
ARTICLE IN PRESS
Journal of Computational and Applied Mathematics () –

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A massively parallel exponential integrator for advection-diffusion
modelsI,II

A. Martínez b, L. Bergamaschi a,∗, M. Caliari b, M. Vianello b
a Department of Mathematical Methods and Models for Scientific Applications, University of Padova, Italy
b Department of Pure and Applied Mathematics, University of Padova, Italy

a r t i c l e i n f o

Article history:
Received 13 February 2007
Received in revised form 19 June 2008

Keywords:
Advection-diffusion equation: Sparse
matrix
Exponential integrator
Parallel computation
Terascaling

a b s t r a c t

This work considers the Real Leja Points Method (ReLPM), [M. Caliari, M. Vianello,
L. Bergamaschi, Interpolating discrete advection-diffusion propagators at spectral Leja
sequences, J. Comput. Appl. Math. 172 (2004) 79–99], for the exponential integration
of large-scale sparse systems of ODEs, generated by Finite Element or Finite Difference
discretizations of 3-D advection-diffusion models. We present an efficient parallel
implementation of ReLPM for polynomial interpolation of the matrix exponential
propagators exp(1tA)v and ϕ(1tA)v, ϕ(z) = (exp(z) − 1)/z. A scalability analysis of the
most important computational kernel inside the code, the parallel sparse matrix–vector
product, has been performed, as well as an experimental study of the communication
overhead. As a result of this study an optimized parallel sparse matrix–vector product
routine has been implemented. The resulting code shows good scaling behavior evenwhen
using more than one thousand processors. The numerical results presented on a number
of very large test cases gives experimental evidence that ReLPM is a reliable and efficient
tool for the simulation of complex hydrodynamic processes on parallel architectures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, increased environmental awareness and compliance with local regulations have led scientists and
engineers to focus on contamination of groundwater reservoirs. To analyze this problem and determine a remediation
solution from a variety of alternative strategies, a number of phenomena need to be examined within a computer model:
underground geological structures, the distribution andmovement of subsurface water, the interaction between subsurface
and surface water, the spatial locations of contaminant sources, chemical reactions that occur in the surface (e.g., sorption,
precipitation, dissolution, biological transformation), and contaminant transport through underground heterogeneous
porousmedia. The complex interrelationships that exist between these processes require an efficient and accurate computer
model, which can only be achieved with the use of today’s powerful parallel supercomputers.
Three-dimensional advection-diffusion equations describe e.g., the transport of solutes in groundwater and surface

water, the displacement of oil by fluid injection in oil recovery, themovement of aerosols and trace gases in the atmosphere,
and miscible fluid flow processes in many other applications. In industrial applications, these equations are commonly
discretized via the Finite Difference (FD) or the Finite Element (FE) methods.

I Work supported by the research fellowship ‘‘Parallel implementations of exponential integrators for ODEs/PDEs’’ (advisor M. Vianello, University of
Padova).
II Work supported by the HPC-Europa programme, funded under the European Commission’s Research Infrastructures activity of the Structuring the
European Research Area programme, contract number RII3-CT-2003-506079.
∗ Corresponding author. Tel.: +39 049 8271329; fax: +39 049 8271333.
E-mail address: berga@dmsa.unipd.it (L. Bergamaschi).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.01.024

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:berga@dmsa.unipd.it
http://dx.doi.org/10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
2 A. Martínez et al. / Journal of Computational and Applied Mathematics () –

We consider the classical evolutionary 3-D advection-diffusion problem on a domain Ω with mixed Dirichlet and
Neumann boundary conditions:

∂c
∂t
= div(D∇c)− div(c Ev)+ φ x ∈ Ω, t > 0

c(x, 0) = c0(x), x ∈ Ω;
c(x, t) = gD(x, t), x ∈ ΓD;
D∇c(x, t) · Eν = gN(x, t), x ∈ ΓN; t > 0

(1)

where ΓD ∪ ΓN = ∂Ω . Eq. (1) represents, e.g., a simplified model for solute transport in groundwater flow (advection-
dispersion), where c is the solute concentration, D the hydrodynamic dispersion tensor, Ev = (v1, v2, v3)T the average linear
velocity of groundwater flow, Eν the outward normal and φ the source.
FE Discretization. The standard Galerkin FE discretization of (1) with nodes {xi}Ni=1 and linear basis functions gives a large
scale linear system of ODEs like{

P ċ = Hc+ b, t > 0
c(0) = c0

(2)

where c = [c(x1, t), . . . , c(xN , t)]T, c0 = [c(x1, 0), . . . , c(xN , 0)]T, P is the symmetric positive-definite mass matrix and
H the (possibly nonsymmetric) stiffness matrix. Boundary conditions are incorporated in the matrix formulation (2) in the
standard ways.
In the sequel we consider stationary velocity, source and boundary conditions in (1), which give constant H and b in

system (2), which is the discrete approximation of the PDE (1). As known [1], the solution can be written explicitly in the
exponential form

c(t) = c0 + tϕ(tP−1H)
[
P−1Hc0 + P−1b

]
, (3)

where ϕ(z) is the entire function

ϕ(z) =
ez − 1
z

if z 6= 0, ϕ(0) = 1. (4)

Clearly, availability of matrix P−1 is a computationally expensive task. Applying the well known mass-lumping technique
(sum on the diagonal of all the row elements) to P , we obtain a diagonal mass matrix PL. Now system (3) (with PL replacing
P) can be solved by the exact and explicit exponential time-marching scheme.

cj+1 = cj +1t jϕ(1t jA)vj, vj = Acj + P−1L b, j = 0, 1, . . . , (5)

where A = P−1L H .
FD Discretization. Discretization of standard 7-point FD of Eq. (1) gives rise to a system of ODEs like (2) which, in its turn,
can be solved by the scheme (5) with A the classical heptadiagonal FD matrix and vj = Acj + b.
Exactness of the exponential integrator (5) entails that the time-steps1t j can be chosen, at least in principle, arbitrarily

large with no loss of accuracy, making it an appealing alternative to classical time-differencing integrators (cf. [1–3]). The
practical application of (5) rests on the possibility of approximating efficiently the exponential propagator ϕ(1tA)v, where
v ∈ RN . To this aim, two classes of polynomial methods are currently used. We have Krylov-like methods, which are
based on the idea of projecting the propagator on a ‘‘small’’ Krylov subspace of the matrix via the Arnoldi process, and
typically involve long-term recurrences in the nonsymmetric case; see, e.g., [4–6]. These methods have been successfully
used in solving e.g., the time-dependent Schrödinger equation [7]. The second class consists ofmethods based on polynomial
interpolation or series expansion of the entire functionϕ on a suitable compact subset containing the spectrum (or in general
the field of values) of the matrix (e.g., Faber and Chebyshev series, interpolation at special points like Faber, Fejér and Leja
points) [8,1,9,10]. They are conceived for approximating directly thematrix function, and typically require some preliminary
estimate of the underlying spectral structure, but, despite this, these methods turned out to be competitive with Krylov-
based approaches, especially on very large nonsymmetric matrices, cf. [8,11].
Among these methods, we consider the Real Leja Points Method (shortly ReLPM), recently proposed in the framework

of spatial discretization of advection-diffusion equations [1]. In [11] the ReLPM code has been compared, in a sequential
environment, with the Phipro Fortran code by Y. Saad, which is based on Krylov subspace approximations (cf. [12]), on
large scale sparse matrices arising from the spatial discretization of 2-D and 3-D advection-diffusion equations. In all the
experiments reported in [11] theReLPMoutperformedPhipro evenwith anoptimal choice of theKrylov subspace dimension
m. Comparisons with the classical Crank Nicolsonmethod [13] with variable stepsize in solving realistic advection-diffusion
problems has been performed both in sequential [14] and parallel [15] environments. In [15] a parallel implementation of
ReLPM is described and results on two parallel machines are presented, which show that ReLPM turns out to be 4 to 7 times
faster than Crank Nicolson, for a given accuracy.
We note also that ReLPM can be regarded as an exponential propagator and it can be successfully used in combination

with other well-known integrators in the solution of large-scale nonlinear problems [16–20].

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
A. Martínez et al. / Journal of Computational and Applied Mathematics () – 3

In this work we present a massively parallel implementation of the ReLPM algorithm obtained after a performance
study and optimization of the parallel code presented in [15]. With the aim of attaining terascale performance, we have
accomplished both performance evaluation and scalability analysis of the most important computational kernel inside the
code, the sparse-matrix times dense-vector product routine.
The paper is organized as follows. In Section 2 we recall the ReLPM Algorithm and report comparisons between ReLPM

and Phipro. Section 3 overviews the parallel implementation, addressing primarily the data distribution scheme and the
implementation of the sparse matrix times dense vector product routine. Section 4 contains the parallel experiments for a
variety of test problems. Speedup and parallel efficiency data are provided and analyzed. Finally, some concluding remarks
are included in Section 5.

2. The ReLPM algorithm

The ReLPM (Real Leja Points Method), proposed in [1] and applied to advection-diffusion models in [8,15], has shown
very attractive computational features. It rests on Newton interpolation of the exponential functions at a sequence of Leja
points on the real focal interval of a family of confocal ellipses in the complex plane.
Sequences of Leja points {zj}∞j=0 for the compact K are defined recursively, as follows [21]: if z0 is an arbitrary fixed point

in K (usually such as |z0| = maxz∈K |z|, cf. [22]), the zj are chosen in such a way that

j−1∏
k=0

|zj − zk| = max
z∈K

j−1∏
k=0

|z − zk|, j = 1, 2, (6)

The use of Leja points is suggested by the fact that they guarantee maximal (and thus superlinear) convergence of
the interpolant on every ellipse of the confocal family, and thus superlinear convergence of the corresponding matrix
polynomials to the matrix exponential functions. This feature is also shared by other sets of interpolation points, like
e.g., standard Chebyshev points, but differently from the latter. At the same time Leja points allow one to increase the
interpolation degree just by adding new nodes of the same sequence; see [23,1] for the scalar and matrix features of
interpolation at Leja points. A key step in the approximation procedure is given by estimating, cheaply, a real focal interval,
say [a, b], such that the ‘‘minimal’’ ellipse of the confocal family which contains the spectrum (or the field of values) of the
matrix is not too ‘‘large’’ (the underlying theoretical notion is that of ‘‘capacity’’ of a compact complex set). The numerical
experience with matrices arising from stable spatial discretizations of parabolic equations (which are the main target of
the ReLPM code) has shown that good results can be obtained at a very low cost, simply by intersecting the Gershgorin’s
circles of thematrix with the real axis. Indeed, it is worth stressing that the ReLPMmethodworks well with ‘‘stiff ’’ matrices,
whose spectrum (or whose field of values) has a projection on the real axis which is non-positive and much larger than the
projection on the imaginary axis; cf. [1].
The kernel of the ReLPM code is given by interpolation of ϕ(hλ), for suitable h ≤ 1t , at Leja points of the real focal

interval [a, b] = [c − 2γ , c + 2γ]. Observe that once ϕ(hA)v is computed, then exp(hA)v = hAϕ(hA)v+ v. In practice, it is
numerically convenient to interpolate the function ϕ(h(c + γ ξ)) at Leja points {ξs} of the reference interval [−2, 2] (since
it has capacity equal to 1, cf. [24]). Then, given the corresponding divided differences {di} for such a function, the matrix
Newton polynomial of degreem is

pm(A) =
m∑
i=0

diΩi ≈ ϕ(hA), Ωi =

i−1∏
s=0

((A− cI)/γ − ξsI) . (7)

In general, it is not feasible to interpolate with the original time step 1t , which has to be fractionized. This happens, for
example, when the expected degree for convergence is too large. The ReLPM code subdivides dynamically 1t into smaller
substeps hk, and recovers the required vector ϕ(1tA)v according to a time marching scheme like (5), i.e.

yk+1 = yk + hkϕ(hkA)(Ayk + v), k = 0, 1, . . . , k∗ − 1; y0 = 0, (8)

where
∑
hk = 1t . Herewe use the fact that1tϕ(1tA)v is the solution at t = 1t of the differential system ẏ(t) = Ay(t)+v,

y(0) = 0 so that ϕ(1tA)v = yk∗
1t .

2.1. The ReLPM code

In this section we present the pseudo-code of the two main subroutines which compose the ReLPM code. They are
displayed in Tables 1–2. We refer the reader to [1,11] for other specific implementation details.
Comments to Table 1. This is the main subroutine. Its input variable is a matrix A ∈ RN×N , a vector v ∈ RN , and a time step
1t > 0. The output is a vector u ≈ ϕ(1tA) v. The underlying method is the time-marching scheme (5), with a dynamical
managing of the variable substeps h = hk, and Newton interpolation as in (7) of ϕ(hA) at real Leja points related to spectral
estimates for A. In steps 4. and 5. the algorithm attempts an approximation of the real focal interval of a ‘‘minimal’’ ellipse

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
4 A. Martínez et al. / Journal of Computational and Applied Mathematics () –

Table 1
Subroutine ReLPM.

1. input: A, v,1t , tol
2. constants:M = 124, (ξ0, . . . , ξM) array ofM + 1 Leja points in [−2, 2]
3. k := 0, ρ := 1t , u := 0,w := v
4. a, b := ‘‘extrema of the real points in the Gersghorin’s circles of A’’
5. c := (a+ b)/2, γ := (b− a)/4, ν := 3γ , h := min{1t,M/ν}, oldh := 0
6. repeat until ρ = 0
7. if h 6= oldh then
8. computes (d0, . . . , dM), the divided differences of ϕ(h(c + γ ξ)), ξ ∈ [−2, 2], at the Leja points (ξ0, . . . , ξM); oldh := h
9. call INTERP (A,w, h, tol, c, γ ,M, (ξ0, . . . , ξM), (d0, . . . , dM), q, err,m)
10. ifm > M then h := h/2
11. ρ := ρ − h, u := u+ hq
12. if ρ > 0 then
13.w := Au,w := w+ v, k := k+ 1, h := min{h, ρ}

14. k∗ := k, u := u/1t
15. output: the vector u ≈ ϕ(1tA) v; the total number of substeps k∗

Table 2
Subroutine INTERP.

1. input: A,w, h, tol, c , γ ,M , (ξ0, . . . , ξM), (d0, . . . , dM)
2. u := w, q := d0w, e0 := ‖q‖2 , β := ‖w‖2 ,m := 0
3. repeat until err ≤ β tol orm ≥ M
4. z := (Au)/γ , u := z− (c/γ + ξm)u
5.m := m+ 1, em := |dm| ‖u‖2
6. q := q+ dmu
7. ifm ≥ 4 then err := (em + · · · + em−4)/5
8. if err > β tol thenm := M + 1 endif
9. output: the vector q = pm(A)w, the estimated error err , and the interpolation degreem, such that ‖q− ϕ(hA)w‖2 ≈ err , with err ≤ ‖w‖2 tolwhen
m ≤ M , whereas a convergence failure occurred whenm > M .

which contains the numerical range of the underlying matrix, and the associated parameters: c is the center and γ the
capacity (length/4) of the interval.
Hereafter, h and oldh are the current and the previous (sub) steps. For any given substep h, theoretical estimates show

that superlinear convergence of the matrix interpolation polynomial should start at a degree between hγ and 2hγ , cf. [9,1],
provided that the capacity of the minimal ellipse above is relatively close to γ . Hence, convergence at reasonable tolerances
of the matrix interpolation polynomial is expected for a degree lower than hν = 3hγ (the factor 3 is an ‘‘empirical’’ choice,
based on numerical experience). Hence, the input step 1t is possibly reduced in such a way that [hν] ≤ M . In step 8., the
M+1 divided differences are accurately computed as the first column of ϕ(h(c+γ ΞM)), whereΞM is the (M+1)×(M+1)
bidiagonalmatrixwith the Leja points (ξ0, . . . , ξM) on themain diagonal and (1, . . . , 1) on the diagonal immediately below.
The matrix ϕ(h(c + γ ΞM)) is approximated via 16-term Taylor expansions by the scheme proposed in [25], on the basis
of [26].

Comments to Table 2. This subroutine tries to compute an approximation q = pm(A)w ≈ ϕ(hA)w, cf. (7), up to an error
(relative to ‖w‖2) less than a given tolerance, where A ∈ RN×N ,w ∈ RN and1t ≥ h > 0.

2.2. Comparison of ReLPM with Krylov subspace methods

We now report a comparison between our Fortran ReLPM code and the Phipro Fortran code by Y. Saad, which is based
on Krylov subspace approximations (cf. [5]). The comparison is made on two tests (the first one is problem # 1 in Table 4,
while the second one is a FD discretization of Eq. (1) with 1x = 0.005). For more details of the comparison, see [11]. We
have computed ϕ(1tA)v with v = (1, . . . , 1)t (corresponding to u0 ≡ 1), for two values (1t)1 and (1t)2 of the time step
1t , depending on the problem. The tests have been performed on an IBM Power5 processor with 1.8 Gb of RAM. The results
are collected in Table 3. We report, for both methods, the number of substeps (steps), the number of total iterations (i.e., of
matrix–vector products), and the CPU time. In addition, for Phipro we also show the chosen dimension m for the Krylov
subspace. The tolerances for both methods have been tuned in order to have an error relative to the ‘‘exact’’ result of the
exponential operator, of about 10−6 (in the 2-norm).

ReLPM performs better than Phipro evenwith an optimal choice of the Krylov subspace dimension (boxed CPU times), in
spite of a smaller number of total Krylov iterations. Indeed, it is worth stressing that ReLPM computes only 1 matrix–vector
product, 2 daxpys, 1 vector scaling and1 scalar product per iteration inside INTERP.Moreover, it allocates only thematrix and
6 vectors, whereas Phipro has to allocate, besides thematrix, all them Krylov subspace generators and 4 vectors (neglecting
a matrix and some vectors of dimensionm). In addition, whenm increases, Phipro decreases the total number of iterations,
but is penalized by the long-term recurrence in the orthogonalization process. For smallm, it is penalized by a larger number
of substeps. The difference in storage requirements produces remarkable consequences in the FD-3D example. There, the

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
A. Martínez et al. / Journal of Computational and Applied Mathematics () – 5

Table 3
Comparing ReLPM and Phipro on the advection-diffusion discretization matrices in Examples 1–4 (the CPU times are in seconds).

1t Code FE-3D FD-3D
Phipro Steps Iter CPU Steps Iter CPU

m = 10 81 891 59.8 35 385 349.3
(1t)1 m = 20 28 588 50.2 Ď Ď Ď

m = 25 21 546 45.2 Ď Ď Ď

m = 30 17 527 48.1 Ď Ď Ď

m = 50 10 510 58.9 Ď Ď Ď

ReLPM 12 585 32.0 3 234 133.0

Phipro Steps Iter CPU Steps Iter CPU

m = 10 428 4708 302.1 158 1738 1593.2
(1t)2 m = 20 152 3192 242.1 Ď Ď Ď

m = 25 117 3042 250.4 Ď Ď Ď

m = 30 94 2914 268.0 Ď Ď Ď

m = 50 53 2703 301.0 Ď Ď Ď

ReLPM 74 4335 231.7 16 1094 633.4

matrix is extremely large, and Phipro can work only withm ≤ 10 due to the memory limitations (1.8 Gb), becoming about
2.5 times slower than ReLPM.

3. Parallelization

A standard data-parallel implementation of the ReLPM algorithm has been performed. The parallel program is written
in Fortran 90, and uses the MPI standard [27] for interprocessor communication. To perform an efficient parallel
implementation of the ReLPM we choose to use compressed sparse row (CSR) storage of the nonzero matrix elements.
Matrix A is uniformly partitioned by rows among the p processors, so that n ≈ N/p rows are assigned to each processor.
This partitioning is a consequence of assigning to each processor a subset of contiguous nodes of the computational mesh.
All the vectors involved in the algorithm are accordingly split. In this way the daxpy operations in steps 3, 11, 12 and 14 of
Table 1 and in steps 2, 4 and 6 of Table 2 are performedwithout any communication among processors. The estimation of the
focal interval (step 4 of subroutine ReLPM) and the computation of the 2-norm of a vector (to check the exit test) require that
the processors exchange only a scalar. In particular, estimating the norm of the approximation vector in parallel requires a
collective communication (implemented via an MPI_allreduce call) which becomes costly when largely increasing the
number of processors. Nevertheless the main scalability bottleneck is the sparse matrix vector product (Au) of steps 13
(Table 1) and 4 (Table 2) which requires the processors to communicate a number of elements of vector u.

3.1. Efficient matrix–vector product

Our implementation of the matrix–vector product is tailored for application to sparse matrices and minimizes data
communication between processors. Within the ReLPM algorithm, the vector z := Au has to be calculated. Each processor
exchanges entries of its local components of vector u with a very small number of other processors (compared to the
total number p). The communication is symmetric due to the symmetric nonzero pattern of A inherited by the Galerkin
FE and central FD discretization schemes which are adopted here. Thus, data exchanges have been performed by calling the
MPI_SendRecv routine.
Let us consider a given processor with processor identifier (pid) say r, 0 ≤ r ≤ p − 1. Assume for simplicity that N is

exactly np, and denote by S the indices of the nonzero entries of matrix A

S = {(i, j) : aij 6= 0}.

The set S is normally referred to as the nonzero pattern of A. After distributing the matrix, the subset P r containing the
indices corresponding to nonzero elements of A belonging to processor r can be defined as

P r = {(i, j) : rn+ 1 ≤ i ≤ (r + 1)n } ∩ S.

This set can be partitioned into two subsets

P rloc = {(i, j) ∈ P
r , rn+ 1 ≤ j ≤ (r + 1)n} P rnonloc = P

r
\P rloc.

For every processor r we also define the subsets C rk , R
r
k, k 6= r of indices as:

Rrk = {i : (i, j) ∈ P
r
nonloc, kn+ 1 ≤ j ≤ (k+ 1)n}

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
6 A. Martínez et al. / Journal of Computational and Applied Mathematics () –

Table 4
Summary of test problems; θ = ‖Ev‖; nnz is the number of nonzero elements in the discretization matrix.

Discr. Type θ 1x N nnz 1t Steps Iter

1 FE Adv-Diff 534681 7837641 10.0 74 4319
2 FE Adv-Diff 2 099601 31079601 10.0 91 5001
3 FD Diff 0 1/128 2097152 14680064 0.52 609 29310
4 FD Diff 0 1/256 16777216 117440512 0.52 878 62148
5 FD Adv-Diff 25.0 1/256 16777216 117440512 0.04 189 9451
6 FD Adv-Diff 100.0 1/512 134217728 939524096 0.01 187 7432
7 FD Adv-Diff 1000.0 1/1024 1073741824 7516192768 0.0003 23 1706

and

C rk = {j : (i, j) ∈ P
r
nonloc, kn+ 1 ≤ j ≤ (k+ 1)n}

Processor r has in its local memory the elements of the vector u whose indices lie in the interval [rn+ 1, (r + 1)n]. Before
computing thematrix–vector product, for every k such thatRrk 6= ∅processor r sends to processor k the components of vector
uwhose indices belongs to Rrk; it also gets from every processor k such that C

r
k 6= ∅, the elements of uwhose indices are in

C rk . We subdivided the overall communication in communication phases. On each phase two communications are completed,
one with a processor with PID less than r and another with a processor with PID greater than r . This schedule is tuned on
our block-banded matrices and guarantees minimization of waiting times.
When all the communication phases have completed, processors are able to compute locally their part of the

matrix–vector product.

4. Numerical experiments

To understand how the parallel ReLPM algorithm performswith problems of varying degrees of difficulty, we considered
a set of problems concerning FE and FD discretizations of 3-D advection-dispersion models like (1). The test problems
are summarized in Table 4. For each test case we also report the number of steps and iterations employed by the ReLPM
algorithm since they are irrespective of the number of processors employed.
We report the timing results of the parallel ReLPM code running on HPCx with a number of processors varying from

p = 2, . . . , 1024, depending on the problem size. HPCx is a large cluster of IBM SMP nodes actually housed in Daresbury,
England. HPCx is available for HPC-Europa visitors at EPCC (Edinburgh Parallel Computing Center). HPCx is presently 46th
in the TOP 500 list of fastest machines in the world.

4.1. HPCx architecture overview

At the time of writing, the HPCx system is composed of IBM eServer 575 nodes which are used either by batch jobs or for
login and disk I/O. Each eServer node (frame) contains 16 processors. At present there are two service nodes. Themain HPCx
service provides 96 frames for compute jobs for users, giving a total of 1536 processors (however the largest CPU count for a
single job is 1024). Each eServer system frame consists of 16 1.5 GHz POWER5 processors. In the POWER5 architecture, a chip
contains two processors, together with the Level 1 (L1) and Level 2 (L2) cache. Each processors has its own L1 instruction
cache of 32 Kb and L1 data cache of 64 Kb integrated onto one chip. Also on board the chip is the L2 cache (instructions and
data) of 1.9 Mbyte, which is shared between the two processors. Four chips (8 processors) are integrated into a multi-chip
module (MCM). Two MCMs (16 processors) comprise one frame. Each MCM is configured with 128 Mb of L3 cache and 16
GB of main memory. The total main memory of 32 GB per frame is shared between the 16 processors of the frame.
Inter node communication is provided by IBM’s High Performance Switch (HPS), also known as ‘‘Federation.’’ Each frame

has two network adapters and there are two links per adapter, making a total of four links between each of the frames and
the switch network. Intra node communication is accomplished via shared memory.

4.2. Results on FE matrices

In our first study we consider a 3-D advection-dispersion problem given by Eq. (1), where D is the hydrodynamic
dispersion tensor,Dij = αT |Ev|δij+(αL−αT)vivj/|Ev|, 1 ≤ i, j ≤ 3 (αL andαT being the longitudinal and transverse dispersivity,
respectively). The domain isΩ = [0, 1] × [0.0.5] × [0, 1], discretized by a regular mesh of N = 161× 81× 41 = 534 681
nodes and 3 072 000 tetrahedral elements. The source term is φ = 0; the boundary conditions are homogeneous Dirichlet
on ΓD = {0} × [0.2, 0.3] × [0, 1], whereas homogeneous Neumann conditions are imposed on ΓN = ∂Ω \ ΓD. The velocity
is Ev = (1, 0, 0), the transmissivity coefficients are piecewise constant and vary by an order of magnitude depending on the
elevation of the domain, αL(x3) = αT (x3) ∈ {0.0025, 0.025}. The resulting FE matrix has 7 837641 nonzeros (average per
row≈ 14).

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
A. Martínez et al. / Journal of Computational and Applied Mathematics () – 7

Table 5
Timing results and statistics for scalability study for Examples 1 and 2.

p Example 1 Example 2
Tp S(2)p E(2)p (%) Tp S(2)p E(2)p (%)

2 122.6 629.6
4 53.5 4.6 >100 323.9 3.9 98
8 26.1 9.4 >100 167.8 7.5 94
16 15.7 15.6 98 86.0 14.6 91
32 10.2 24.0 75 36.0 35.0 >100
64 7.1 34.6 54 21.3 59.1 92
128 4.0 61.4 48 13.6 92.6 72

The second example considered regards the same problem as of Example 1, but in this case the domain is discretizedwith
a regular grid of N = 161×81×161 ≈ 2.1×106 nodes and about 12million tetrahedral elements. Matrix of discretization
A has roughly 2.1× 106 rows and 3.1× 107 nonzero elements.
We distribute the 41(161) horizontal strata of the mesh among the processors by associating to any processor more than

one stratum, that is more than 161×81 grid points, in the case p ≤ 41(161). This implies that each processor communicates
with atmost two other processors. If, on the other hand, p > 41(161) a single stratum is shared bymore than one processor,
thus increasing the number of communicating processors.
Throughout the whole section, we will denote with Tp the CPU elapsed times expressed in seconds (unless otherwise

stated) when running the code on p processors. We include a relative measure of the parallel efficiency achieved by the
code. To this aim we will denote as S(p̄)p , the pseudo speedup computed with respect to the smallest number of processors
(p̄) used to solve the given problem:

S(p̄)p =
Tp̄p̄
Tp
.

We will denote E(p̄)p the corresponding relative efficiency, obtained according to

E(p̄)p =
S(p̄)p
p
=
Tp̄p̄
Tpp

.

Table 5 contains the results obtained when running the parallel ReLPM code on HPCx to compute the solution of the two
FE problems described above for a value of1t = 10 s. The initial approximation vector is c0 = (1, . . . , 1)T, and the relative
tolerance tol in subroutine interpwas set to 10−7 for Example 1 and to 10−8 for Example 2. With such choices, the 2-norm
of the error is expected to be at least one order of magnitude below the discretization error, (see [14] for a discussion on
proper selection of parameter tol).
Results showing a speedup larger than the number of processors employed or an efficiency larger than 100% are printed

in boldface. For these small/medium size problems, we scaled up the number of processors from 2 to 128. For the smallest
problem, the relative parallel efficiency decreases until 48%when 128 processors are used. As known, when a small problem
is solved across a large number of processors, parallel efficiency is expected to decrease. In particular, this is due to fact that
each processor needs to communicate with a number of other processors, which is problematic because of communication
latencies. Due to the increased problem size of Example 2, the parallel efficiency rises to 72%when using 128 processors. The
better scaling of the second problem can be seen also in Fig. 1. Herewe show the scaling behaviorwith respect to the number
of processors of the ReLPM code for the two FE matrices. Also, for comparison, an ideal perfect scaling line is included in the
figure.
We obtained super-speedup values with p = 4, 8 for Example 1 and with p = 32 for Example 2. These results are likely

to be ascribed to cache effects. Problem 1 can be kept in Level 3 cache starting from p = 8 processors, while problem 2,
being 4 times larger, stays in the cache from p = 32 processors.

4.3. Results on FD matrices

Regarding 3D FD discretizations of Eq. (1), we have considered the domain Ω = (0, 1)3, D = I , Ev = θ · (1, 1, 1)T , and
homogeneous Dirichlet boundary conditions. The source term is φ = 0. The matrix A has been generated by adopting a
second order central FD discretization on a uniform grid with stepsize1x = 1/nx, with nx = 128, 256, 512, 1024 being nx3
the total number of grid points (and hence the number of rows of matrix A). Table 4 summarizes all the tests considered:
Examples 3 and4 are purely diffusionproblems,while Examples 5 to 7 arise fromadvectiondiffusionproblemswith different
Peclet numbers. The initial approximation vector is c0 = (1, . . . , 1)T, and the relative tolerance tol in subroutine interp
was set to 10−8 for all the FD problems.
The scaling results from running parallel ReLPM for large scale FD discretizations on HPCx are given in Tables 6–8. For

this study we considered a number of processors, ranging from 16 to 1024 (the largest CPU count for a single job on HPCx).
We give the measured elapsed times when running the parallel ReLPM code on HPCx to compute the solution of the five FD

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
8 A. Martínez et al. / Journal of Computational and Applied Mathematics () –

Fig. 1. Scaling results — total elapsed time of the ReLPM code on HPCx for the two FE matrices (number of processors ranging from 2 to 128). Dashed lines
represent perfect scalability.

Table 6
Timings and speedups for Example 3 (1283 grid nodes).

p Tp S(2)p E(2)p (%)

2 2532.7
4 1256.5 4.0 100
8 566.3 8.9 >100
16 327.9 15.4 96
32 167.1 30.3 95
64 97.6 51.9 81
128 69.5 72.9 57

Table 7
Timings and speedups for Examples 4 and 5 (2563 grid nodes).

p Example 4 Example 5
Tp S(16)p E(16)p (%) Tp S(16)p E(16)p (%)

16 6617.9 998.8
32 3191.7 33.1 >100 502.8 31.8 99
64 1675.8 63.2 99 254.1 62.4 98
128 875.6 120.6 94 128.7 124.2 97
256 509.6 210.2 82 78.5 203.7 80

problems for a value of1t which again depends on the specific problem. In particular, for the largest problems (with more
than one thousand million nodes) the value of 1t was selected to be particularly small in order to keep bounded the CPU
cost of the run on the HPCx service.
The pseudo efficiency values provided in Tables 6–8 are always larger than 79% with the only exception of Example 3,

where an efficiency of 57% is reported with 128 processors. In this case the loss of efficiency is due to the relatively small
size of the problemwith respect to the number of processors employed. On Examples 3 and 4, pseudo efficiency larger than
one is probably due to cache effects. For the largest problems, these effects are not so evident because they are partially
counterbalanced by the increasing cost of communication.
We provide two types of scalability analysis. The first one consists of considering a fixed size problem and trying to

approximateϕ(1tA)v, for a suitable1t in a shorter time by increasing the number of processors used. This type of scalability
is more difficult to achieve than the other type in which the problem size and the number of processors grow accordingly.
This is so because increasing the number of processors normally causes an increment of the communication overhead. We
present the summary of results for the first type of scalability analysis on Fig. 2, where we plot the average time to perform
one iteration of the ReLPMcode as the number of processors increaseswith three different (fixed) problem sizes. The number

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
A. Martínez et al. / Journal of Computational and Applied Mathematics () – 9

Table 8
Timings and speedups for Example 6 (5123 grid nodes) and 7 (10243 grid nodes).

p Example 6 Example 7
Tp S(32)p E(32)p (%) Tp S(32)p E(32)p (%)

32 4100.4
64 2085.6 63.0 98
128 1106.1 118.4 92
256 553.6 236.8 92 1029.7
512 322.1 468.5 91 564.0 406.4 79
1024 326.0 809.0 79

Fig. 2. Scaling results — time to perform one iteration of the ReLPM code as the number of processors increases with fixed problem size (FD matrices) on
HPCx (number of processors ranging from 32 to 512). Dashed lines represent perfect scalability.

of processors varies from16 to 512. These plots are very close to the dashed lines describing optimal scalability. In particular,
for the largest problem presented in this figure (5123 mesh), solid and dashed lines almost overlap, showing only for the
largest number of processors employed (512) a slight difference between observed and optimal efficiency.
In the second study we measure scalability by increasing the size of the problem (by a factor of 23) and the number of

processors accordingly. In this case, scalability is achieved when the time per iteration is bounded or slightly increasing. We
summarize the results of this analysis in Fig. 3 wherewe plot the average time to perform one iteration of the ReLPM code as
the problem size increases with a fixed number of processors on HPCx. The horizontal lines join together the same average
time per iteration corresponding to a given problem running on p processors, and a problem eight times larger running on
8p processors. A slight loss of efficiency is clearly shown by the position of the points in the figure which are above this
horizontal (dotted) line.

5. Concluding remarks

In this paper we have assessed the parallel performance of a massively parallel MPI code for the solution of advection-
diffusion equations on 3-D domains. The code is a parallel implementation of ReLPM (Real Leja Points Method) for the
exponential integration of large-scale sparse systems of ODEs, generated by FD and FE discretizations of advection-
diffusion models, which has been previously shown [14,15] to outperform the Crank Nicolson method. An optimized
parallel sparse matrix–vector product routine has been implemented. The numerical results presented demonstrate that
the ReLPM propagator displays excellent parallelization properties. Our implementation has achieved almost linear scaling
parallelization with both the number of processors and the problem size. In view of the very satisfactory parallel efficiency
of ReLPM, research is being undertaken with the aim of using this code as a building block for the parallel solution of large
nonlinear advection-diffusion problems.

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

ARTICLE IN PRESS
10 A. Martínez et al. / Journal of Computational and Applied Mathematics () –

Fig. 3. Scaling results — time to perform one iteration of the ReLPM code as the problem size increases with fixed number of processors on HPCx (FD
matrices). Problem size increases by a factor of 8.

References

[1] M. Caliari, M. Vianello, L. Bergamaschi, Interpolating discrete advection-diffusion propagators at spectral Leja sequences, J. Comput. Appl. Math. 172
(2004) 79–99.

[2] S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002) 430–455.
[3] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998) 1552–1574.
[4] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential, SIAM J. Numer. Anal. 34 (1997) 1911–1925.
[5] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209–228.
[6] R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Software 24 (1998) 130–156.
[7] H. Tal-Ezer, R. Kosloff, C. Cerien, Low-order polynomial approximation of propagators for the time-dependent Schrödinger equation, J. Comput. Phys.
100 (1992) 179–187.

[8] L. Bergamaschi, M. Caliari, M. Vianello, Efficient approximation of the exponential operator for discrete 2d advection-diffusion problems, Numer.
Linear Algebra Appl. 10 (2003) 271–289.

[9] I. Moret, P. Novati, The computation of functions of matrices by truncated Faber series, Numer. Funct. Anal. Optim. 22 (2001) 697–719.
[10] I. Moret, P. Novati, An interpolatory approximation of thematrix exponential based on Faber polynomials, J. Comput. Appl. Math. 131 (2001) 361–380.
[11] L. Bergamaschi, M. Caliari, A. Martínez, M. Vianello, Comparing Leja and Krylov approximations of large scale matrix exponentials, in: Computational

Sciences, ICCS 2005, Reading, UK, in: Lecture Notes in Computer Sciences, vol. 3994, Springer-Verlag, Heidelberg, 2006, pp. 685–692.
[12] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computation, Technical Report 1029, University of Illinois, CSRD, Urbana, 1990.
[13] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, in: Proc.

Cambridge Philos. Soc., vol. 40, 1947, pp. 50–67.
[14] L. Bergamaschi, M. Caliari, M. Vianello, The ReLPM exponential integrator for FE discretizations of advection-diffusion equations, in: M. Bubak,

G.D. van Albada, P. Sloot (Eds.), Computational Science - ICCS 2004: 4th International Conference Krakow, Poland, 6–9 June, 2004, Proceedings, Part
IV, in: Lecture Notes in Computer Sciences, vol. 3036, Springer-Verlag, Heidelberg, 2004, pp. 434–442.

[15] L. Bergamaschi, M. Caliari, A. Martínez, M. Vianello, A parallel exponential integrator for large-scale discretizations of advection-diffusion models,
in: Recent Advances in PVM and MPI, 12th European PVM/MPI Users’ Group Meeting, Sorrento, Italy, in: Lecture Notes in Computer Sciences,
vol. 3666, Springer-Verlag, Heidelberg, 2005, pp. 483–492.

[16] L. Bergamaschi, M. Caliari, M. Vianello, The LEM exponential integrator for advection-diffusion-reaction equations, J. Comput. Appl. Math. 210 (2007)
56–63.

[17] C. González, A. Ostermann, M. Thalhammer, A second-order Magnus-type integrator for nonautonomous parabolic problems, J. Comput. Appl. Math.
189 (2006) 142–156.

[18] M.Hochbruck, A. Ostermann, Explicit exponential Runge–Kuttamethods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (2005) 1069–1090
(electronic).

[19] S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005) 72–88.
[20] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys. 213 (2006)

748–776.
[21] F. Leja, Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Polon. Math. 4 (1957) 8–13.
[22] L. Reichel, Newton interpolation at Leja points, BIT 30 (1990) 332–346.
[23] J. Baglama, D. Calvetti, L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal. 7 (1998) 124–140.
[24] H. Tal-Ezer, R. Kosloff, An accurate and efficient scheme for propagating the timedependent Schrödinger equation, J. Chem. Phys. 81 (1984) 3965–3971.
[25] M. Caliari, Accurate evaluation of divided differences for polynomial interpolation of exponential propagators, Computing 80 (2007) 189–201.
[26] A. McCurdy, K.C. Ng, B.N. Parlett, Accurate computation of divided differences of the exponential function, Math. Comp. 43 (1984) 501–528.
[27] Message Passing Interface Forum, MPI: A message passing interface standard, June 1995. Also available online at http://www.mpi-forum.org/.

Please cite this article in press as: A.Martínez, et al., Amassively parallel exponential integrator for advection-diffusionmodels, Journal of Computational
and Applied Mathematics (2009), doi:10.1016/j.cam.2009.01.024

http://www.mpi-forum.org/

	A massively parallel exponential integrator for advection-diffusion models
	Introduction
	The ReLPM algorithm
	The ReLPM code
	Comparison of ReLPM with Krylov subspace methods

	Parallelization
	Efficient matrix--vector product

	Numerical experiments
	HPCx architecture overview
	Results on FE matrices
	Results on FD matrices

	Concluding remarks
	References

