T in Section V and conclude the paper in
Section VI.

II. BACKGROUND AND RELATED WORK

Production line with a conveyor belt. We consider a man-
ufacturing system with a general layout, in which different
machines dedicated to specific tasks are placed close one to
another. The machines are connected to a conveyor belt that is
used to circulate the job. In addition, a storage facility contains
both the raw material and the finished products. This layout has
been adopted in the production line available at our research
facility [9]. The structure, depicted in Figure 1, is organized
in a set of “production cells”, each dedicated to a specific
manufacturing process. In particular, from left to right, the
laboratory includes a vertical warehouse, a quality control cell,
a robotic assembly station and a multi-tool machining station.
The transportation system is based on RFID readings and it is
implemented by multiple conveyors, on which a maximum of
nine pallets are transported. In particular, the set of conveyors
can be differentiated in:

• four unloading belts, transporting the pallets (i.e., the
materials) near the machines for processing. Each pro-
duction cell has an unloading belt and, therefore, a single
input/output access route. Furthermore, one single pallet
can be present at a time in such conveyors;

• the main belt, transporting the pallets towards the dif-
ferent production cells and, therefore, to the unloading
belts. The main conveyor is composed of two long belts
running in opposite directions. Furthermore, at the end of
each long belt, a switching mechanism is in place for the
pallets to traverse from one belt to the other. The main
conveyor acts an active buffer for pallets in a waiting
state, by continuously circulating them.

An important difference between the main conveyor and the
unloading belt is that the former cannot be stopped while
the latter can be stopped and activated when a pallet must
be released or admitted. Therefore, the main conveyor has
particular mechanical components to handle the routing of
pallets at junction points. Here, the possible directions of
the pallets are: (1) direct to the unloading bay, (2) continue
straight, along the actual belt and (3) switch to the opposite
long conveyor. The lead is always given to pallets exiting from
unloading bays.

Literature review. The JSS problem, along with the different
variants (such as FJSS) that reflect additional settings, has been

Fig. 1. The layout of the production line used as a case-study.

extensively studied in the last decades. Since our work con-
siders the impact of the transfer times on the scheduling, we
focus our attention to the related work on this specific topic.
For a general overview of the solutions to the JSS problem,
the interested reader may refer to the surveys presented in [2]
and [3].

Transfer times depend on the task execution sequence, and
there are numerous works, e.g. [10], that deal with the JSS
problem with sequence-dependent setup times. Nevertheless,
during the setup, the machine is not available. In our case,
instead, the machine can be used while the job is travelling, so
we can not cast our problem as JSS with sequence-dependent
setup times.

Many works consider as a mean of transportation a set of
automated guided vehicles (AGVs) [5], [6], [11], [12], and
solve jointly the problem of job scheduling and transport
scheduling. The use of AGVs implies that, at the end of a task,
the machine needs to wait for an available AGV to pick up
the job. Subsequently, when the AGV arrives at the destination
machine, either the machine has a buffer, or the AGV needs to
wait before unloading the job, so the AGV is not available for
other pickups. In our case, instead, when a task is completed,
the machine immediately unloads the job on the conveyor belt.
In addition, if a job is waiting for a machine to be available, its
presence on the conveyor belt is not limiting other machines
to unload other jobs on the belt.

The heuristics proposed in the literature for the differ-
ent variants of the JSS problem need to solve a common
issue: the estimation of the objective function during the
local exploration of the solution space – see for instance
[10], [13]. The proposed solutions are based on a graph-
based representation of the execution sequence: through the
evaluation of the graph properties, such as the critical path, it is
possible to understand if a different solution is feasible, along
with an approximate estimation of the objective function. In
our case, the inter-dependency between the transfer time and
the execution sequence makes the graph-based approaches
infeasible, and we adopt a randomized local exploration.

By formalizing the problem as a minimization problem with
linear constraints, some works, such as [8], aim at finding the
optimal solution using MILP solvers. While the details of our
transportation system can be indeed be expressed with these
constraints, even the solution of very small instances could not
be found in a reasonable time.



III. PROBLEM DESCRIPTION

The Flexible Job Shop Scheduling (FJSS) problem consists
in scheduling a set of n jobs, J1, J2, . . . , Jn, on m machines.
Each job Ji is composed by hi operations or tasks, and each
task can be executed on a subset of machines. For a given task
of a job and a given machine, the processing time is considered
known.

Such a baseline definition is augmented with a set of
assumptions that are related to the specific environment we
consider. In particular, we assume that:

• All jobs are ready at time zero;
• A machine performs at most one task of any job at a

time;
• Tasks may have precedence constraints, i.e., a task can

not start until its preceding tasks (if any) are completed;
• Machines have no input or output buffers.

The latter assumption comes from the layout of the production
line we consider, in which a conveyor belt is responsible for
moving the job parts from one machine to the next. Since
the conveyor belt is always available, there is no need of an
output buffer, and the parts can be released as soon as they
are processed by a machine. In this completely automated
environment, input buffers at each machine are difficult to
implement: instead, the parts keep circulating on the conveyor
belt until the destination machine is ready.

While the above assumptions are specific to the context we
study in this paper, the proposed solution is general and can be
easily adapted in case of some of these assumptions change.

Table I summarizes the notation used for the problem for-
mulation.

TABLE I
NOTATION SUMMARY

Inputs
Mk Machine k, k ∈ [1,m]
Ji Job i, i ∈ [1, n]
hi Number of tasks of job i
tij jth task of Ji, j ∈ [1, hi]
pijk processing time for tij on machine k
Uijj′ 1 if tij precedes tij′ , 0 otherwise
σkl transfer time between machines k and l, k, l ∈ [1,m]

Auxiliary variables
Eijk 1 if tij is executed on machine k, 0 otherwise
sijk execution start time of tij on machine k
Cij completion time of tij

The tasks that compose a job i are identified with tij . Each
task can be performed by different machines. We identify the
processing time of task tij on machine k with pijk. If a task
tij can not be done on machine k, we set pijk = ∞. The
precedence constraints are summarize by a square matrix U
whose rows and columns identify the set of all the tasks (of all
jobs), and each element is either 0 or 1 depending if one task
precedes the other. The transfer time σkl is the information that
characterizes our work. In particular, it is defined as follows:

σkl = σ0
kl + σc

kl · nc (1)

where σ0
kl is the minimum time to go from machine k to

machine l, σc
kl is the cycle time in case the machine l is not

available, and nc is the number of cycles that the job needs to
do until the machine becomes available. Equation 1 can only
be computed while building the scheduling, since its value
depends on the availability of the destination machine. This
scheduling-dependent formulation makes it difficult to find
a simple way of estimating the transfer time, which in turn
has an impact on the estimation of the makespan. The only
available choice is to build the entire schedule, and compute
the makespan while doing so.

We are now ready to formulate our problem. The aim of
the scheduling is to minimize the makespan, i.e., the total
execution time required to process all the tasks. Formally, we
have:

minimize
i∈[1,n]

max Cij (2)

s.t.
sijk + pijk = Cij (3)

sijk + pijk + σkl ≤ sij′l ∀tij , tij′ |Uijj′ = 1 (4)∑
k

Eijk = 1 ∀tij (5)

sijk + pijk < si′j′k ∀tij , ti′j′ , k ∈ [1,m] (6)

Equation 3 defines the relation between the start and finish
times for each task. Here we do not consider the transfer
time, and we do not count the time required to bring the job
back to the storage facility after the last operation in each
job. Equation 4 represents the precedence constraints: once
two tasks have been assigned to machine k and l, if one task
precedes the other, then the next task can not start before the
finish time of the previous one, including the transfer time.
Equation 5 imposes that each task can be assigned to exactly
one machine. Equation 6 represents the fact that each machine
can process one task at a time.

While the above formulation can be used to model the
problem and solve it with approaches based on MILP, the
introduction of the transport system, with the scheduling-
dependent computation of the transfer times, makes such a
task computationally intensive. Even with a small number of
jobs and tasks, standard MILP solvers are not able to complete
the computation after 12 hours. For this reason, we need to
resort to alternative approaches based on the exploration of
the solution space.

IV. EXPLORING THE SOLUTION SPACE

A. Overview

The general scheme of any heuristic based on Stochastic
Local Search is composed by the following steps [7]:

1) Build a solution and compute the objective function;
2) Explore the neighborhood, evaluating the objective func-

tion for each neighbor;
3) Select the neighbor according to a given criteria;
4) Repeat from step 2 until a stop condition is met.



The solution, therefore, needs to specify how the neighborhood
exploration is done, along with the evaluation of the objective
function, the criteria used to select next solution, and the
stop condition. From the computational point of view, the
complexity depends on the size of the neighborhood. Given
a sequence si of tasks assigned to the set of machines, we
may define as neighbor any sequence sj that differs from si
for few tasks. For instance, one may swap two or three tasks.
This would translate into a neighborhood at least quadratic in
the number of tasks.

To decrease the number of neighbors to assess, it is common
to discard beforehand some combinations that, with high
probability, will not improve the solution. For instance, if we
consider the makespan as objective function, since the tasks
belonging to the same job have strong dependencies, they
should be scheduled almost sequentially. Swapping a task from
the first job with a task from the last job would probably not
improve the makespan.

In addition to the size of the neighborhood, we need to
face another challenge: for each neighbor we should be able
to compute efficiently the objective function. This is indeed
very difficult in the specific problem setting we consider for
two reasons. The tasks within a job have dependencies, so
moving one task may have a cascading impact on the other
tasks. In addition, the transfer time depends on the availability
of the destination machine (see Eq.1), but the availability
depends on the execution order. While the impact of the
first issue can be mitigated with known techniques on graph-
based representation of the problem, the circular dependency
between the transfer time and execution order makes it difficult
to estimate, even roughly, the objective function.

The only option is, then, to compute from scratch the
objective function for each neighbor. Since the evaluation of a
single neighbor is so expensive, then the neighbor set should
be chosen accurately.

B. Randomized approach

Limiting the neighbor set to be explored is a technique
already adopted by many solutions. Nevertheless, the number
of neighbors still depends on the number of tasks. The main
idea we adopt is the introduction of a randomized selection
of neighbors with the aim of evaluating only a few neighbors,
This approach is inspired by the results proposed in [14], [15],
along with some application in other fields [16].

In particular, we consider a randomly selected set of neigh-
bors, we compute the allocation for each sequence and we
evaluate the corresponding objective function. We then select
the best option and, if it improves over the current state, we
change the current solution, otherwise we repeat the process
with a different random subset.

In order to avoid to be stuck in a local minimum, we can
adopt known techniques, such as Tabu search or Simulated An-
nealing, in which we accept a solution with a given probability
even if it does not improve over the current solution. Another
option is to adopt a sampling approach in testing solutions
that are not part of the neighborhood. This solution, inspired

by the fisheye view [17] and fisheye routing [18], considers
neighbors with a probability that depends on their distance.
In other words, close neighbor are sampled with higher rate,
while distant neighbors are sampled with lower rate. In our
context, a distant neighbor is obtained with more complex
changes in the task execution order.

C. Detailed solution

Our scheme for the exploration of the neighborhood, called
SCHED-T, uses a two-level hierarchical approach. At a higher
level we have jobs, while at the lower level we have the tasks.

Initialization. We start from a random sequence of jobs,
slJ = {J l

i}, where J l
i indicates that job i is executed in the

sequence l. We then assign the tasks of each job to the different
machines, following the order of slJ , i.e., we allocate the tasks
of job J l

i only after having allocated all the tasks of job J l
i−1.

For a given job, the task execution order is chosen considering
the dependencies among tasks, and selecting randomly in case
of tasks with the same priority. For instance, if a job has three
tasks, and the first two tasks precede the last task, then the
first two tasks has the same priority, and the initial solution
will schedule randomly one the two, then the other one and
finally the last task. For a given task, if there are more than one
machine that can perform that task, we choose the machine in
which the task terminates earlier (including the transportation
time). The initial allocation is a sequence slT = {tlij} of tasks,
where tlij indicates that task j of job i is executed in the
sequence l.

Neighborhood. For a given sequence slT = {tlij} of tasks
assigned to the set of machines, we define a close neighbor
the solution in which we work at low level, i.e., we switch
tasks to obtain a new sequence sl

′

T to be evaluated. A random
neighbor is obtained by (i) selecting a random task tlij in slT ,
and (ii) selecting another random task tli′j′ that must belong
to the same job (i′ = i) or to a job that comes before or after
job i in the sequence slJ .
We also define a remote neighbor the solution in which we
work at higher level, i.e., we switch jobs in the sequence slJ –
the order of the tasks can be further explored, and we may
change the allocation on the machines depending on their
availability in the new sequence.

Exploration. In each iteration we explore close and remote
neighbors, and we select the solution that improves over
the current sequence – see Algorithm 1. The scheme has a
number of parameters. The budget B represents the number
of solutions (neighbors) to be evaluated in each iteration. This
budget is split between the close neighbor (αB) and the remote
neighbors ((1−α)B), with 0 < α < 1. We consider R remote
neighbors: once selected a remote neighbor, we explore locally
its neighbors with a budget (1 − α)B/R. The exploration
concludes is no improvements are observed for Tidle iterations
(not shown in Algorithm 1), or if we reach the maximum
number of iterations Tmax



Algorithm 1: SCHED-T
input: {Ji}, jobs to be scheduled
input: {Mi}, machines
input: B,α,R, parameters for exploration

1 s0 ← Rand Init({Ji});
2 O ← Eval solution(s0);
3 i = 1;
4 while i ≤ Tmax do
5 si ← si−1;
6 foreach αB close neighbor do
7 s′i ← Rand Local Perm(si−1);
8 O′ ← Eval solution(s′i);
9 if O′ < O then

10 si ← s′i;
11 O = O′;

12 foreach R remote neighbor do
13 s′i−1 ← Rand Remote Perm(si−1);
14 foreach (1− α)B/R of its close neighbor do
15 s′i ← Rand Local Perm(s′i−1);
16 O′ ← Eval solution(s′i);
17 if O′ < O then
18 si ← s′i;
19 O = O′;

20 i++;

V. EXPERIMENTAL RESULTS

We compare SCHED-T with the state-of-the-art approaches
for solving the FJSS problem based on heuristics. We consider
public benchmarks, and a real-world scenario that includes the
transport system.

A. Experimental Methodology and Settings

In SCHED-T we use a sampling-based heuristic because
the cost of evaluating the objective function for a single job
sequence is high. Since we are introducing a new heuristic,
we need to compare it with other heuristics. Publicly available
instances, such as the ones described in [13] and available in
[19], do not contain information about the transport system.
Instances that contain the transport system, such as the ones
used in [11], consider AGVs rather than a conveyor belt, so it
is not possible to directly compare to their results.

For this reason, we consider the instances provided in [19]
with no transport system, in order to check if our heuristic is
equivalent to state-of-the-art heuristics. The objective function
we evaluate is the makespan, i.e., the time to complete the
processing of all jobs. In addition, we show the machine
utilization, i.e., the cumulative amount of time in which the
machine is used for processing tasks, divided by the makespan.

SCHED-T has three parameters – the budget at each itera-
tion, the fraction of the budget dedicate to local and remote
neighbor exploration, the number of remote neighbors, and the
number of iterations. We show the sensitivity analysis with

respect to these parameters and observe their impact on the
quality of the solution.

SCHED-T has been implemented in Python, and the exper-
iments are done on a 3.3 GHz Intel Core i7 with 16 Gb of
RAM.

B. Instances with no transport system

We consider the set of 50 large instances whose main fea-
tures are described in [8] (Section 5.2.3, Table 8). In particular,
the number of machines across the different instances ranges
from 10 to 55, and the number of jobs ranges from 13 to 106,
with up to 978 total number of tasks. In [8] the optimization
problem is formulated using a Constraint Programming (CP)
model, although the high number of constraints limits the
precision of the solution. The output is an interval, but such
an interval has a wide gap, so comparing with that gap would
provide little information. In [13], the same authors propose
and evaluate the same instances with the following set of
heuristics: Differential Evolution, Genetic Algorithm, Iterated
Local Search, and Tabu Search. For a given instance, the
solutions provided by these heuristics represent an interval
whose gap is much narrow than the one found with the CP
approach. Therefore we consider such a gap as a reference
to compare to. Note that, given any two instances, the lower
values of their gaps may have been obtained by different
heuristics. For ease of comparison, we normalize the makespan
of each instance with the lower value of the gap.

Makespan. Figure 2 shows the results obtained by SCHED-T.
In all the cases, we set Tmax = 250 and R = 20 (see the
sensitivity analysis described later for a detailed discussion
on these parameters). For most of the instances, SCHED-T
provides a makespan that is within the gap obtained with other
heuristics. In some cases, SCHED-T is able to improve over
other heuristics by 2%. In two cases, our heuristic obtained
a larger makespan by 3%. Overall, when instances do not
consider the transportation system, our solution is able to
obtain a schedule with a makespan that is comparable to the
one obtained by state-of-the-art heuristics.
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Fig. 2. Normalized makespan for the set of the 50 large instances in [8]. The
shaded area represents the minimum and maximum makespan found with
different heuristics in [13], while the points are the results of SCHED-T.



Machine load. While the makespan is the primary perfor-
mance index, an interesting aspect to look at is how efficiently
the machines are used. This may provide an indication if
there is indeed room for improvement, or if some machines
are underutilized. By analyzing the scheduling provided by
SCHED-T, we record the average machine usage, along with
the machine with the highest usage, and show the values in
Figure 3. In almost all the instances, the most used machine is
busy 93%-95% of the time: this indicates that probably such
a machine represents the bottleneck of the system, and the
potential improvement would be limited by such a bottleneck.
In any case, the average machine utilization is always above
75% (80% for most of the instances), so overall the solution
is able to exploit the available resources.
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Fig. 3. Machine load for the set of the 50 large instances in [8]. The maximum
value is the highest loaded machine, while the average is computed over all
machines.

Sensitivity analysis. SCHED-T uses a two-level hierarchical
scheme to explore the solution space. At the low level, we
switch some tasks within a job or between jobs that are
scheduled closely. At the higher level, we switch jobs. In
our evaluation, we observed that most of the improvement
is due to the higher level moves, while the scheme is less
sensible to the lower level exploration. In other words, once the
job order has been identified, a limited low level exploration
is necessary to provide the maximum possible improvement.
For this reason, the two main parameters we consider are
the number of iterations Tmax (how many moves we explore)
and the number of remote neighbors R (how many neighbors
we evaluate in each iteration). Both have a direct impact on
the time required to compute the solution. Figure 4 shows
two views in analyzing the impact of these parameters on
the normalized makespan, i.e., the makespan found with a
combination of Tmax and R divided by the makespan found
with the highest values of Tmax and R used in our test.

If we fix Tmax and we increase R (Fig. 4, left), we notice
that, with values of R > 10 we reach a plateau. Note that, even
for smaller values of R, the makespan only slightly increases
(2%-5%) with respect to the best makespan found. This is
confirmed also if we fix R, the number of remote neighbors,
and we change Tmax, the number of iterations (Fig. 4, right) –
the two figures refer to two different instances, and they are

representative of the general behaviour that we observed for
all the instances.
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Fig. 4. Sensitivity analysis of SCHED-T: impact of the parameters on the
makespan (makespan normalized to the best value found). Left and right
figures refer to different instances.

In summary, SCHED-T works well with a wide range of
parameter values. The solution with small Tmax and R is
obtained in less than 30 seconds, while with larger Tmax and
R it may take up to 10 minutes. But since the difference
between the best makespan is limited, one may consider to
use small Tmax and R, especially in dynamic contexts, where
the scheduling may need to be recomputed due to changes in
the production line (machine faults) or new job arrivals – a
case we do not consider here, but which is part of our future
research directions.

ICE instances. We consider a set of six instances generated
for our lab described in Section II. The number of jobs and
tasks for each instance are provided in the Table II. Since our
lab has only one machine for each specific task, we artificially
doubled each machine and assume that a specific task can be
performed by one of the duplicates. In this way, SCHED-T
has some degree of freedom in exploring the solution locally.
For these settings, we were able to solve the problem using a
MILP model – see the Opt column in Table II.

TABLE II
ICE INSTANCES: CHARACTERISTICS (COLS. 2 AND 3), MAKESPAN WITH

NO TRANSPORT (COLS. 4 AND 5), MAKESPAN WITH TRANSPORT (COL. 7).

SCHED-T SCHED-T
Id jobs tasks Opt no tr. Err with tr. Diff
1 5 32 900 900 0% 1216 35.1%
2 10 106 3580 3650 2.0% 4882 36.4%
3 15 100 2930 3014 2.9% 3109 6.1%
4 20 142 3530 3698 4.8% 4236 20.0%
5 25 174 4935 4998 1.3% 5159 4.6%
6 30 263 7475 7570 1.3% 9286 24.2%

Using SCHED-T we are able to find an approximate solution
in less than 30 seconds whose difference with the optimal
solution is less than 5% (columns 5 and 6 of Table II). The
results are also shown in Figure 6, where the makespan is
normalized with respect to the optimal solution, so the line
represents the error. By looking at the machine load (see
Figure 5), we observe that at least one machine is used almost
100% of the time, while the average is between 55% and 60%.
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Fig. 5. Machine load for the set of ICE instances (no transportation).

C. Instances with the transport system

After having validated SCHED-T without the transport
system, we are ready to evaluate it when we introduce the
conveyor belt. In this case, we do not have any optimal solution
to compare to. We formulated the problem with a MILP
model, but we were not able to find a solution after hours
of computation. Therefore, besides the makespan, we use the
machine load as an indication of how efficiently the resources
are used by our schedule.

Table II, column 7, shows the makespan obtained with
SCHED-T. We compare this value with the optimal solution,
which does not include the transport system (last column).
The results are also shown in Figure 6: here the comparison
can be interpreted as a difference between the case in which
one computed the makespan with no transfer time and the
actual makespan that will be obtained by the real system.
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Fig. 6. Makespan for the ICE instances. When the transport system is not
considered, the normalization shows the error with respect to the optimum.
With the transport system, it shows the difference with respect to the optimum
computed without transfer times.

In some cases (instances 3 and 5), the makespans with or
without transfer times are indeed close. The analysis of the
trace Gantt chart (not shown here for space constraints) reveals
that the system is able to exploit the transportation while the
machine are working, and it synchronizes smoothly with the
processing tasks. In the other cases, the availability of the

machines has a strong impact on the transfer times. These
results show that the transfer has a strong impact on the overall
makespan, therefore not considering them may lead to a highly
imprecise estimate of the time required to process all the jobs.

If we consider the load on the machines (Figure 7) we notice
that both the maximum and the average utilization are indeed
decreased. The intervals in which the machines are unused are
not sufficiently large to accommodate the processing of a task.
These intervals could be exploited in case of heterogeneous
task processing time – given a task, its processing time is not
constant, and it could depend on the specific job type.
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Fig. 7. Machine load for the set of ICE instances, with transportation.

As a future work, we plan to analyze the impact of hetero-
geneous task processing times on the efficiency of machine
usage.

D. Real-world experiments

To show the accuracy of SCHED-T, we consider the set of
instances described in Table II (with no machine duplication)
and we run them sequentially on an actual production line
built in our lab (described in Section II). For each task, we
register the starting processing time and we compare it with
the one computed by SCHED-T.

For fair comparison, the tasks performed by the actual
machines were kept simple so that to obtain a constant
processing time – the case of a stochastic execution time will
be considered in the future work. For the execution, we exploit
a Service-oriented Manufacturing (SOM) software architecture
capable of interacting both with the Manufacturing Execution
System (MES) [20] and the machines. On top of this architec-
ture, we developed a new module that takes as input a sequence
of tasks to execute and returns as output the schedule, updated
with the transport time.

In addition to the real-world production line, we have also
modeled our production line (i.e., we have created a virtual
replica) with Plant Simulation [21], a commercial state-of-the-
practice discrete event simulation tool. The simulation helps
us exploring cases that would otherwise take a very long time
to run on the actual line.

Figure 8 shows the accuracy of the task start time, nor-
malized to the actual start time. In the first 30 minutes, we
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Fig. 8. Accuracy of the task start time compared to simulation and real
execution.

predict the execution times (which compose the makespan)
with SCHED-T, we run the same set of tasks on the actual
production line, and we run the simulation. The simulation
provides a high accuracy, with at most a 2% error. After 30
minutes, we kept running the simulation and take the results
as a reference. As for the task start time predicted by SCHED-
T, we can see that the precision of our proposed approach
continuously rises and drops. This is due to the fact that
our SCHED-T sometimes overestimates or underestimates the
task starting times. Therefore, these negative effects balance
each other, slowing the decrease of accuracy, and keeping the
precision near 95% in the first 30 minutes. After 30 minutes,
the accuracy of our proposed approach decreases following
the same behavior of the first part. In the following hour, it
slowly decreases, reaching an accuracy of 92%. This means
that the variability of the system can not be predicted without
taking into account the stochastic nature of the process we
model. Summing up, our proposed solution allows estimating
with high precision the makespan within a reasonable time
frame. By estimating correctly the transfer times time, we are
able to build a more precise scheduling.

VI. CONCLUSION

In a completely automated production environment, the
transport system plays a crucial role in moving efficiently
and timely the jobs among the different machines. By jointly
scheduling the execution of the tasks on the machines along
with their transfer, it is possible to have a fine-grained control
on the overall process. In this work we propose a heuristic for
solving such a problem, which adopts a randomized approach
for exploring the solution space. Our solver is able to find
near-optimal schedules in a limited time. This in turn opens
the possibility to consider not only a static scenario, in which
the jobs to be processed are known at the beginning, but also
a dynamic one, in which jobs continuously arrive and the
scheduling decisions are updated.

In our future work, we plan to explore these aspects, along
with the differentiation of the processing time of each task, in
order to exploit the available resources.
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